Skip to main content

Cellular-Based Therapies for Paediatric GI Motility Disorders

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Abstract

Therapeutic options for many gastrointestinal motility disorders, especially the most severe, remain inadequate and limited to palliative interventions. Advances in molecular biology and genetics have led to the identification of stem cells as potential tools for curative therapies. The field of neural stem cell therapies for enteric neuropathies has seen tremendous progress in recent years. A variety of sources for such neural stem cells have been identified ranging from embryonic stem cells to induced pluripotent stem (iPS) cells. The latter have been harvested from postnatal human gut using minimally invasive techniques such as conventional endoscopy raising exciting possibilities for therapy including autologous stem cell transplantation. Key recent developments include reports of the efficient derivation and isolation of ENS progenitors from human pluripotent stem cells and their further differentiation into functional enteric neurons, successful in vivo transplantation of neural stem cells into the gastrointestinal tract and improved access to donor tissue. A number of key challenges remain, however, before effective clinical application. These include more effective assessment of transplant success and the need to better understand individual target diseases and, in turn, to tailor cellular tools to optimise their treatment. Nonetheless, the impressive recent progress raises further hope for the imminent use of stem cells as effective therapies for enteric neuromuscular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duran B. The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review. BMC Nurs. 2005;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guglielmi FW, et al. Total parenteral nutrition-related gastroenterological complications. Dig Liver Dis. 2006;38:623.

    Article  CAS  PubMed  Google Scholar 

  3. Heneyke S, Smith VV, Spitz L, Milla PJ. Chronic intestinal pseudo-obstruction: treatment and long term follow up of 44 patients. Arch Dis Child. 1999;81:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mousa H, Hyman PE, Cocjin J, Flores AF, Di Lorenzo C. Long-term outcome of congenital intestinal pseudoobstruction. Dig Dis Sci. 2002;47:2298.

    Article  PubMed  Google Scholar 

  5. Kelly DA. Intestinal failure-associated liver disease: what do we know today? Gastroenterology. 2006;130:S70.

    Article  CAS  PubMed  Google Scholar 

  6. Revel-Vilk S. Central venous line-related thrombosis in children. Acta Haematol. 2006;115:201.

    Article  PubMed  Google Scholar 

  7. Tsuji H, Spitz L, Kiely EM, Drake DP, Pierro A. Management and long-term follow-up of infants with total colonic aganglionosis. J Pediatr Surg. 1999;34:158.

    Article  CAS  PubMed  Google Scholar 

  8. Ludman L, Spitz L, Tsuji H, Pierro A. Hirschsprung’s disease: functional and psychological follow up comparing total colonic and rectosigmoid aganglionosis. Arch Dis Child. 2002;86:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conway SJ, et al. Early adult outcome of the Duhamel procedure for left-sided Hirschsprung disease—a prospective serial assessment study. J Pediatr Surg. 2007;42:1429.

    Article  PubMed  Google Scholar 

  10. Catto-Smith AG, Trajanovska M, Taylor RG. Long-term continence after surgery for Hirschsprung’s disease. J Gastroenterol Hepatol. 2007;22:2273.

    Article  PubMed  Google Scholar 

  11. Pini Prato A, et al. Hirschsprung’s disease: 13 years’ experience in 112 patients from a single institution. Pediatr Surg Int. 2008;24:175.

    Article  PubMed  Google Scholar 

  12. Laughlin DM, Friedmacher F, Puri P. Total colonic aganglionosis: a systematic review and meta-analysis of long-term clinical outcome. Pediatr Surg Int. 2012;28:773.

    Article  PubMed  Google Scholar 

  13. Burns AJ, Pasricha PJ, Young HM. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential. Neurogastroenterol Motil. 2004;16 Suppl 1:3.

    Article  PubMed  Google Scholar 

  14. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007;8:466.

    Article  CAS  PubMed  Google Scholar 

  15. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10(Suppl):S42.

    Article  PubMed  CAS  Google Scholar 

  16. Young HM. Neural stem cell therapy and gastrointestinal biology. Gastroenterology. 2005;129:2092.

    Article  CAS  PubMed  Google Scholar 

  17. Micci MA, Pasricha PJ. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev Dyn. 2007;236:33.

    Article  CAS  PubMed  Google Scholar 

  18. Schafer KH, Micci MA, Pasricha PJ. Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol Motil. 2009;21:103.

    Article  PubMed  Google Scholar 

  19. Yamada T, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells. 2002;20:41.

    Article  PubMed  Google Scholar 

  20. Takaki M, Nakayama S, Misawa H, Nakagawa T, Kuniyasu H. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells. 2006;24:1414.

    Article  CAS  PubMed  Google Scholar 

  21. Torihashi S, et al. Gut-like structures from mouse embryonic stem cells as an in vitro model for gut organogenesis preserving developmental potential after transplantation. Stem Cells. 2006;24:2618.

    Article  CAS  PubMed  Google Scholar 

  22. Ishikawa T, et al. Characterization of in vitro gutlike organ formed from mouse embryonic stem cells. Am J Physiol Cell Physiol. 2004;286:C1344.

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi J, Nichols J, Gierl MS, Faial T, Smith A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development. 2010;137:693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fattahi F, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Micci MA, et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology. 2005;129:1817.

    Article  CAS  PubMed  Google Scholar 

  26. Micci MA, Learish RD, Li H, Abraham BP, Pasricha PJ. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology. 2001;121:757.

    Article  CAS  PubMed  Google Scholar 

  27. Dong YL, et al. Neural stem cell transplantation rescues rectum function in the aganglionic rat. Transplant Proc. 2008;40:3646.

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Wu RD, Dong YL, Gao YM. Neuroepithelial stem cells differentiate into neuronal phenotypes and improve intestinal motility recovery after transplantation in the aganglionic colon of the rat. Neurogastroenterol Motil. 2007;19:1001.

    CAS  PubMed  Google Scholar 

  29. Lo L, Anderson DJ. Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron. 1995;15:527.

    Article  CAS  PubMed  Google Scholar 

  30. Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development. 1999;126:157.

    CAS  PubMed  Google Scholar 

  31. Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development. 2003;130:6387.

    Article  CAS  PubMed  Google Scholar 

  32. Mosher JT, et al. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol. 2007;303:1.

    Article  CAS  PubMed  Google Scholar 

  33. Bixby S, Kruger G, Mosher J, Joseph N, Morrison S. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron. 2002;35:643.

    Article  CAS  PubMed  Google Scholar 

  34. Kruger G, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35:657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsai YH, Murakami N, Gariepy CE. Postnatal intestinal engraftment of prospectively selected enteric neural crest stem cells in a rat model of Hirschsprung disease. Neurogastroenterol Motil. 2011;23:362.

    Article  PubMed  Google Scholar 

  36. Rauch U, Hansgen A, Hagl C, Holland-Cunz S, Schafer KH. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis. 2006;21:554.

    Article  PubMed  Google Scholar 

  37. Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007;56:489.

    Article  PubMed  Google Scholar 

  38. Lindley RM, et al. Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology. 2008;135:205.

    Article  PubMed  Google Scholar 

  39. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009;136:2214.

    Article  CAS  PubMed  Google Scholar 

  40. Anitha M, et al. Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. Gastroenterology. 2008;134:1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heanue TA, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using SOX2. Stem Cells. 2011;29:128.

    Article  CAS  PubMed  Google Scholar 

  42. Cooper JE, et al. In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS One. 2016;11:e0147989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hotta R, et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest. 2013;123:1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martucciello G, et al. Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur J Pediatr Surg. 2007;17:34.

    Article  CAS  PubMed  Google Scholar 

  45. Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85:635.

    Article  CAS  PubMed  Google Scholar 

  46. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154.

    Article  CAS  PubMed  Google Scholar 

  47. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145.

    Article  CAS  PubMed  Google Scholar 

  49. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385.

    Article  CAS  PubMed  Google Scholar 

  50. Li XJ, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005;23:215.

    Article  PubMed  CAS  Google Scholar 

  51. Kawasaki H, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000;28:31.

    Article  CAS  PubMed  Google Scholar 

  52. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000;18:675.

    Article  CAS  PubMed  Google Scholar 

  53. Zeng X, et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells. 2004;22:925.

    Article  CAS  PubMed  Google Scholar 

  54. Mizuseki K, et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA. 2003;100:5828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS. Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells. 2005;23:923.

    Article  CAS  PubMed  Google Scholar 

  56. Hotta R, et al. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells. 2009;27:2896.

    CAS  PubMed  Google Scholar 

  57. Sasselli V, Micci MA, Kahrig KM, Pasricha PJ. Evaluation of ES-derived neural progenitors as a potential source for cell replacement therapy in the gut. BMC Gastroenterol. 2012;12:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kerosuo L, Nie S, Bajpai R, Bronner ME. Crestospheres: long-term maintenance of multipotent, premigratory neural crest stem cells. Stem Cell Reports. 2015;5:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuwahara M, et al. In vitro organogenesis of gut-like structures from mouse embryonic stem cells. Neurogastroenterol Motil. 2004;16 Suppl 1:14.

