Skip to main content

Cellular-Based Therapies for Pediatric GI Motility Disorders

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Abstract

The therapeutic options for many gastrointestinal motility disorders remain inadequate and limited to palliative interventions. Recent advances in molecular biology and genetics have led to the identification of stem cells as potential tools for curative therapies. The field of neural stem cell therapies for enteric neuropathies has seen significant progress in recent years. A variety of sources for such neural stem cells have been identified ranging from embryonic stem cells to those derived from the CNS and, perhaps of most interest, from the gastrointestinal tract itself. The latter have been harvested from postnatal human gut even using minimally invasive techniques such as conventional endoscopy raising exciting possibilities for therapy including autologous therapy. A number of key challenges remain, however, before effective clinical application. These include better understanding of target diseases, the need to tailor cellular tools to optimize the treatment of individual diseases, and effective assessment of transplant success. Exciting developments including the identification of new stem cell sources such as induced pluripotent stem cells and improved access to donor tissue using less invasive techniques raise further hope for stem cells as effective therapies for enteric neuromuscular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duran B. The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review. BMC Nurs. 2005;4:2.

    Article  PubMed  Google Scholar 

  2. Guglielmi FW, Boggio-Bertinet D, Federico A, et al. Total parenteral nutrition-related gastroenterological complications. Dig Liver Dis. 2006;38:623–42.

    Article  PubMed  CAS  Google Scholar 

  3. Heneyke S, Smith VV, Spitz L, Milla PJ. Chronic intestinal pseudo-obstruction: treatment and long term follow up of 44 patients. Arch Dis Child. 1999;81:21–7.

    Article  PubMed  CAS  Google Scholar 

  4. Mousa H, Hyman PE, Cocjin J, Flores AF, Di Lorenzo C. Long-term outcome of congenital intestinal pseudoobstruction. Dig Dis Sci. 2002;47:2298–305.

    Article  PubMed  Google Scholar 

  5. Kelly DA. Intestinal failure-associated liver disease: what do we know today? Gastroenterology. 2006;130:S70–7.

    Article  PubMed  CAS  Google Scholar 

  6. Revel-Vilk S. Central venous line-related thrombosis in children. Acta Haematol. 2006;115:201–6.

    Article  PubMed  Google Scholar 

  7. Tsuji H, Spitz L, Kiely EM, Drake DP, Pierro A. Management and long-term follow-up of infants with total colonic aganglionosis. J Pediatr Surg. 1999;34:158–61. discussion 162.

    Article  PubMed  CAS  Google Scholar 

  8. Ludman L, Spitz L, Tsuji H, Pierro A. Hirschsprung’s disease: functional and psychological follow up comparing total colonic and rectosigmoid aganglionosis. Arch Dis Child. 2002;86:348–51.

    Article  PubMed  CAS  Google Scholar 

  9. Conway SJ, Craigie RJ, Cooper LH, et al. Early adult outcome of the Duhamel procedure for left-sided Hirschsprung disease—a prospective serial assessment study. J Pediatr Surg. 2007;42:1429–32.

    Article  PubMed  Google Scholar 

  10. Catto-Smith AG, Trajanovska M, Taylor RG. Long-term continence after surgery for Hirschsprung’s disease. J Gastroenterol Hepatol. 2007;22:2273–82.

    Article  PubMed  Google Scholar 

  11. Pini Prato A, Gentilino V, Giunta C, et al. Hirschsprung’s disease: 13 years’ experience in 112 patients from a single institution. Pediatric Surg Int. 2008;24:175–82.

    Article  Google Scholar 

  12. Burns AJ, Pasricha PJ, Young HM. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential. Neurogastroenterol Motil. 2004;16 Suppl 1:3–7.

    Article  PubMed  Google Scholar 

  13. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev. 2007;8:466–79.

    Article  CAS  Google Scholar 

  14. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10(Suppl):S42–50.

    Article  PubMed  CAS  Google Scholar 

  15. Young HM. Neural stem cell therapy and gastrointestinal biology. Gastroenterology. 2005;129:2092–5.

    Article  PubMed  CAS  Google Scholar 

  16. Micci MA, Pasricha PJ. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev Dyn. 2007;236:33–43.

    Article  PubMed  CAS  Google Scholar 

  17. Schafer KH, Micci MA, Pasricha PJ. Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol Motil. 2009;21:103–12.

    Article  PubMed  Google Scholar 

  18. Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85:635–78.

    Article  PubMed  CAS  Google Scholar 

  19. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  20. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  21. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  22. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–97.

    Article  PubMed  CAS  Google Scholar 

  23. Li XJ, Du ZW, Zarnowska ED, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005;23:215–21.

    Article  PubMed  CAS  Google Scholar 

  24. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000;28:31–40.

    Article  PubMed  CAS  Google Scholar 

  25. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000;18:675–9.

    Article  PubMed  CAS  Google Scholar 

  26. Zeng X, Cai J, Chen J, et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells. 2004;22:925–40.

    Article  PubMed  CAS  Google Scholar 

  27. Mizuseki K, Sakamoto T, Watanabe K, et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA. 2003;100:5828–33.

    Article  PubMed  CAS  Google Scholar 

  28. Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS. Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells. 2005;23:923–30.

    Article  PubMed  CAS  Google Scholar 

  29. Hotta R, Pepdjonovic L, Anderson RB, et al. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells. 2009;27:2896–905.

    PubMed  CAS  Google Scholar 

  30. Kawaguchi J, Nichols J, Gierl MS, Faial T, Smith A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development. 2010;137:693–704.

    Article  PubMed  CAS  Google Scholar 

  31. Yamada T, Yoshikawa M, Takaki M, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells. 2002;20:41–9.

    Article  PubMed  Google Scholar 

  32. Kuwahara M, Ogaeri T, Matsuura R, Kogo H, Fujimoto T, Torihashi S. In vitro organogenesis of gut-like structures from mouse embryonic stem cells. Neurogastroenterol Motil. 2004;16 Suppl 1:14–8.

    Article  PubMed  Google Scholar 

  33. Matsuura R, Kogo H, Ogaeri T, et al. Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cells. Stem Cells. 2006;24:624–30.

    Article  PubMed  CAS  Google Scholar 

  34. Takaki M, Nakayama S, Misawa H, Nakagawa T, Kuniyasu H. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells. 2006;24:1414–22.

    Article  PubMed  CAS  Google Scholar 

  35. Torihashi S, Kuwahara M, Ogaeri T, Zhu P, Kurahashi M, Fujimoto T. Gut-like structures from mouse embryonic stem cells as an in vitro model for gut organogenesis preserving developmental potential after transplantation. Stem Cells. 2006;24:2618–26.

    Article  PubMed  CAS  Google Scholar 

  36. Konuma N, Wakabayashi K, Matsumoto T, et al. Mouse embryonic stem cells give rise to gut-like morphogenesis, including intestinal stem cells, in the embryoid body model. Stem Cells Dev. 2008;18(1):113–26.

    Article  Google Scholar 

  37. Young HM, Newgreen DF, Burns AJ. Development of the enteric nervous system in relation to Hirschsprung’s disease. In: Ferretti P, Copp A, Tickle C, Moore G, editors. Embryos, genes and birth defects. Chichester: John Wiley and Sons Ltd; 2006. p. 263–300.

    Google Scholar 

  38. Rousselot P, Lois C, Alvarez-Buylla A. Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J Comp Neurol. 1995;351:51–61.

    Article  PubMed  CAS  Google Scholar 

  39. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.

    Article  PubMed  CAS  Google Scholar 

  40. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.

    Article  PubMed  CAS  Google Scholar 

  41. Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337–44.

    Article  PubMed  CAS  Google Scholar 

  42. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548–52.

    Article  PubMed  CAS  Google Scholar 

  43. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA. 1999;96:5263–7.

    Article  PubMed  CAS  Google Scholar 

  44. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    Article  PubMed  CAS  Google Scholar 

  45. Morrison SJ. Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol. 2001;13:666–72.

    Article  PubMed  CAS  Google Scholar 

  46. Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol. 1999;9:135–41.

    Article  PubMed  CAS  Google Scholar 

  47. Micci MA, Kahrig KM, Simmons RS, Sarna SK, Espejo-Navarro MR, Pasricha PJ. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology. 2005;129:1817–24.

    Article  PubMed  CAS  Google Scholar 

  48. Dong YL, Liu W, Gao YM, et al. Neural stem cell transplantation rescues rectum function in the aganglionic rat. Transplant Proc. 2008;40:3646–52.

    Article  PubMed  CAS  Google Scholar 

  49. Liu W, Wu RD, Dong YL, Gao YM. Neuroepithelial stem cells differentiate into neuronal phenotypes and improve intestinal motility recovery after ­transplantation in the aganglionic colon of the rat. Neurogastroenterol Motil. 2007;19:1001–9.

    PubMed  CAS  Google Scholar 

  50. Farlie PG, McKeown SJ, Newgreen DF. The neural crest: Basic biology and clinical relationships in the craniofacial and enteric nervous systems. Birth Defects Res C Embryo Today. 2004;72:173–89.

    Article  PubMed  CAS  Google Scholar 

  51. Le Douarin NM, Kalcheim C. The neural crest. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  52. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30:31–48.

    PubMed  Google Scholar 

  53. Le Douarin NM, Teillet MA. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol. 1974;41:162–84.

    Article  PubMed  Google Scholar 

  54. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances–part 2. Pediatr Dev Pathol. 2002;5:329–49.

    Article  PubMed  Google Scholar 

  55. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances-part 1. Pediatr Dev Pathol. 2002;5:224–47.

    PubMed  CAS  Google Scholar 

  56. Burns AJ, Thapar N. Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil. 2006;18:876–87.

    Article  PubMed  CAS  Google Scholar 

  57. Mosher JT, Yeager KJ, Kruger GM, et al. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol. 2007;303:1–15.

    Article  PubMed  CAS  Google Scholar 

  58. Martucciello G, Brizzolara A, Favre A, et al. Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur J Pediatr Surg. 2007;17:34–40.

    Article  PubMed  CAS  Google Scholar 

  59. Bixby S, Kruger G, Mosher J, Joseph N, Morrison S. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron. 2002;35:643–56.

    Article  PubMed  CAS  Google Scholar 

  60. Lo L, Anderson DJ. Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron. 1995;15:527–39.

    Article  PubMed  CAS  Google Scholar 

  61. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999;96:737–49.

    Article  PubMed  CAS  Google Scholar 

  62. Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development. 1999;126:157–68.

    PubMed  CAS  Google Scholar 

  63. Sidebotham EL, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH. Location of stem cells for the enteric nervous system. Pediatr Surg Int. 2002;18:581–5.

    Article  PubMed  CAS  Google Scholar 

  64. Kruger G, Mosher J, Bixby S, Joseph N, Iwashita T, Morrison S. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35:657–69.

    Article  PubMed  CAS  Google Scholar 

  65. Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development. 2003;130:6387–400.

    Article  PubMed  CAS  Google Scholar 

  66. Thapar N, Natarajan D, Caldwell C, Burns AJ, Pachnis V. Isolation of enteric nervous system progenitors from Hirschsprung’s-like gut. Neurogastroenterol Motil. 2006;18:663–798.

    Article  Google Scholar 

  67. De Graaff E, Srinivas S, Kilkenny C, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15:2433–44.

    Article  PubMed  Google Scholar 

  68. Hotta R, Stamp L, Thacker M, et al. Migration and differentiation of enteric neural stem/progenitor cells transplanted into the post-natal bowel in vivo. Gastroenterology. 2010;138 Suppl 1:S-109.

    Article  Google Scholar 

  69. Stamp LA, Hotta R, Thacker M, et al. Migration and differentiation of neural stem/progenitor cells from the embryonic gut after transplantation to the post-natal mouse colon. Neurogastroenterol Motil. 2010;22(Suppl s1):6.

    Google Scholar 

  70. Rauch U, Hansgen A, Hagl C, Holland-Cunz S, Schafer KH. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis. 2006;21:554–9.

    Article  PubMed  Google Scholar 

  71. Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007;56:489–96.

    Article  PubMed  Google Scholar 

  72. Lindley RM, Hawcutt DB, Connell MG, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology. 2008;135:205–16.

    Article  PubMed  Google Scholar 

  73. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009;136:2214–25.

    Article  PubMed  CAS  Google Scholar 

  74. Rajan E, Gostout CJ, Lurken MS, et al. Evaluation of endoscopic approaches for deep gastric-muscle-wall biopsies: what works? Gastrointest Endosc. 2008;67:297–303.

    Article  PubMed  Google Scholar 

  75. Park W, Vaezi MF. Etiology and pathogenesis of achalasia: the current understanding. Am J Gastroenterol. 2005;100:1404–14.

    Article  PubMed  Google Scholar 

  76. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol. 2003;38:421–30.

    Article  PubMed  CAS  Google Scholar 

  77. Bassotti G, Villanacci V. Slow transit constipation: a functional disorder becomes an enteric neuropathy. World J Gastroenterol. 2006;12:4609–13.

    PubMed  Google Scholar 

  78. De Giorgio R, Guerrini S, Barbara G, Cremon C, Stanghellini V, Corinaldesi R. New insights into human enteric neuropathies. Neurogastroenterol Motil. 2004;16 Suppl 1:143–7.

    Article  PubMed  Google Scholar 

  79. Druckenbrod NR, Epstein ML. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 2009;136:3195–203.

    Article  PubMed  CAS  Google Scholar 

  80. Hotta R, Anderson RB, Kobayashi K, Newgreen DF, Young HM. Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies. Neurogastroenterol Motil. 2010;22:331–86.

    Article  PubMed  CAS  Google Scholar 

  81. Knowles CH, De Giorgio R, Kapur RP, et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut. 2010;59:882–7.

    Article  PubMed  Google Scholar 

  82. Thrasivoulou C, Soubeyre V, Ridha H, et al. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell. 2006;5:247–57.

    Article  PubMed  CAS  Google Scholar 

  83. Wade PR, Hornby PJ. Age-related neurodegenerative changes and how they affect the gut. Sci Aging Knowledge Environ. 2005;2005:pe8.

    Article  PubMed  Google Scholar 

  84. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    Article  PubMed  CAS  Google Scholar 

  85. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  PubMed  CAS  Google Scholar 

  86. Mountford JC. Human embryonic stem cells: origins, characteristics and potential for regenerative therapy. Transfus Med. 2008;18:1–12.

    Article  PubMed  CAS  Google Scholar 

  87. Suhonen JO, Peterson DA, Ray J, Gage FH. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996;383:624–7.

    Article  PubMed  CAS  Google Scholar 

  88. Micci MA, Learish RD, Li H, Abraham BP, Pasricha PJ. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology. 2001;121:757–66.

    Article  PubMed  CAS  Google Scholar 

  89. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  90. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  91. Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105–9.

    Article  PubMed  CAS  Google Scholar 

  92. Ueda T, Yamada T, Hokuto D, et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun. 2010;391:38–42.

    Article  PubMed  CAS  Google Scholar 

  93. Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ. Hirschsprung disease is linked to defects in neural crest stem cell function. Science. 2003;301:972–6.

    Article  PubMed  CAS  Google Scholar 

  94. Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development. 2006;133:2075–86.

    Article  PubMed  CAS  Google Scholar 

  95. Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003;40:905–16.

    Article  PubMed  CAS  Google Scholar 

  96. Martucciello G, Thompson H, Mazzola C, et al. GDNF deficit in Hirschsprung’s disease. J Pediatr Surg. 1998;33:99–102.

    Article  PubMed  CAS  Google Scholar 

  97. Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development. 2002;129:5151–60.

    PubMed  CAS  Google Scholar 

  98. Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural cells. Dev Biol. 2001;229:503–16.

    Article  PubMed  CAS  Google Scholar 

  99. Micci MA, Pattillo MT, Kahrig KM, Pasricha PJ. Caspase inhibition increases survival of neural stem cells in the gastrointestinal tract. Neurogastroenterol Motil. 2005;17:557–64.

    Article  PubMed  Google Scholar 

  100. Tsai YH, Murakami N, Gariepy CE. Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol Motil. 2011;23:362–9.

    Article  PubMed  Google Scholar 

  101. Ishikawa T, Nakayama S, Nakagawa T, et al. Characterization of in vitro gutlike organ formed from mouse embryonic stem cells. Am J Physiol Cell Physiol. 2004;286:C1344–52.

    Article  PubMed  CAS  Google Scholar 

  102. Anitha M, Joseph I, Ding X, et al. Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. Gastroenterology. 2008;134:1424–35.

    Article  PubMed  CAS  Google Scholar 

  103. Heanue TA, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using SOX2. Stem Cells. 2011;29:128–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Thapar B.Sc.(Hon), B.M.(Hon), M.R.C.P., M.R.C.P.C.H., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hotta, R., Natarajan, D., Burns, A.J., Thapar, N. (2013). Cellular-Based Therapies for Pediatric GI Motility Disorders. In: Faure, C., Di Lorenzo, C., Thapar, N. (eds) Pediatric Neurogastroenterology. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-709-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-709-9_45

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-708-2

  • Online ISBN: 978-1-60761-709-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics