Skip to main content

Upper Gastrointestinal Motility, Disease and Potential of Stem Cell Therapy

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

  • 1225 Accesses

Abstract

Many gastrointestinal motility disorders arise due to defects in the enteric nervous system. Achalasia and gastroparesis are two extremely debilitating digestive diseases of the upper gastrointestinal tract caused in part by damage or loss of the nitrergic neurons in the esophagus and stomach. Most current pharmacological and surgical interventions provide no long-term relief from symptoms, and none address the cause. Stem cell therapy, to replace the missing neurons and restore normal gut motility, is an attractive alternative therapy. However, there are a number of hurdles that must be overcome to bring this exciting research from the bench to the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burns AJ, Thapar N (2014) Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastroenterol Hepatol 11(5):317–328

    Article  Google Scholar 

  2. Di Nardo G, Blandizzi C, Volta U, Colucci R, Stanghellini V, Barbara G et al (2008) Review article: molecular, pathological and therapeutic features of human enteric neuropathies. Aliment Pharmacol Ther 28(1):25–42

    Article  Google Scholar 

  3. De Giorgio R, Camilleri M (2004) Human enteric neuropathies: morphology and molecular pathology. Neurogastroenterol Motil 16(5):515–531

    Article  Google Scholar 

  4. Walzer N (2008) Hirano I. Achalasia. Gastroenterol Clin N Am 37(4):807–825, viii

    Article  Google Scholar 

  5. Hasler WL (2011) Gastroparesis: pathogenesis, diagnosis and management. Nat Rev Gastroenterol Hepatol 8(8):438–453

    Article  CAS  Google Scholar 

  6. Rivera LR, Poole DP, Thacker M, Furness JB (2011) The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil 23(11):980–988

    Article  CAS  Google Scholar 

  7. Boeckxstaens GE, Zaninotto G, Richter JE (2014) Achalasia. Lancet 383(9911):83–93

    Article  Google Scholar 

  8. Pandolfino JE, Gawron AJ (2015) Achalasia: a systematic review. JAMA 313(18):1841–1852

    Article  Google Scholar 

  9. Schlottmann F, Patti MG (2018) Esophageal achalasia: current diagnosis and treatment. Expert Rev Gastroenterol Hepatol 12(7):711–721

    Article  CAS  Google Scholar 

  10. Hotta R, Stamp LA, Foong JP, Bergner AJ, McConnell SN, Anderson RB et al (2013) Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 123(3):1182–1191

    Article  CAS  Google Scholar 

  11. Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schafer KH, Metzger M et al (2016) White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 417:229–251

    Article  CAS  Google Scholar 

  12. Stamp LA (2017) Cell therapy for GI motility disorders: comparison of cell sources and proposed steps for treating Hirschsprung disease. Am J Physiol 312(4):G348–GG54

    Google Scholar 

  13. Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N et al (2014) Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 385(2):220–229

    Article  CAS  Google Scholar 

  14. Stamp LA, Young HM (2017) Recent advances in regenerative medicine to treat enteric neuropathies: use of human cells. Neurogastroenterol Motil 29(1):e12993

    Article  Google Scholar 

  15. Dubner R, Sessle BJ, Storey AT (1978) The neural basis of oral and facial function. Plenum Press, New York. xi, 483 p

    Book  Google Scholar 

  16. Paterson WG, Hynna-Liepert TT, Selucky M (1991) Comparison of primary and secondary esophageal peristalsis in humans: effect of atropine. Am J Phys 260(1 Pt 1):G52–G57

    CAS  Google Scholar 

  17. Lang IM, Shaker R (1997) Anatomy and physiology of the upper esophageal sphincter. Am J Med 103(5A):50S–55S

    Article  CAS  Google Scholar 

  18. Kallmunzer B, Sorensen B, Neuhuber WL, Worl J (2008) Enteric co-innervation of striated muscle fibres in human oesophagus. Neurogastroenterol Motil 20(6):597–610

    Article  CAS  Google Scholar 

  19. Cannon WB (1907) Oesophageal peristalsis after bilateral vagotomy. Am J Physiol 19(3):436–444

    Article  Google Scholar 

  20. Niedringhaus M, Jackson PG, Evans SR, Verbalis JG, Gillis RA, Sahibzada N (2008) Dorsal motor nucleus of the vagus: a site for evoking simultaneous changes in crural diaphragm activity, lower esophageal sphincter pressure, and fundus tone. Am J Physiol Regul Integr Comp Physiol 294(1):R121–R131

    Article  CAS  Google Scholar 

  21. Vogt CD, Panoskaltsis-Mortari A (2020) Tissue engineering of the gastroesophageal junction. J Tissue Eng Regen Med 14(6):855–868

    Article  CAS  Google Scholar 

  22. Brasseur JG, Nicosia MA, Pal A, Miller LS (2007) Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling. World J Gastroenterol 13(9):1335–1346

    Article  Google Scholar 

  23. Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81(1–3):87–96

    Article  CAS  Google Scholar 

  24. Rossiter CD, Norman WP, Jain M, Hornby PJ, Benjamin S, Gillis RA (1990) Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Phys 259(6 Pt 1):G899–G906

    CAS  Google Scholar 

  25. Sivarao DV, Mashimo HL, Thatte HS, Goyal RK (2001) Lower esophageal sphincter is achalasic in nNOS(−/−) and hypotensive in W/W(v) mutant mice. Gastroenterology 121(1):34–42

    Article  CAS  Google Scholar 

  26. Collins PJ, Houghton LA, Read NW, Horowitz M, Chatterton BE, Heddle R et al (1991) Role of the proximal and distal stomach in mixed solid and liquid meal emptying. Gut 32(6):615–619

    Article  CAS  Google Scholar 

  27. Kelly KA (1980) Gastric emptying of liquids and solids: roles of proximal and distal stomach. Am J Phys 239(2):G71–G76

    CAS  Google Scholar 

  28. Takahashi T, Owyang C (1997) Characterization of vagal pathways mediating gastric accommodation reflex in rats. J Physiol 504(Pt 2):479–488

    Article  CAS  Google Scholar 

  29. Desai KM, Zembowicz A, Sessa WC, Vane JR (1991) Nitroxergic nerves mediate vagally induced relaxation in the isolated stomach of the guinea pig. Proc Natl Acad Sci U S A 88(24):11490–11494

    Article  CAS  Google Scholar 

  30. Desai KM, Sessa WC, Vane JR (1991) Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351(6326):477–479

    Article  CAS  Google Scholar 

  31. Tack J, Demedts I, Meulemans A, Schuurkes J, Janssens J (2002) Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut 51(2):219–224

    Article  CAS  Google Scholar 

  32. Carbone F, Tack J, Hoffman I (2017) The intragastric pressure measurement: a novel method to assess gastric accommodation in functional dyspepsia children. J Pediatr Gastroenterol Nutr 64(6):918–924

    Article  Google Scholar 

  33. Rau W, Hohaus C, Jessen E (2019) A differential approach to form and site of peptic ulcer. Sci Rep 9(1):8683

    Article  Google Scholar 

  34. Cajal Ry (1909) Histologie du système nerveux de l’homme & des vertébrés

    Google Scholar 

  35. Yun HY, Sung R, Kim YC, Choi W, Kim HS, Kim H et al (2010) Regional distribution of interstitial cells of Cajal (ICC) in human stomach. Korean J Physiol Pharmacol 14(5):317–324

    Article  Google Scholar 

  36. Liu LW, Thuneberg L, Huizinga JD (1998) Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine. Dev Dyn 213(3):271–282

    Article  CAS  Google Scholar 

  37. Blair PJ, Bayguinov Y, Sanders KM, Ward SM (2012) Relationship between enteric neurons and interstitial cells in the primate gastrointestinal tract. Neurogastroenterol Motil 24(9):e437–e449

    Article  CAS  Google Scholar 

  38. Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R et al (2013) Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 4:1630

    Article  Google Scholar 

  39. Meyer JH, Elashoff J, Porter-Fink V, Dressman J, Amidon GL (1988) Human postprandial gastric emptying of 1–3-millimeter spheres. Gastroenterology 94(6):1315–1325

    Article  CAS  Google Scholar 

  40. Mashimo H, Kjellin A, Goyal RK (2000) Gastric stasis in neuronal nitric oxide synthase-deficient knockout mice. Gastroenterology 119(3):766–773

    Article  CAS  Google Scholar 

  41. Hao MM, Moore RE, Roberts RR, Nguyen T, Furness JB, Anderson RB et al (2010) The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol Motil 22(5):e127–e137

    Google Scholar 

  42. Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers MG Jr et al (2014) Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol 522(3):514–527

    Article  CAS  Google Scholar 

  43. Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334(2):147–161

    Article  CAS  Google Scholar 

  44. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837, 37a-37d

    Article  Google Scholar 

  45. Rodriguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M et al (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543(7645):424–427

    Article  CAS  Google Scholar 

  46. Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20(4):223–230

    Article  CAS  Google Scholar 

  47. Sharma NM, Patel KP (2017) Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opin Ther Targets 21(1):11–22

    Article  CAS  Google Scholar 

  48. Boeckxstaens GE (2005) The lower oesophageal sphincter. Neurogastroenterol Motil 17(Suppl 1):13–21

    Article  Google Scholar 

  49. Zaninotto G, Bennett C, Boeckxstaens G, Costantini M, Ferguson MK, Pandolfino JE et al (2018) The 2018 ISDE achalasia guidelines. Dis Esophagus 31(9). https://doi.org/10.1093/dote/doy071

  50. Kraichely RE, Farrugia G (2006) Achalasia: physiology and etiopathogenesis. Dis Esophagus 19(4):213–223

    Article  CAS  Google Scholar 

  51. Boeckxstaens GE (2008) Achalasia: virus-induced euthanasia of neurons? Am J Gastroenterol 103(7):1610–1612

    Article  Google Scholar 

  52. Facco M, Brun P, Baesso I, Costantini M, Rizzetto C, Berto A et al (2008) T cells in the myenteric plexus of achalasia patients show a skewed TCR repertoire and react to HSV-1 antigens. Am J Gastroenterol 103(7):1598–1609

    Article  Google Scholar 

  53. Bergeron KF, Nguyen CM, Cardinal T, Charrier B, Silversides DW, Pilon N (2016) Upregulation of Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of waardenburg syndrome type 4. Dis Model Mech 9(11):1283–1293

    CAS  Google Scholar 

  54. Spechler SJ (2019) Eosinophilic esophagitis: novel concepts regarding pathogenesis and clinical manifestations. J Gastroenterol 54(10):837–844

    Article  Google Scholar 

  55. Rieder F, Nonevski I, Ma J, Ouyang Z, West G, Protheroe C et al (2014) T-helper 2 cytokines, transforming growth factor beta1, and eosinophil products induce fibrogenesis and alter muscle motility in patients with eosinophilic esophagitis. Gastroenterology 146(5):1266–1277, e1–9

    Article  CAS  Google Scholar 

  56. Takahashi T, Nakamura K, Itoh H, Sima AA, Owyang C (1997) Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology 113(5):1535–1544

    Article  CAS  Google Scholar 

  57. Liu N, Abell T (2017) Gastroparesis updates on pathogenesis and management. Gut Liver 11(5):579–589

    Article  CAS  Google Scholar 

  58. Vittal H, Farrugia G, Gomez G, Pasricha PJ (2007) Mechanisms of disease: the pathological basis of gastroparesis–a review of experimental and clinical studies. Nat Clin Pract 4(6):336–346

    CAS  Google Scholar 

  59. Oh JH, Pasricha PJ (2013) Recent advances in the pathophysiology and treatment of gastroparesis. J Neurogastroenterol Motil 19(1):18–24

    Article  Google Scholar 

  60. Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC et al (2011) Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterology 140(5):1575–85 e8

    Article  CAS  Google Scholar 

  61. Gottfried-Blackmore A, Namkoong H, Adler E, Martin B, Gubatan J, Fernandez-Becker N et al (2021) Gastric mucosal immune profiling and dysregulation in idiopathic gastroparesis. Clin Transl Gastroenterol 12(5):e00349

    Article  Google Scholar 

  62. Bashashati M, McCallum RW (2015) Motility: is ‘ICC-opathy’ present in gastroparesis-like syndrome? Nat Rev Gastroenterol Hepatol 12(7):375–376

    Article  Google Scholar 

  63. Mussa BM, Khan AA, Srivastava A, Abdallah SH (2021) Differentiated PDGFRalpha-positive cells: a novel in-vitro model for functional studies of neuronal nitric oxide synthase. Int J Mol Sci 22(7):3514

    Article  CAS  Google Scholar 

  64. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75(7):1273–1286

    Article  CAS  Google Scholar 

  65. Micci MA, Kahrig KM, Simmons RS, Sarna SK, Espejo-Navarro MR, Pasricha PJ (2005) Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology 129(6):1817–1824

    Article  CAS  Google Scholar 

  66. Micci MA, Learish RD, Li H, Abraham BP, Pasricha PJ (2001) Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology 121(4):757–766

    Article  CAS  Google Scholar 

  67. Findlay Q, Yap KK, Bergner AJ, Young HM, Stamp LA (2014) Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon. Am J Physiol 307(7):G741–G748

    CAS  Google Scholar 

  68. Cooper JE, McCann CJ, Natarajan D, Choudhury S, Boesmans W, Delalande JM et al (2016) In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS One 11(1):e0147989

    Article  Google Scholar 

  69. Tsai YH, Murakami N, Gariepy CE (2011) Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol Motil 23(4):362–369

    Article  Google Scholar 

  70. Li W, Huang L, Zeng J, Lin W, Li K, Sun J et al (2018) Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells. Mol Psychiatry 23(3):499–508

    Article  CAS  Google Scholar 

  71. Stamp LA, Gwynne RM, Foong JPP, Lomax AE, Hao MM, Kaplan DI et al (2017) Optogenetic demonstration of functional innervation of mouse colon by neurons derived from transplanted neural cells. Gastroenterology 152(6):1407–1418

    Article  Google Scholar 

  72. McCann CJ, Cooper JE, Natarajan D, Jevans B, Burnett LE, Burns AJ et al (2017) Transplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon. Nat Commun 8:15937

    Article  CAS  Google Scholar 

  73. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945

    Article  CAS  Google Scholar 

  74. Cooper JE, Natarajan D, McCann CJ, Choudhury S, Godwin H, Burns AJ et al (2017) In vivo transplantation of fetal human gut-derived enteric neural crest cells. Neurogastroenterol Motil 29(1):e12900. https://doi.org/10.1111/nmo.12900

    Article  CAS  Google Scholar 

  75. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  76. Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23(7):923–930

    Article  CAS  Google Scholar 

  77. Obermayr F, Hotta R, Enomoto H, Young HM (2013) Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 10:43–57

    Article  CAS  Google Scholar 

  78. Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF et al (2004) Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 270(2):455–473

    Article  CAS  Google Scholar 

  79. Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35(27):9879–9888

    Article  CAS  Google Scholar 

  80. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T et al (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475

    Article  CAS  Google Scholar 

  81. Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J et al (2009) Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 27(12):2896–2905

    Article  CAS  Google Scholar 

  82. Barber K, Studer L, Fattahi F (2019) Derivation of enteric neuron lineages from human pluripotent stem cells. Nat Protoc 14(4):1261–1279

    Article  CAS  Google Scholar 

  83. Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23(1):49–59

    Article  CAS  Google Scholar 

  84. Gogolou A, Frith TJR, Tsakiridis A (2021) Generating enteric nervous system progenitors from human pluripotent stem cells. Curr Protoc 1(6):e137

    Article  CAS  Google Scholar 

  85. Abu-Bonsrah KD, Viventi S, Newgreen DF, Dottori M (2019) Generation of neural crest progenitors from human pluripotent stem cells. Methods Mol Biol 1976:37–47

    Article  CAS  Google Scholar 

  86. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  Google Scholar 

  87. Fattahi F, Steinbeck JA, Kriks S, Tchieu J, Zimmer B, Kishinevsky S et al (2016) Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531:105–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lincon A. Stamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gardner-Russell, J., Kuriakose, J., Hao, M.M., Stamp, L.A. (2022). Upper Gastrointestinal Motility, Disease and Potential of Stem Cell Therapy. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_29

Download citation

Publish with us

Policies and ethics