    Article  PubMed  Google Scholar 

  60. Matsuura R, et al. Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cells. Stem Cells. 2006;24:624.

    Article  PubMed  CAS  Google Scholar 

  61. Konuma N, et al. Mouse embryonic stem cells give rise to gut-like morphogenesis, including intestinal stem cells, in the embryoid body model. Stem Cells Dev. 2008;18(1):113–26.

    Article  Google Scholar 

  62. Noguchi TK, et al. Generation of stomach tissue from mouse embryonic stem cells. Nat Cell Biol. 2015;17:984.

    Article  CAS  PubMed  Google Scholar 

  63. Young HM, Newgreen DF, Burns AJ. Development of the enteric nervous system in relation to Hirschsprung’s disease. In: Ferretti P, Copp A, Tickle C, Moore G, editors. Embryos, genes and birth defects. Chichester: Wiley; 2006. p. 263–300.

    Google Scholar 

  64. Rousselot P, Lois C, Alvarez-Buylla A. Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J Comp Neurol. 1995;351:51.

    Article  CAS  PubMed  Google Scholar 

  65. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493.

    Article  CAS  PubMed  Google Scholar 

  66. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703.

    Article  CAS  PubMed  Google Scholar 

  67. Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337.

    Article  CAS  PubMed  Google Scholar 

  68. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548.

    Article  CAS  PubMed  Google Scholar 

  69. Gould E, et al. Hippocampal neurogenesis in adult old world primates. Proc Natl Acad Sci USA. 1999;96:5263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eriksson PS, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313.

    Article  CAS  PubMed  Google Scholar 

  71. Morrison SJ. Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol. 2001;13:666.

    Article  CAS  PubMed  Google Scholar 

  72. Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol. 1999;9:135.

    Article  CAS  PubMed  Google Scholar 

  73. Liu W, Yue W, Wu R. Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon. Stem Cell Res Ther. 2013;4:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Farlie PG, McKeown SJ, Newgreen DF. The neural crest: basic biology and clinical relationships in the craniofacial and enteric nervous systems. Birth Defects Res Part C Embryo Today. 2004;72:173.

    Article  CAS  Google Scholar 

  75. Le Douarin NM, Kalcheim C. The neural crest. Cambridge: Cambridge University Press; 1999. p. 445.

    Book  Google Scholar 

  76. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30:31.

    PubMed  Google Scholar 

  77. Le Douarin NM, Teillet MA. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol. 1974;41:162.

    Article  PubMed  Google Scholar 

  78. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances-part 1. Pediatr Dev Pathol. 2002;5:224.

    CAS  PubMed  Google Scholar 

  79. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances—part 2. Pediatr Dev Pathol. 2002;5:329.

    Article  PubMed  Google Scholar 

  80. Burns AJ, Thapar N. Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil. 2006;18:876.

    Article  CAS  PubMed  Google Scholar 

  81. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999;96:737.

    Article  CAS  PubMed  Google Scholar 

  82. Sidebotham EL, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH. Location of stem cells for the enteric nervous system. Pediatr Surg Int. 2002;18:581.

    Article  CAS  PubMed  Google Scholar 

  83. Thapar N, Natarajan D, Caldwell C, Burns AJ, Pachnis V. Isolation of enteric nervous system progenitors from Hirschsprung’s-like gut. Neurogastroenterol Motil. 2006;18:663.

    Article  Google Scholar 

  84. De Graaff E, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15:2433.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dettmann HM, et al. Isolation, expansion and transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One. 2014;9:e97792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Natarajan D, et al. Lentiviral labeling of mouse and human enteric nervous system stem cells for regenerative medicine studies. Neurogastroenterol Motil. 2014;26:1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Binder E, et al. Enteric neurospheres are not specific to neural crest cultures: implications for neural stem cell therapies. PLoS One. 2015;10:e0119467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Cheng LS, et al. Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease. Neurogastroenterol Motil. 2015;27:1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hotta R, et al. Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease. Neurogastroenterol Motil. 2015;8(4):498–512.

    Google Scholar 

  90. Metzger M, et al. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology. 2009;137:2063.

    Article  CAS  PubMed  Google Scholar 

  91. Hetz S, et al. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study. PLoS One. 2014;9:e93605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rollo BN, et al. Enteric neural cells from Hirschsprung disease patients form ganglia in autologous aneuronal colon. Cell Mol Gastroenterol Hepatol. 2016;2:92.

    Article  Google Scholar 

  93. Burns AJ et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol. 2016. doi: 10.1016/j.ydbio.2016.04.001.

    Google Scholar 

  94. Park W, Vaezi MF. Etiology and pathogenesis of achalasia: the current understanding. Am J Gastroenterol. 2005;100:1404.

    Article  PubMed  Google Scholar 

  95. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol. 2003;38:421.

    Article  CAS  PubMed  Google Scholar 

  96. Bassotti G, Villanacci V. Slow transit constipation: a functional disorder becomes an enteric neuropathy. World J Gastroenterol. 2006;12:4609.

    Article  PubMed  PubMed Central  Google Scholar 

  97. De Giorgio R, Camilleri M. Human enteric neuropathies: morphology and molecular pathology. Neurogastroenterol Motil. 2004;16:515.

    Article  PubMed  Google Scholar 

  98. Druckenbrod NR, Epstein ML. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development. 2009;136:3195.

    Article  CAS  PubMed  Google Scholar 

  99. Hotta R, Anderson RB, Kobayashi K, Newgreen DF, Young HM. Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies. Neurogastroenterol Motil. 2010;22:331.

    Article  CAS  PubMed  Google Scholar 

  100. Knowles CH, et al. The London classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut. 2010;59:882.

    Article  PubMed  Google Scholar 

  101. Thrasivoulou C, et al. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell. 2006;5:247.

    Article  CAS  PubMed  Google Scholar 

  102. Wade PR. Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2002;283:G489.

    Article  CAS  PubMed  Google Scholar 

  103. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661.

    Article  CAS  PubMed  Google Scholar 

  104. Laflamme MA, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015.

    Article  CAS  PubMed  Google Scholar 

  105. Mountford JC. Human embryonic stem cells: origins, characteristics and potential for regenerative therapy. Transfusion Med. 2008;18:1.

    Article  CAS  Google Scholar 

  106. Suhonen JO, Peterson DA, Ray J, Gage FH. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996;383:624.

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663.

    Article  CAS  PubMed  Google Scholar 

  108. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861.

    Article  CAS  PubMed  Google Scholar 

  109. Spence JR, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105.

    Article  PubMed  CAS  Google Scholar 

  110. Ueda T, et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun. 2010;391:38.

    Article  CAS  PubMed  Google Scholar 

  111. Lee G, Chambers SM, Tomishima MJ, Studer L. Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc. 2010;5:688.

    Article  CAS  PubMed  Google Scholar 

  112. Jiang X, et al. Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2009;18:1059.

    Article  CAS  PubMed  Google Scholar 

  113. Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep. 2013;3:1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471.

    Article  CAS  PubMed  Google Scholar 

  115. Wilkinson DJ, Bethell GS, Shukla R, Kenny SE, Edgar DH. Isolation of enteric nervous system progenitor cells from the aganglionic gut of patients with Hirschsprung’s disease. PLoS One. 2015;10:e0125724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ. Hirschsprung disease is linked to defects in neural crest stem cell function. Science. 2003;301:972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development. 2006;133:2075.

    Article  CAS  PubMed  Google Scholar 

  119. Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003;40:905.

    Article  CAS  PubMed  Google Scholar 

  120. Martucciello G, et al. GDNF deficit in Hirschsprung’s disease. J Pediatr Surg. 1998;33:99.

    Article  CAS  PubMed  Google Scholar 

  121. Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development. 2002;129:5151.

    CAS  PubMed  Google Scholar 

  122. Young HM, et al. GDNF is a chemoattractant for enteric neural cells. Dev Biol. 2001;229:503.

    Article  CAS  PubMed  Google Scholar 

  123. Micci MA, Pattillo MT, Kahrig KM, Pasricha PJ. Caspase inhibition increases survival of neural stem cells in the gastrointestinal tract. Neurogastroenterol Motil. 2005;17:557.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hotta, R., Natarajan, D., Burns, A.J., Thapar, N. (2017). Cellular-Based Therapies for Paediatric GI Motility Disorders. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-43268-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43268-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43266-3

  • Online ISBN: 978-3-319-43268-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics