Skip to main content

Developing PI3K Inhibitors for Respiratory Diseases

  • Chapter
  • First Online:
PI3K and AKT Isoforms in Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 436))

Abstract

A number of different experimental models using both non-selective and selective PI3K inhibitors have shown that many pathogenic steps of respiratory disorders, such as bronchial asthma, Chronic Obstructive Pulmonary Disease (COPD), Idiopathic Pulmonary Fibrosis (IPF), Acute Respiratory Distress Syndrome (ARDS) and Lung Cancer (LC) are, at least in part, regulated by the PI3K signaling pathway, suggesting that the inhibition of PI3K could represent an ideal therapeutic target for the treatment of respiratory diseases. This chapter summarizes the current state of the therapeutic strategies aimed to exploit the inhibition of PI3K in this context. In animal models of asthma, selective δ and γ inhibitors have shown to be effective, and when administered by inhalation, reasonably safe. Nevertheless, very few clinical trials have been performed so far. The efficacy of current traditional therapies for allergic bronchial asthma has likely diminished the need for new alternative treatments. Surprisingly, in COPD, where instead there is an urgent need for new and more effective therapeutic approaches, the number of clinical studies is still low and not capable yet, with the exception for an acceptable safety profile, to show a significant improvement of clinical outcomes. In IPF, a disease with a disappointing prognosis, PI3K inhibitors have been bound to a FAP ligand with the aim to selectively target myofibroblasts, showing to significantly reduce collagen production and the development of lung fibrosis in an animal model of lung fibrosis. Due to its role in cell activation and cell replication, the PI3K pathway is obviously largely involved in lung cancer. Several studies, currently ongoing, are testing the effect of PI3K inhibitors mainly in NSCLC. Some evidence in the treatment of cancer patients suggests the possibility that PI3K inhibitors may enhance the response to conventional treatment. The involvement of PI3Kδ in the modulation of airway neutrophil recruitment and bronchial epithelial functional alterations also suggest a potential role in the treatment of ARDS, but at the current state the ongoing trials are aimed to the treatment of ARDS in COVID-19 patients. In general, few clinical trials investigating PI3K inhibitors in respiratory disorders have been performed so far. This relatively new approach of treatment is just at its beginning and certainly needs further efforts and additional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya PS, Zukas A, Chandan V, Katzenstein A-LA, Puré E (2006) Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 37:352–360. https://doi.org/10.1016/j.humpath.2005.11.020

    Article  CAS  PubMed  Google Scholar 

  • Ali K, Camps M, Pearce WP, Ji H, Rückle T, Kuehn N, Pasquali C, Chabert C, Rommel C, Vanhaesebroeck B (2008) Isoform-specific functions of phosphoinositide 3-Kinases: p110δ but Not p110γ promotes optimal allergic responses in vivo. J Immunol 180:2538–2544. https://doi.org/10.4049/jimmunol.180.4.2538

    Article  CAS  PubMed  Google Scholar 

  • Ando Y, Iwasa S, Takahashi S, Saka H, Kakizume T, Natsume K, Suenaga N, Quadt C, Yamada Y (2019) Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci 110:1021–1031. https://doi.org/10.1111/cas.13923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C, Blake-Palmer K, Perisic O, Smyth D, Maes M, Fiddler C, Juss J, Cilliers D, Markelj G, Chandra A, Farmer G, Kielkowska A, Clark J, Kracker S, Debré M, Picard C, Pellier I, Jabado N, Morris JA, Barcenas-Morales G, Fischer A, Stephens L, Hawkins P, Barrett JC, Abinun M, Clatworthy M, Durandy A, Doffinger R, Chilvers ER, Cant AJ, Kumararatne D, Okkenhaug K, Williams RL, Condliffe A, Nejentsev S (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science (80- ) 342:866–871. https://doi.org/10.1126/science.1243292

  • Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, Fitzpatrick AM, Jackson DJ, Baxi SN, Benson M, Burnham C-AD, Cabana M, Castro M, Chmiel JF, Covar R, Daines M, Gaffin JM, Gentile DA, Holguin F, Israel E, Kelly HW, Lazarus SC, Lemanske RF, Ly N, Meade K, Morgan W, Moy J, Olin T, Peters SP, Phipatanakul W, Pongracic JA, Raissy HH, Ross K, Sheehan WJ, Sorkness C, Szefler SJ, Teague WG, Thyne S, Martinez FD (2015) Early Administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses. JAMA 314:2034. https://doi.org/10.1001/jama.2015.13896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlaam B, Cosulich S, Degorce S, Fitzek M, Green S, Hancox U, Lambert-Van Der Brempt C, Lohmann JJ, Maudet M, Morgentin R, Pasquet MJ, Péru A, Plé P, Saleh T, Vautier M, Walker M, Ward L, Warin N (2015) Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N, N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J Med Chem 58:943–962. https://doi.org/10.1021/JM501629P

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138:16–27

    Article  CAS  Google Scholar 

  • Barnes PJ, Burney PGJ, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EFM (2015) Chronic obstructive pulmonary disease. Nat Rev Dis Prim 1. https://doi.org/10.1038/nrdp.2015.76

  • Batiha GES, Zayed MA, Awad AA, Shaheen HM, Mustapha S, Herrera-Calderon O, Pagnossa JP, Algammal AM, Zahoor M, Adhikari A, Pandey I, Elazab ST, Rengasamy KRR, Cruz-Martins N, Hetta HF (2021) Management of SARS-CoV-2 infection: key focus in macrolides efficacy for COVID-19. Front Med 8

    Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172. https://doi.org/10.1007/BF02684023

    Article  CAS  PubMed  Google Scholar 

  • Bi J, Min Z, Yuan H, Jiang Z, Mao R, Zhu T, Liu C, Zeng Y, Song J, Du C, Chen Z (2020) PI3K inhibitor treatment ameliorates the glucocorticoid insensitivity of PBMCs in severe asthma. Clin Transl Med 9. https://doi.org/10.1186/s40169-020-0262-5

  • Boyce JA, Broide D, Matsumoto K, Bochner BS (2009) Advances in mechanisms of asthma, allergy, and immunology in 2008. J Allergy Clin Immunol 123:569–574. https://doi.org/10.1016/j.jaci.2009.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KK, Toker A (2015) The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000Prime Rep 7. https://doi.org/10.12703/P7-13

  • Bruce IFP, Leblanc C, Mccarthy C, Whitehead L, Blair NE, Bloomfield GC, Hayler J, Kirman L, Oza MS SL (2003) 5-Phenylthiazole derivatives and their use as phosphatidylinositol 3-kinase (PI3K) inhibitors for the treatment of allergic and inflammatory diseases. WO-03072557

    Google Scholar 

  • Brusselle GG, Joos GF, Bracke KR (2011) New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378:1015–1026

    Article  CAS  Google Scholar 

  • Bustamante JG, Otterson GA (2019) Agents to treat BRAF-mutant lung cancer. Drugs Context 8:1–5. https://doi.org/10.7573/dic.212566

    Article  Google Scholar 

  • Campa CC, Silva RL, Margaria JP, Pirali T, Mattos MS, Kraemer LR, Reis DC, Grosa G, Copperi F, Dalmarco EM, Lima-Júnior RCP, Aprile S, Sala V, Dal Bello F, Prado DS, Alves-Filho JC, Medana C, Cassali GD, Tron GC, Teixeira MM, Ciraolo E, Russo RC, Hirsch E (2018) Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat Commun 9. https://doi.org/10.1038/s41467-018-07698-6

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science (80-) 296:1655–1657

    Google Scholar 

  • Chan Y, MacLoughlin R, Zacconi FC, Tambuwala MM, Pabari RM, Singh SK, de Jesus Andreoli Pinto T, Gupta G, Chellappan DK, Dua K (2021) Advances in nanotechnology-based drug delivery in targeting PI3K signaling in respiratory diseases. Nanomedicine (lond) 16:1351–1355. https://doi.org/10.2217/nnm-2021-0087

    Article  CAS  Google Scholar 

  • Clinical Trials gov. (2021a) The safe, tolerability and pharmacokinetic study of HEC68498 in healthy male and female subjects. Available at https://clinicaltrials.gov/ct2/show/NCT03502902. Accessed on 26 August 2021a

  • Clinical Trials gov (2021b) Study of PX-866 and Docetaxel in Solid Tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT01204099. Accessed on 25 Aug 2021b

  • Clinical Trials gov (2021c) Cisplatin, etoposide and PI3K inhibitor BKM120 in treating patients with advanced solid tumors or small cell lung cancer. available online: https://clinicaltrials.gov/ct2/show/NCT02194049. Accessed on 25 Aug 2021c

  • Clinical Trials gov (2021d) Safety and efficacy of BKM120 in patients with metastatic non-small cell lung cancer (BASALT-1). Available online: https://clinicaltrials.gov/ct2/show/NCT01297491. Accessed on 25 Aug 2021d

  • Clinical Trials gov (2021e) Trial of Erlotinib and BKM120 in patients with advanced non small cell lung cancer previously sensitive to erlotinib. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01487265. Accessed on 25 Aug 2021e.

  • Clinical Trials gov (2021f) A phase I study of BKM120 and everolimus in advanced solid malignancies. Available online: https://clinicaltrials.gov/ct2/show/NCT01470209. Accessed on 25 Aug 2021f

  • Clinical Trials gov (2021g) Safety and efficacy of carboplatin/paclitaxel and carboplatin/paclitaxel/bevacizumab with and without pictilisib in previously untreated advanced or recurrent non-small cell lung cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01493843. Accessed on 25 Aug 2021g

  • Clinical Trials gov (2021h) A dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of IPI-549. Available online: https://clinicaltrials.gov/ct2/show/NCT02637531. Accessed on 25 Aug 2021h

  • Clinical Trials gov (2021i) A Phase II, Open Label, Multiple Arm Study of AUY922, BYL719, INC280, LDK378 and MEK162 in Chinese Patients With Advanced Non-small Cell Lung Cancer. Available online:https://clinicaltrials.gov/ct2/show/results/NCT02276027. Accessed on 25 Aug 2021i

  • Clinical Trials gov (2021j) A Phase 1b/2 Study of Serabelisib in Combination With Canagliflozin in Patients With Advanced Solid Tumors. Available online:https://clinicaltrials.gov/ct2/show/NCT04073680. Accessed on 25 Aug 2021j

  • Clinical Trials gov (2021k) Study of BGB-10188 as monotherapy, and in combination with zanubrutinib, and tislelizumab. Available online: https://clinicaltrials.gov/ct2/show/NCT04282018. Accessed on 25 Aug 2021k

  • Clinical Trials gov (2021l) Pembrolizumab Combined with itacitinib (INCB039110) and/or pembrolizumab combined with INCB050465 in advanced solid tumors. Available online:https://clinicaltrials.gov/ct2/show/NCT02646748. Accessed on 25 Aug 2021l

  • Clinical Trials gov (2021m) Pembrolizumab + Idelalisib for Lung Cancer Study (PIL). Available online: https://clinicaltrials.gov/ct2/show/NCT03257722. Accessed on 25 Aug 2021m

  • Clinical Trials gov (2021n) AZD8186 first time in patient ascending dose study. Available online: https://clinicaltrials.gov/ct2/show/NCT01884285. Accessed on 25 Aug 2021n

  • Clinical Trials gov (2021o) A Phase 1/2 trial of perifosine in the treatment of non-small cell lung cancer. Available online:https://clinicaltrials.gov/ct2/show/NCT00399789. Accessed on 25 Aug 2021o

  • Clinical Trials gov (2021p) Duvelisib to combat COVID-19. available online: https://clinicaltrials.gov/ct2/show/NCT04372602. Accessed on 31 Aug 2021p

  • Clinical Trials gov (2021q) Assessing the Efficacy of Sirolimus in Patients With COVID-19 Pneumonia for Prevention of Post-COVID Fibrosis. Available online: https://clinicaltrials.gov/ct2/show/NCT04948203. Accessed on 31 Aug 2021q

  • Clinical Trials gov (2021r) Hydroxychloroquine in combination with azithromycin or sirolimus for treating COVID-19 patients (COVID19-HOPE). Available online: https://clinicaltrials.gov/ct2/show/NCT04374903. Accessed on 31 Aug 2021r

  • Clinical Trials gov (2021s) Sirolimus treatment in hospitalized patients with COVID-19 Pneumonia (SCOPE). Available online: https://clinicaltrials.gov/ct2/show/NCT04341675. Accessed on 31 Aug 2021s

  • Clinical Trials gov (2021t) Efficacy and Safety of Sirolimus in COVID-19 Infection. Available online: https://clinicaltrials.gov/ct2/show/NCT04461340. Accessed on 31 Aug 2021t

  • Clinical Trials gov (2022a) A trial of gefitinib in combination with BKM120 in patients with advanced non-small cell lung cancer, with enrichment for patients whose tumours harbour molecular alterations of PI3K Pathway and Known to Overexpress EGFR (BKM120). Available online:https://clinicaltrials.gov//ct2/show/NCT01570296. Accessed on 21 Jan 2022a

  • Clinical Trials gov (2022b) Study of ASN003 in subjects with advanced Solid Tumors, available on line https://clinicaltrials.gov/ct2/show/NCT02961283. Accessed on 21 Jan 2022b

  • Cohen EEW, Postow M SR et al. (2020) Updated clinical data from the squamous cell carcinoma of the head and neck (SCCHN) expansion cohort of an ongoing ph1/1b study of eganelisib (formerly IPI-549) in combination with nivolumab [abstract] STIC annual meeting 2020:352

    Google Scholar 

  • Conte E, Gili E, Fruciano M, Korfei M, Fagone E, Iemmolo M, Lo Furno D, Giuffrida R, Crimi N, Guenther A, Vancheri C (2013) PI3K p110γ overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: In vitro effects of its inhibition. Lab Investig 93:566–576. https://doi.org/10.1038/labinvest.2013.6

    Article  CAS  PubMed  Google Scholar 

  • Conte E, Fruciano M, Fagone E, Gili E, Caraci F, Iemmolo M, Crimi N, Vancheri C (2011) Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: The role of class I P110 isoforms. PLoS One 6. https://doi.org/10.1371/journal.pone.0024663

  • Doukas J, Eide L, Stebbins K, Racanelli-Layton A, Dellamary L, Martin M, Dneprovskaia E, Noronha G, Soll R, Wrasidlo W, Acevedo LM, Cheresh DA (2009) Aerosolized phosphoinositide 3-kinase γ/σ inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 328:758–765. https://doi.org/10.1124/jpet.108.144311

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Aguinaldo Datiles AMK, Leung BP, Vlahos CJ, Wong WSF (2005) An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. Int Immunopharmacol 5:495–502. https://doi.org/10.1016/j.intimp.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  • Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL (2009) Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 121:1–13

    Article  CAS  Google Scholar 

  • El-Hashim AZ, Khajah MA, Renno WM, Babyson RS, Uddin M, Benter IF, Ezeamuzie C, Akhtar S (2017) Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model. Sci Rep 7. https://doi.org/10.1038/s41598-017-09349-0

  • Fahy WA, Homayoun-Valiani F, Cahn A, Robertson J, Templeton A, Meeraus WH, Wilson R, Lowings M, Marotti M, West SL, Tabberer M, Hessel EM (2021) Nemiralisib in patients with an acute exacerbation of COPD: Placebo-controlled, dose-ranging study. Int J COPD 16:1637–1646. https://doi.org/10.2147/COPD.S309320

    Article  CAS  Google Scholar 

  • Fernández Fabrellas E, Peris Sánchez R, Sabater Abad C, Juan Samper G (2018) Prognosis and Follow-Up of Idiopathic Pulmonary Fibrosis. Med Sci 6:51. https://doi.org/10.3390/medsci6020051

    Article  CAS  Google Scholar 

  • Ford PA, Durham AL, Russell REK, Gordon F, Adcock IM, Barnes PJ (2010) Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest 137:1338–1344. https://doi.org/10.1378/chest.09-2363

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Bismuth G (2009) Fine tuning the immune response with PI3K. Immunol Rev 228:253–272. https://doi.org/10.1111/j.1600-065X.2008.00750.x

    Article  CAS  PubMed  Google Scholar 

  • Galli SJ, Tsai M (2008) Mast cells: Versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 49:7–19

    Article  CAS  Google Scholar 

  • Ghigo A, Damilano F, Braccini L, Hirsch E (2010) PI3K inhibition in inflammation: toward tailored therapies for specific diseases. BioEssays 32:185–196

    Article  CAS  Google Scholar 

  • Gupta V, Khan A, Higham A, Lemon J, Sriskantharajah S, Amour A, Hessel EM, Southworth T, Singh D (2016) The effect of phosphatidylinositol-3 kinase inhibition on matrix metalloproteinase-9 and reactive oxygen species release from chronic obstructive pulmonary disease neutrophils. Int Immunopharmacol 35:155–162. https://doi.org/10.1016/j.intimp.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  • Hakim-Rad K, Metz M, Maurer M (2009) Mast cells: Makers and breakers of allergic inflammation. Curr Opin Allergy Clin Immunol 9:427–430

    Article  CAS  Google Scholar 

  • Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 1851:882–897

    Article  CAS  Google Scholar 

  • Hettiarachchi SU, Li YH, Roy J, Zhang F, Puchulu-Campanella E, Lindeman SD, Srinivasarao M, Tsoyi K, Liang X, Ayaub EA, Nickerson-Nutter C, Rosas IO, Low PS (2020) Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci Transl Med 12. https://doi.org/10.1126/scitranslmed.aay3724

  • Hillhouse EE, Delisle JS, Lesage S (2013) Immunoregulatory CD4- CD8- T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer. Front Immunol 4. https://doi.org/10.3389/fimmu.2013.00006

  • Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science (80- ) 287:1049–1052. https://doi.org/10.1126/science.287.5455.1049

  • Hong DS, Bowles DW, Falchook GS, Messersmith WA, George GC, O’Bryant CL, Vo ACH, Klucher K, Herbst RS, Eckhardt SG, Peterson S, Hausman DF, Kurzrock R, Jimeno A (2012) A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 18:4173–4182. https://doi.org/10.1158/1078-0432.CCR-12-0714

    Article  CAS  PubMed  Google Scholar 

  • Horak F, Puri KD, Steiner BH, Holes L, Xing G, Zieglmayer P, Zieglmayer R, Lemell P, Yu A (2016) Randomized phase 1 study of the phosphatidylinositol 3-kinase δ inhibitor idelalisib in patients with allergic rhinitis. J Allergy Clin Immunol 137:1733–1741. https://doi.org/10.1016/j.jaci.2015.12.1313

    Article  CAS  PubMed  Google Scholar 

  • Huppert LA, Matthay MA, Ware LB (2019) Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med 40:31–39. https://doi.org/10.1055/s-0039-1683996

    Article  PubMed  PubMed Central  Google Scholar 

  • Inamura K (2017) Lung cancer: understanding its molecular pathology and the 2015 wHO classification. Front Oncol 7. https://doi.org/10.3389/fonc.2017.00193

  • Ito K, Caramori G, Adcock IM (2007) Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther 321:1–8

    Article  CAS  Google Scholar 

  • Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15:273–291

    Article  CAS  Google Scholar 

  • Juric D, De Bono JS, LoRusso PM, Nemunaitis J, Heath EI, Kwak EL, Mercade TM, Geuna E, De Miguel-Luken MJ, Patel C, Kuida K, Sankoh S, Westin EH, Zohren F, Shou Y, Tabernero J (2017) A first-in-human, Phase I, dose-escalation study of TAK-117, A selective PI3Ka isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 23:5015–5023. https://doi.org/10.1158/1078-0432.CCR-16-2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kämpe M, Lampinen M, Stolt I, Janson C, Stålenheim G, Carlson M (2012) PI3-kinase regulates eosinophil and neutrophil degranulation in patients with allergic rhinitis and allergic asthma irrespective of allergen challenge model. Inflammation 35:230–239. https://doi.org/10.1007/s10753-011-9309-5

    Article  CAS  PubMed  Google Scholar 

  • Khindri S, Cahn A, Begg M, Montembault M, Leemereise C, Cui Y, Hogg A, Wajdner H, Yang S, Robertson J, Nicole Hamblin J, Ludwig-Sengpiel A, Kornmann O, Hessel EM (2018) A multicentre, randomized, double-blind, placebo-controlled, crossover study to investigate the efficacy, safety, tolerability, and pharmacokinetics of repeat doses of inhaled nemiralisib in adults with persistent, uncontrolled asthma. J Pharmacol Exp Ther 367:405–413. https://doi.org/10.1124/jpet.118.249516

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Jeong JS, Kwon SH, Kim SR, Lee YC (2020) Roles of PI3K pan-inhibitors and PI3K-δ inhibitors in allergic lung inflammation: a systematic review and meta-analysis. Sci Rep 10. https://doi.org/10.1038/s41598-020-64594-0

  • Kliment CR, Oury TD (2010) Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 49:707–717

    Article  CAS  Google Scholar 

  • Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH, Sarpong MA, Schmidt SJ, Van Aller GS, Carson JD, Diamond MA, Elkins PA, Gardiner CM, Garver E, Gilbert SA, Gontarek RR, Jackson JR, Kershner KL, Luo L, Raha K, Sherk CS, Sung CM, Sutton D, Tummino PJ, Wegrzyn RJ, Auger KR, Dhanak D (2010) Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett 1:39–43. https://doi.org/10.1021/ml900028r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok K, Geering B, Vanhaesebroeck B (2009) Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci 34:115–127

    Article  CAS  Google Scholar 

  • Kwak YG, Song CH, Yi HK, Hwang PH, Kim JS, Lee KS, Lee YC (2003) Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J Clin Invest 111:1083–1092. https://doi.org/10.1172/JCI16440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laffargue M, Calvez R, Finan P, Trifilieff A, Barbier M, Altruda F, Hirsch E, Wymann MP (2002) Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 16:441–451. https://doi.org/10.1016/S1074-7613(02)00282-0

    Article  CAS  PubMed  Google Scholar 

  • Langer CJ, Redman MW, Wade JL, Aggarwal C, Bradley JD, Crawford J, Stella PJ, Knapp MH, Miao J, Minichiello K, Herbst RS, Kelly K, Gandara DR, Papadimitrakopoulou VA (2019) SWOG S1400B (NCT02785913), a phase II study of GDC-0032 (Taselisib) for previously treated PI3K-positive patients with stage IV squamous cell lung cancer (Lung-MAP Sub-Study). J Thorac Oncol 14:1839–1846. https://doi.org/10.1016/j.jtho.2019.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Cras TD, Korfhagen TR, Davidson C, Schmidt S, Fenchel M, Ikegami M, Whitsett JA, Hardie WD (2010) Inhibition of PI3K by PX-866 prevents transforming growth factor-α-induced pulmonary fibrosis. Am J Pathol 176:679–686. https://doi.org/10.2353/ajpath.2010.090123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KS, Lee HK, Hayflick JS, Lee YC, Puri KD (2006a) Inhibition of phosphoinositide 3-kinase δ attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. FASEB J 20:455–465. https://doi.org/10.1096/fj.05-5045com

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Park SJ, Kim SR, Min KH, Jin SM, Puri KD, Lee YC (2006b) Phosphoinositide 3-kinase-δ inhibitor reduces vascular permeability in a murine model of asthma. J Allergy Clin Immunol 118:403–409. https://doi.org/10.1016/j.jaci.2006.04.041

    Article  CAS  PubMed  Google Scholar 

  • Leiro-Fernández V, Mouronte-Roibás C, Ramos-Hernández C, Botana-Rial M, González-Piñeiro A, García-Rodríguez E, Represas-Represas C, Fernández-Villar A (2014) Cambios en el estadio y presentación clínica del cáncer de pulmón a lo largo de dos décadas. Arch Bronconeumol 50:417–421. https://doi.org/10.1016/j.arbres.2014.03.003

    Article  PubMed  Google Scholar 

  • Li F, Liang X, Jiang Z, Wang A, Wang J, Chen C, Wang W, Zou F, Qi Z, Liu Q, Hu Z, Cao J, Wu H, Wang B, Wang L, Liu J, Liu Q (2020) Discovery of (S)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1 H-pyrazolo[3,4- d]pyrimidin-1-yl)propyl)-3-cyclopropyl-5-fluoroquinazolin-4(3 H)-one (IHMT-PI3Kδ-372) as a potent and selective PI3KδInhibitor for the treatment of chronic obstructive pulmonary. J Med Chem 63:13973–13993. https://doi.org/10.1021/acs.jmedchem.0c01544

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Jin J, Liu Y, Tian H, Zhang Y, Fu R, Zhang J, Wang M, Du T, Ji M, Wu D, Zhang K, Sheng L, Li Y, Chen X, Xu H (2019) Discovery of 4-Methylquinazoline BAsed PI3K inhibitors for the potential treatment of idiopathic pulmonary fibrosis. J Med Chem 62:8873–8879. https://doi.org/10.1021/acs.jmedchem.9b00969

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Lisi A, Patrucco E, De Giuli P, Milazzo MG, Ceci S, Wymann M, Lena A, Gremigni V, Fanelli V, Hirsch E, Ranieri VM (2006) Lack of phosphoinositide 3-kinase-γ attenuates ventilator-induced lung injury. Crit Care Med 34:134–141. https://doi.org/10.1097/01.CCM.0000190909.70601.2C

    Article  CAS  PubMed  Google Scholar 

  • Liu RM, Desai LP (2015) Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577

    Article  CAS  Google Scholar 

  • Lukey PT, Harrison SA, Yang S, Man Y, Holman BF, Rashidnasab A, Azzopardi G, Grayer M, Simpson JK, Bareille P, Paul L, Woodcock H V., Toshner R, Saunders P, Molyneaux PL, Thielemans K, Wilson FJ, Mercer PF, Chambers RC, Groves AM, Fahy WA, Marshall RP, Maher TM (2019) A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. Eur Respir J 53. https://doi.org/10.1183/13993003.01992-2018

  • Lynch JT, Polanska UM, Delpuech O, Hancox U, Trinidad AG, Michopoulos F, Lenaghan C, McEwen R, Bradford J, Polanski R, Ellston R, Avivar-Valderas A, Pilling J, Staniszewska A, Cumberbatch M, Critchlow SE, Cruzalegui F, Barry ST (2017) Inhibiting PI3Kβ with AZD8186 regulates key metabolic pathways in PTEN-Null Tumors. Clin Cancer Res 23:7584–7595. https://doi.org/10.1158/1078-0432.CCR-17-0676

    Article  CAS  PubMed  Google Scholar 

  • Mallon R, Feldberg LR, Lucas J, Chaudhary I, Dehnhardt C, Delos Santos E, Chen Z, Dos Santos O, Ayral-Kaloustian S, Venkatesan A, Hollander I (2011) Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clin Cancer Res 17:3193–3203. https://doi.org/10.1158/1078-0432.CCR-10-1694

    Article  CAS  PubMed  Google Scholar 

  • Manley GCA, Parker LC, Zhang Y (2019) Emerging regulatory roles of dual-specificity phosphatases in inflammatory airway disease. Int J Mol Sci 20

    Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB Signaling: Navigating Downstream. Cell 129:1261–1274

    Article  CAS  Google Scholar 

  • Marwick JA, Chung KF, Adcock IM (2010) Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis 4:19–34

    Article  Google Scholar 

  • McGowan DR, Skwarski M, Bradley KM, Campo L, Fenwick JD, Gleeson FV, Green M, Horne A, Maughan TS, McCole MG, Mohammed S, Muschel RJ, Ng SM, Panakis N, Prevo R, Strauss VY, Stuart R, Tacconi EMC, Vallis KA, McKenna WG, Macpherson RE, Higgins GS (2019) Buparlisib with thoracic radiotherapy and its effect on tumour hypoxia: a phase I study in patients with advanced non-small cell lung carcinoma. Eur J Cancer 113:87–95. https://doi.org/10.1016/j.ejca.2019.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer PF, Woodcock HV, Eley JD, Platé M, Sulikowski MG, Durrenberger PF, Franklin L, Nanthakumar CB, Man Y, Genovese F, McAnulty RJ, Yang S, Maher TM, Nicholson AG, Blanchard AD, Marshall RP, Lukey PT, Chambers RC (2016) Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax 71:701–711. https://doi.org/10.1136/thoraxjnl-2015-207429

    Article  PubMed  Google Scholar 

  • Montero P, Milara J, Roger I, Cortijo J (2021) Role of jak/stat in interstitial lung diseases; molecular and cellular mechanisms. Int J Mol Sci 22

    Google Scholar 

  • Moradi S, Jarrahi E, Ahmadi A, Salimian J, Karimi M, Zarei A, Azimzadeh Jamalkandi S, Ghanei M (2021) PI3K signalling in chronic obstructive pulmonary disease and opportunities for therapy. J Pathol 254:505–518

    Article  CAS  Google Scholar 

  • Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJH, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science (80- ) 297:1031–1034. https://doi.org/10.1126/science.1073560

  • Osman S, Ziegler C, Gibson R, Mahmood R, Moraros J (2017) The association between risk factors and chronic obstructive pulmonary disease in Canada: A cross-sectional study using the 2014 canadian community health survey. Int J Prev Med 8. https://doi.org/10.4103/ijpvm.IJPVM_330_17

  • Owusu-Brackett N, Zhao M, Akcakanat A, Evans KW, Yuca E, Dumbrava EI, Janku F, Meric-Bernstam F (2020) Targeting PI3Kβ alone and in combination with chemotherapy or immunotherapy in tumors with PTEN loss. Oncotarget 11:969–981. https://doi.org/10.18632/oncotarget.27503

  • Palma G, Pasqua T, Silvestri G, Rocca C, Gualtieri P, Barbieri A, De Bartolo A, De Lorenzo A, Angelone T, Avolio E, Botti G (2020) PI3Kδ inhibition as a potential therapeutic target in COVID-19. Front Immunol 11

    Google Scholar 

  • Papadopoulos KP, Tabernero J, Markman B, Patnaik A, Tolcher AW, Baselga J, Shi W, Egile C, Ruiz-Soto R, Laird AD, Miles D, Lo Russo PM (2014) Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245409 (XL765), a novel, orally administered PI3K/mTOR inhibitor in patients with advanced solid tumors. Clin Cancer Res 20:2445–2456. https://doi.org/10.1158/1078-0432.CCR-13-2403

    Article  CAS  PubMed  Google Scholar 

  • Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D (2012) Autophagy in idiopathic pulmonary fibrosis. PLoS One 7

    Google Scholar 

  • Postow M, Sullivan RJ CE et al. (2020) Updated clinical data from melanoma expansion of an ongoing ph1/1b study of eganelisib (formerly IPI-549) in combination with nivolumab [abstract] STIC annual meeting 2020:434

    Google Scholar 

  • Puglisi S, Torrisi SE, Giuliano R, Vindigni V, Vancheri C (2016) What we know about the pathogenesis of idiopathic pulmonary fibrosis. Semin Respir Crit Care Med 37:358–367. https://doi.org/10.1055/s-0036-1580693

    Article  CAS  PubMed  Google Scholar 

  • Puri KD, Doggett TA, Douangpanya J, Hou Y, Tino WT, Wilson T, Graf T, Clayton E, Turner M, Hayflick JS, Diacovo TG (2004) Mechanisms and implications of phosphoinositide 3-kinase δ in promoting neutrophil trafficking into inflamed tissue. Blood 103:3448–3456. https://doi.org/10.1182/blood-2003-05-1667

    Article  CAS  PubMed  Google Scholar 

  • Raedler LA (2015) Zydelig (Idelalisib): First-in-class PI3 kinase inhibitor approved for the treatment of 3 hematologic malignancies. Am Heal Drug Benefits 8:157–162

    Google Scholar 

  • Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y, Myers J, Müller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schünemann HJ (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Eng C, Kolesar J, Hideshima T, Anderson KC (2012) Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: Mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol 8:623–633

    Article  CAS  Google Scholar 

  • Rommel C, Camps M, Ji H (2007) PI3Kδ and PI3Kγ: Partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7:191–201

    Article  CAS  Google Scholar 

  • Russo RC, Garcia CC, Barcelos LS, Rachid MA, Guabiraba R, Roffê E, Souza ALS, Sousa LP, Mirolo M, Doni A, Cassali GD, Pinho V, Locati M, Teixeira MM (2011) Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. J Leukoc Biol 89:269–282. https://doi.org/10.1189/jlb.0610346

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82

    Article  CAS  Google Scholar 

  • Sapey E, Stockley JA, Greenwood H, Ahmad A, Bayley D, Lord JM, Insall RH, Stockley RA (2011) Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183:1176–1186. https://doi.org/10.1164/rccm.201008-1285OC

    Article  PubMed  Google Scholar 

  • Sapru A, Flori H, Quasney MW, Dahmer MK (2015) Pathobiology of acute respiratory distress syndrome. Pediatr Crit Care Med 16:S6–S22. https://doi.org/10.1097/PCC.0000000000000431

    Article  PubMed  Google Scholar 

  • Schram AM, Gandhi L, Mita MM, Damstrup L, Campana F, Hidalgo M, Grande E, Hyman DM, Heist RS (2018) A phase Ib dose-escalation and expansion study of the oral MEK inhibitor pimasertib and PI3K/MTOR inhibitor voxtalisib in patients with advanced solid tumours. Br J Cancer 119:1471–1476. https://doi.org/10.1038/S41416-018-0322-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L (2018) Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res 19

    Google Scholar 

  • Shapiro GI, Bell-McGuinn KM, Molina JR, Bendell J, Spicer J, Kwak EL, Pandya SS, Millham R, Borzillo G, Pierce KJ, Han L, Houk BE, Gallo JD, Alsina M, Braña I, Tabernero J (2015) First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res 21:1888–1895. https://doi.org/10.1158/1078-0432.CCR-14-1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So L, Fruman DA (2012) PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J 442:465–481

    Article  CAS  Google Scholar 

  • Soria JC, Adjei AA, Bahleda R, Besse B, Ferte C, Planchard D, Zhou J, Ware J, Morrissey K, Shankar G, Lin W, Schutzman JL, Dy GK, Groen HJM (2017) A phase IB dose-escalation study of the safety and pharmacokinetics of pictilisib in combination with either paclitaxel and carboplatin (with or without bevacizumab) or pemetrexed and cisplatin (with or without bevacizumab) in patients with advanced non–s. Eur J Cancer 86:186–196. https://doi.org/10.1016/j.ejca.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  • Spagnolo P, Sverzellati N, Rossi G, Cavazza A, Tzouvelekis A, Crestani B, Vancheri C (2015) Idiopathic pulmonary fibrosis: An update. Ann Med 47:15–27

    Article  CAS  Google Scholar 

  • Sriskantharajah S, Hamblin N, Worsley S, Calver AR, Hessel EM, Amour A (2013) Targeting phosphoinositide 3-kinase δ for the treatment of respiratory diseases. Ann N Y Acad Sci 1280:35–39. https://doi.org/10.1111/nyas.12039

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  • Thompson BT, Chambers RC, Liu KD (2017) Acute respiratory distress syndrome. N Engl J Med 377:562–572. https://doi.org/10.1056/NEJMra1608077

    Article  CAS  PubMed  Google Scholar 

  • To Y, Ito K, Kizawa Y, Failla M, Ito M, Kusama T, Elliott WM, Hogg JC, Adcock IM, Barnes PJ (2010) Targeting phosphoinositide-3-kinase-δ with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:897–904. https://doi.org/10.1164/rccm.200906-0937OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todde V, Veenhuis M, van der Klei IJ (2009) Autophagy: principles and significance in health and disease. Biochim Biophys Acta Mol Basis Dis 1792:3–13

    Article  CAS  Google Scholar 

  • Clinical Trials gov (2021) PI3K Inhibitor BKM120, Carboplatin, and Pemetrexed Disodium in Treating Patients With Stage IV Non-Small Cell Lung Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01723800. Accessed on 25 Aug 2021

  • Udagawa H, Ikeda T, Umemura S, Daga H, Toyozawa R, Harada D, Sakakibara-Konishi J, Morise M, Yamamoto N, Takahashi T, Kato T, Shingyoji M, Ushio R, Hara S, Takata S, Nomura S, Matsumoto S, Niho S, Sato A, Goto K (2020) Phase II study of gedatolisib for small-cell lung cancer (SCLC) patients (pts) with genetic alterations in PI3K/AKT/mTOR pathway based on a large-scale nationwide genomic screening network in Japan (EAGLE-PAT/LC-SCRUM-Japan). J Clin Oncol 38:9064–9064. https://doi.org/10.1200/JCO.2020.38.15_suppl.9064

    Article  Google Scholar 

  • Vancheri C (2013) Common pathways in idiopathic pulmonary fibrosis and cancer. Eur Respir Rev 22:265–272

    Article  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in humancancer. Nat Rev Cancer 2:489–501

    Article  CAS  Google Scholar 

  • Wainberg ZA, Shapiro G, Curigliano G, Kristeleit RS, Leong S, Alsina M, Milella M, Britten CD, Gelmon KA, Olszanski AJ, Vaishampayan UN, Lopez-Martin JA, Kern KA, Pierce KJ, Perea R, Houk B, Pathan N, Razak AR (2016) Phase I study of the PI3K/mTOR inhibitor gedatolisib (PF-05212384) in combination with docetaxel, cisplatin, and dacomitinib. J Clin Oncol 34:2566–2566. https://doi.org/10.1200/JCO.2016.34.15_suppl.2566

    Article  Google Scholar 

  • Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564

    Article  Google Scholar 

  • Wheler J, Mutch D, Lager J, Castell C, Liu L, Jiang J, Traynor AM (2017) Phase I dose-escalation study of pilaralisib (SAR245408, XL147) in combination with paclitaxel and carboplatin in patients with solid tumors. Oncologist 22:377. https://doi.org/10.1634/theoncologist.2016-0257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White ES, Atrasz RG, Hu B, Phan SH, Stambolic V, Mak TW, Hogaboam CM, Flaherty KR, Martinez FJ, Kontos CD, Toews GB (2006) Negative regulation of myofibroblast differentiation by PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am J Respir Crit Care Med 173:112–121. https://doi.org/10.1164/rccm.200507-1058OC

    Article  CAS  PubMed  Google Scholar 

  • Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA (2021) Mechanisms of resistance to PI3K inhibitors in cancer: adaptive responses, drug tolerance and cellular plasticity. Cancers (Basel) 13. https://doi.org/10.3390/CANCERS13071538

  • Wu YL, Zhang L, Trandafir L, Dong T, Duval V, Hazell K, Xu B (2016) Phase I study of the pan-PI3K inhibitor buparlisib in adult Chinese patients with advanced solid tumors. Anticancer Res 36:6185–6194. https://doi.org/10.21873/anticanres.11212

  • Wymann MP, Björklöf K, Calvez R, Finan P, Thomas M, Trifilieff A, Barbier M, Altruda F, Hirsch E, Laffargue M (2003) Phosphoinositide 3-kinase γ: a key modulator in inflammation and allergy. In: Biochemical society transactions. Biochem Soc Trans, Asthma, pp 275–280

    Google Scholar 

  • Wymann MP, Marone R (2005) Phosphoinositide 3-kinase in disease: Timing, location, and scaffolding. Curr Opin Cell Biol 17:141–149

    Article  CAS  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  CAS  Google Scholar 

  • Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Avdulov S, Peterson M, Nerva J, Bitterman P, Henke C (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205:1659–1672. https://doi.org/10.1084/jem.20080001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Yang J, Gu Y, Yi J (2021) Research update on the anticancer effects of buparlisib (Review). Oncol Lett 21

    Google Scholar 

  • Yanagi S, Tsubouchi H, Miura A, Matsumoto N, Nakazato M (2015) Breakdown of epithelial barrier integrity and overdrive activation of alveolar epithelial cells in the pathogenesis of acute respiratory distress syndrome and lung fibrosis. Biomed Res Int

    Google Scholar 

  • Yang X, Cui X, Su D, Wu Y, Sun X et al (2020) BGB-10188, a highly selective PI3Kδ inhibitor with improved safety profile and superior anti-tumor activities in vivo [abstract]. In: Proceedings of the annual meeting of the american association for cancer research 2020; 2020 Apr 27–28 and Jun 22–24 Philadelphia

    Google Scholar 

  • Yao L, Tang Y, Chen J, Li J, Wang H, Lu M, Gao L, Liu F, Chang P, Liu X, Tang H (2021) Impaired airway epithelial barrier integrity was mediated by PI3Kδ in a mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 95. https://doi.org/10.1016/j.intimp.2021.107570

  • Yoo EJ, Ojiaku CA, Sunder K, Panettieri RA (2017) Phosphoinositide 3-Kinase in Asthma: novel roles and therapeutic approaches. Am J Respir Cell Mol Biol 56:700–707

    Article  CAS  Google Scholar 

  • Yue EW, Li YL, Douty B, He C, Mei S, Wayland B, Maduskuie T, Falahatpisheh N, Sparks RB, Polam P, Zhu W, Glenn J, Feng H, Zhang K, Li Y, He X, Katiyar K, Covington M, Feldman P, Shin N, Wang KH, Diamond S, Li Y, Koblish HK, Hall L, Scherle P, Yeleswaram S, Xue CB, Metcalf B, Combs AP, Yao W (2019) INCB050465 (Parsaclisib), a novel next-generation inhibitor of phosphoinositide 3-Kinase delta (PI3Kδ). ACS Med Chem Lett 10:1554–1560. https://doi.org/10.1021/acsmedchemlett.9b00334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yum H-K, Arcaroli J, Kupfner J, Shenkar R, Penninger JM, Sasaki T, Yang K-Y, Park JS, Abraham E (2001) Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury. J Immunol 167:6601–6608. https://doi.org/10.4049/jimmunol.167.11.6601

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shen L, Liu Q, Hou L, Huang L (2019) Inhibiting PI3 kinase-γ in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. J Control Release 309:173–180. https://doi.org/10.1016/j.jconrel.2019.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol 214

    Google Scholar 

  • Zhao W, Qiu Y, Kong D (2017) Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm. Sin. B 7:27–37

    Article  Google Scholar 

  • Zhao H, Wang Y, Qiu T, Liu W, Yao P (2020) Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta 502:139–147. https://doi.org/10.1016/J.CCA.2019.12.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Vancheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagone, E., Fruciano, M., Gili, E., Sambataro, G., Vancheri, C. (2022). Developing PI3K Inhibitors for Respiratory Diseases. In: Dominguez-Villar, M. (eds) PI3K and AKT Isoforms in Immunity . Current Topics in Microbiology and Immunology, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-06566-8_19

Download citation

Publish with us

Policies and ethics