Skip to main content

Cancer Biomarkers: A Long and Tortuous Journey

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment

Abstract

Cancer biomarkers are biomolecules released either by cancer cells or other cells from cancer patients in response to the tumorigenic process. Identification of cancer biomarkers is obtained principally through multi-omics while their detection can also require imaging. Reliance on a single biomarker or a single technology for diagnosis and disease management remains useful but does not permit understanding the complexity and evolution of the disease. Evolving technologies and strategies in building signature profiles and multi-omic data allow deepening our understanding in real time of the complex biology of the disease and permits to apply precision medicine. Each data point provided by each technology serves as a piece of the puzzle, which once combined shapes the way we perceive this disease and impact strategies designed for drug target development and disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones HB. Some account of a new animal substance occurring in the urine of a patient labouring under mollities Ossium. Edinb Med Surg J. 1850;74:357–68.

    PubMed  PubMed Central  Google Scholar 

  2. Kyle RA. Multiple myeloma: how did it begin? Mayo Clin Proc. 1994;69:680–3. https://doi.org/10.1016/s0025-6196(12)61349-4.

    Article  CAS  PubMed  Google Scholar 

  3. Edelman GM, Gally JA. The nature of Bence-Jones proteins. Chemical similarities to polypetide chains of myeloma globulins and normal gamma-globulins. J Exp Med. 1962;116:207–27. https://doi.org/10.1084/jem.116.2.207.

    Article  CAS  PubMed  Google Scholar 

  4. Sinclair D, Dagg JH, Smith JG, Stott DI. The incidence and possible relevance of Bence-Jones protein in the sera of patients with multiple myeloma. Br J Haematol. 1986;62:689–94. https://doi.org/10.1111/j.1365-2141.1986.tb04092.x.

    Article  CAS  PubMed  Google Scholar 

  5. Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med. 1965;121:439–62. https://doi.org/10.1084/jem.121.3.439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yilmaz A, Ece F, Bayramgürler B, Akkaya E, Baran R. The value of Ca 125 in the evaluation of tuberculosis activity. Respir Med. 2001;95:666–9. https://doi.org/10.1053/rmed.2001.1121.

    Article  CAS  PubMed  Google Scholar 

  7. Bast RC, Ravdin P, Hayes DF, Bates S, Fritsche H, Jessup JM, Kemeny N, Locker GY, Mennel RG, Somerfield MR, Panel A.S.o.C.O.T.M.E. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001;19:1865–78. https://doi.org/10.1200/JCO.2001.19.6.1865.

    Article  PubMed  Google Scholar 

  8. Molina R, Barak V, van Dalen A, Duffy MJ, Einarsson R, Gion M, Goike H, Lamerz R, Nap M, Sölétormos G, Stieber P. Tumor markers in breast cancer- European Group on tumor markers recommendations. Tumour Biol. 2005;26:281–93. https://doi.org/10.1159/000089260.

    Article  PubMed  Google Scholar 

  9. Colleoni M, Viale G, Zahrieh D, Pruneri G, Gentilini O, Veronesi P, Gelber RD, Curigliano G, Torrisi R, Luini A, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res. 2004;10:6622–8. https://doi.org/10.1158/1078-0432.CCR-04-0380.

    Article  CAS  PubMed  Google Scholar 

  10. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34. https://doi.org/10.1200/JCO.2005.04.7985.

    Article  CAS  PubMed  Google Scholar 

  11. Bhatt AN, Mathur R, Farooque A, Verma A, Dwarakanath BS. Cancer biomarkers - current perspectives. Indian J Med Res. 2010;132:129–49.

    CAS  PubMed  Google Scholar 

  12. Gutierrez C, Schiff R. HER2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011;135:55–62. https://doi.org/10.1043/2010-0454-RAR.1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–68. https://doi.org/10.1634/theoncologist.2008-0230.

    Article  CAS  PubMed  Google Scholar 

  14. Jensen JL, Maclean GD, Suresh MR, Almeida A, Jette D, Lloyd S, Bodnar D, Krantz M, Longenecker BM. Possible utility of serum determinations of CA 125 and CA 27.29 in breast cancer management. Int J Biol Markers. 1991;6:1–6.

    Article  CAS  Google Scholar 

  15. Kibar Y, Goktas S, Kilic S, Yaman H, Onguru O, Peker AF. Prognostic value of cytology, nuclear matrix protein 22 (NMP22) test, and urinary bladder cancer II (UBC II) test in early recurrent transitional cell carcinoma of the bladder. Ann Clin Lab Sci. 2006;36:31–8.

    CAS  PubMed  Google Scholar 

  16. Koizumi F, Odagiri H, Fujimoto H, Kawamura T, Ishimori A. Clinical evaluation of four tumor markers (CEA, TPA, CA50 and CA72-4) in colorectal cancer. Rinsho Byori. 1992;40:523–8.

    CAS  PubMed  Google Scholar 

  17. Chen L, Ho DW, Lee NP, Sun S, Lam B, Wong KF, Yi X, Lau GK, Ng EW, Poon TC, et al. Enhanced detection of early hepatocellular carcinoma by serum SELDI-TOF proteomic signature combined with alpha-fetoprotein marker. Ann Surg Oncol. 2010;17:2518–25. https://doi.org/10.1245/s10434-010-1038-8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnson PJ, Williams R. Serum alpha-fetoprotein estimations and doubling time in hepatocellular carcinoma: influence of therapy and possible value in early detection. J Natl Cancer Inst. 1980;64:1329–32. https://doi.org/10.1093/jnci/64.6.1329.

    Article  CAS  PubMed  Google Scholar 

  19. Minami T, Tateishi R, Kondo M, Nakagomi R, Fujiwara N, Sato M, Uchino K, Enooku K, Nakagawa H, Asaoka Y, et al. Serum alpha-fetoprotein has high specificity for the early detection of hepatocellular carcinoma after hepatitis c virus eradication in patients. Medicine (Baltimore). 2015;94:e901. https://doi.org/10.1097/MD.0000000000000901.

    Article  CAS  Google Scholar 

  20. Bae YJ, Schaab M, Kratzsch J. Calcitonin as biomarker for the medullary thyroid Carcinoma. Recent Results Cancer Res. 2015;204:117–37. https://doi.org/10.1007/978-3-319-22542-5_5.

    Article  PubMed  Google Scholar 

  21. van Veelen W, de Groot JW, Acton DS, Hofstra RM, Höppener JW, Links TP, Lips CJ. Medullary thyroid carcinoma and biomarkers: past, present and future. J Int Med. 2009;266:126–40. https://doi.org/10.1111/j.1365-2796.2009.02106.x.

    Article  CAS  Google Scholar 

  22. Charkhchi P, Cybulski C, Gronwald J, Wong FO, Narod SA, Akbari MR. CA125 and ovarian cancer: a comprehensive review. Cancers (Basel). 2020;12 https://doi.org/10.3390/cancers12123730.

  23. Funston G, Hamilton W, Abel G, Crosbie EJ, Rous B, Walter FM. The diagnostic performance of CA125 for the detection of ovarian and non-ovarian cancer in primary care: A population-based cohort study. PLoS Med. 2020;17:e1003295. https://doi.org/10.1371/journal.pmed.1003295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong Q, Yang XH, Zhang Y, Jing W, Zheng LQ, Liu YP, Qu XJ. Elevated serum CA19-9 level is a promising predictor for poor prognosis in patients with resectable pancreatic ductal adenocarcinoma: a pilot study. World J Surg Oncol. 2014;12:171. https://doi.org/10.1186/1477-7819-12-171.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Poruk KE, Gay DZ, Brown K, Mulvihill JD, Boucher KM, Scaife CL, Firpo MA, Mulvihill SJ. The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med. 2013;13:340–51. https://doi.org/10.2174/1566524011313030003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loeb S, Partin AW. Review of the literature: PCA3 for prostate cancer risk assessment and prognostication. Rev Urol. 2011;13:e191–5.

    PubMed  PubMed Central  Google Scholar 

  27. Marks LS, Bostwick DG. Prostate cancer specificity of PCA3 gene testing: examples from clinical practice. Rev Urol. 2008;10:175–81.

    PubMed  PubMed Central  Google Scholar 

  28. Matoso A, Epstein JI. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology. 2019;74:135–45. https://doi.org/10.1111/his.13712.

    Article  PubMed  Google Scholar 

  29. Yusim I, Krenawi M, Mazor E, Novack V, Mabjeesh NJ. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci Rep. 2020;10:20015. https://doi.org/10.1038/s41598-020-76786-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fowler JE, Sesterhenn IA, Mostofi FK. Detection of AFP and HCG in metastatic testicular cancer after treatment with chemotherapy or radiation therapy. Urology. 1989;33:74–7. https://doi.org/10.1016/0090-4295(89)90074-5.

    Article  PubMed  Google Scholar 

  31. Milose JC, Filson CP, Weizer AZ, Hafez KS, Montgomery JS. Role of biochemical markers in testicular cancer: diagnosis, staging, and surveillance. Open Access J Urol. 2011;4:1–8. https://doi.org/10.2147/OAJU.S15063.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gianoukakis AG. Thyroglobulin antibody status and differentiated thyroid cancer: what does it mean for prognosis and surveillance? Curr Opin Oncol. 2015;27:26–32. https://doi.org/10.1097/CCO.0000000000000149.

    Article  CAS  PubMed  Google Scholar 

  33. Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, Haugen BR, Sherman SI, Cooper DS, Braunstein GD, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:1433–41. https://doi.org/10.1210/jc.2002-021702.

    Article  CAS  PubMed  Google Scholar 

  34. Prpić M, Franceschi M, Romić M, Jukić T, Kusić Z. Thyroglobulin as a tumor marker in differentiated thyroid cancer - clinical considerations. Acta Clin Croat. 2018;57:518–27. https://doi.org/10.20471/acc.2018.57.03.16.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marmorino F, Boccaccino A, Germani MM, Falcone A, Cremolini C. Immune checkpoint inhibitors in pMMR metastatic colorectal cancer: a tough challenge. Cancers (Basel). 2020;12 https://doi.org/10.3390/cancers12082317.

  36. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9. https://doi.org/10.1200/JCO.2017.76.9901.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Sun Z, Mao X, Wu H, Luo F, Wu X, Zhou L, Qin J, Zhao L, Bai C. Impact of mismatch-repair deficiency on the colorectal cancer immune microenvironment. Oncotarget. 2017;8:85526–36. https://doi.org/10.18632/oncotarget.20241.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, Fessler E, Medema JP, Boot A, Morreau H, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol. 2016;1:207–16. https://doi.org/10.1016/S2468-1253(16)30014-0.

    Article  PubMed  Google Scholar 

  39. Gong J, Wang C, Lee PP, Chu P, Fakih M. Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a. J Natl Compr Canc Netw. 2017;15:142–7. https://doi.org/10.6004/jnccn.2017.0016.

    Article  PubMed  Google Scholar 

  40. Song Z, Cheng G, Xu C, Wang W, Shao Y, Zhang Y. Clinicopathological characteristics of POLE mutation in patients with non-small-cell lung cancer. Lung Cancer. 2018;118:57–61. https://doi.org/10.1016/j.lungcan.2018.02.004.

    Article  PubMed  Google Scholar 

  41. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  CAS  PubMed  Google Scholar 

  42. Rouquette I, Taranchon-Clermont E, Gilhodes J, Bluthgen MV, Perallon R, Chalabreysse L, De Muret A, Hofman V, Marx A, Parrens M, et al. Immune biomarkers in thymic epithelial tumors: expression patterns, prognostic value and comparison of diagnostic tests for PD-L1. Biomark Res. 2019;7:28. https://doi.org/10.1186/s40364-019-0177-8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fröhlich A, Sirokay J, Fietz S, Vogt TJ, Dietrich J, Zarbl R, Florin M, Kuster P, Saavedra G, Valladolid SR, et al. Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma. EBioMedicine. 2020;59:102962. https://doi.org/10.1016/j.ebiom.2020.102962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z, Huang P, Fang T, Yang B, Xia J. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8. J Transl Med. 2020;18:306. https://doi.org/10.1186/s12967-020-02469-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mair MJ, Kiesel B, Feldmann K, Widhalm G, Dieckmann K, Wöhrer A, Müllauer L, Preusser M, Berghoff AS. LAG-3 expression in the inflammatory microenvironment of glioma. J Neurooncol. 2021;152:533–9. https://doi.org/10.1007/s11060-021-03721-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi JW, Kim YJ, Yun KA, Won CH, Lee MW, Choi JH, Chang SE, Lee WJ. The prognostic significance of VISTA and CD33-positive myeloid cells in cutaneous melanoma and their relationship with PD-1 expression. Sci Rep. 2020;10:14372. https://doi.org/10.1038/s41598-020-71216-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hou Z, Pan Y, Fei Q, Lin Y, Zhou Y, Liu Y, Guan H, Yu X, Lin X, Lu F, Huang H. Prognostic significance and therapeutic potential of the immune checkpoint VISTA in pancreatic cancer. J Cancer Res Clin Oncol. 2021;147:517–31. https://doi.org/10.1007/s00432-020-03463-9.

    Article  CAS  PubMed  Google Scholar 

  48. Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol. 2020b;13:83. https://doi.org/10.1186/s13045-020-00917-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cui C, Xu C, Yang W, Chi Z, Sheng X, Si L, Xie Y, Yu J, Wang S, Yu R, et al. Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 2021;6:7. https://doi.org/10.1038/s41525-021-00169-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, Chang H, Lovitch SB, Horak C, Weber JS, et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 2018;10 https://doi.org/10.1126/scitranslmed.aar3342.

  51. Wang S, Wu J, Shen H, Wang J. The prognostic value of IDO expression in solid tumors: a systematic review and meta-analysis. BMC Cancer. 2020a;20:471. https://doi.org/10.1186/s12885-020-06956-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang W, Huang L, Jin JY, Pi W, Ellsworth SG, Jolly S, Mellor AL, Machtay M, Kong FS. A validation study on IDO immune biomarkers for survival prediction in non-small cell lung cancer: radiation dose fractionation effect in early-stage disease. Clin Cancer Res. 2020b;26:282–9. https://doi.org/10.1158/1078-0432.CCR-19-1202.

    Article  CAS  PubMed  Google Scholar 

  53. Tietze JK, Angelova D, Heppt MV, Reinholz M, Murphy WJ, Spannagl M, Ruzicka T, Berking C. The proportion of circulating CD45RO. Eur J Cancer. 2017;75:268–79. https://doi.org/10.1016/j.ejca.2016.12.031.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO. Theranostics. 2021;11:5330–45. https://doi.org/10.7150/thno.58337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saleh R, Elkord E. FoxP3. Cancer Lett. 2020;490:174–85. https://doi.org/10.1016/j.canlet.2020.07.022.

    Article  CAS  PubMed  Google Scholar 

  56. Santegoets SJ, Duurland CL, Jordanova ES, van Ham JJ, Ehsan I, van Egmond SL, Welters MJP, van der Burg SH. Tbet-positive regulatory T cells accumulate in oropharyngeal cancers with ongoing tumor-specific type 1 T cell responses. J Immunother Cancer. 2019;7:14. https://doi.org/10.1186/s40425-019-0497-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Knispel S, Gassenmaier M, Menzies AM, Loquai C, Johnson DB, Franklin C, Gutzmer R, Hassel JC, Weishaupt C, Eigentler T, et al. Outcome of melanoma patients with elevated LDH treated with first-line targeted therapy or PD-1-based immune checkpoint inhibition. Eur J Cancer. 2021;148:61–75. https://doi.org/10.1016/j.ejca.2021.01.034.

    Article  CAS  PubMed  Google Scholar 

  58. Burdett N, Desai J. New biomarkers for checkpoint inhibitor therapy. ESMO Open. 2020;5:e000597. https://doi.org/10.1136/esmoopen-2019-000597.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shire NJ, Klein AB, Golozar A, Collins JM, Fraeman KH, Nordstrom BL, McEwen R, Hembrough T, Rizvi NA. STK11 (LKB1) mutations in metastatic NSCLC: prognostic value in the real world. PLoS One. 2020;15:e0238358. https://doi.org/10.1371/journal.pone.0238358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun K, Jia K, Lv H, Wang SQ, Wu Y, Lei H, Chen X. EBV-positive gastric cancer: current knowledge and future perspectives. Front Oncol. 2020;10:583463. https://doi.org/10.3389/fonc.2020.583463.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xie T, Liu Y, Zhang Z, Zhang X, Gong J, Qi C, Li J, Shen L, Peng Z. Positive status of epstein-barr virus as a biomarker for gastric cancer immunotherapy: a prospective observational study. J Immunother. 2020;43:139–44. https://doi.org/10.1097/CJI.0000000000000316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schrohl AS, Holten-Andersen M, Sweep F, Schmitt M, Harbeck N, Foekens J, Brünner N, Group, E.O.f.R., Treatment of Cancer, R., and Biomarker. Tumor markers: from laboratory to clinical utility. Mol Cell Proteomics. 2003;2:378–87. https://doi.org/10.1074/mcp.R300006-MCP200.

    Article  CAS  PubMed  Google Scholar 

  63. Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancers (Basel). 2010;2:190–208. https://doi.org/10.3390/cancers2010190.

    Article  CAS  Google Scholar 

  64. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602. https://doi.org/10.1038/nrc1670.

    Article  CAS  PubMed  Google Scholar 

  65. Duffy MJ. Use of biomarkers in screening for cancer. Adv Exp Med Biol. 2015;867:27–39. https://doi.org/10.1007/978-94-017-7215-0_3.

    Article  CAS  PubMed  Google Scholar 

  66. Jimenez PA, Teliska M, Liu B, Antonaccio MJ. Urokinase-type plasminogen activator stimulates wound healing in the diabetic mouse. Inflamm Res. 1997;46(Suppl 2):S169–70. https://doi.org/10.1007/s000110050164.

    Article  CAS  PubMed  Google Scholar 

  67. Yang Q, Kawaguchi T, Battistini B, Sirois P. Neutral endopeptidase degrades endothelins in guinea pig tracheal epithelial cells. Inflamm Res. 1997;46(Suppl 2):S171–2. https://doi.org/10.1007/s000110050165.

    Article  CAS  PubMed  Google Scholar 

  68. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, Petros JA, Andriole GL. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324:1156–61. https://doi.org/10.1056/NEJM199104253241702.

    Article  CAS  PubMed  Google Scholar 

  69. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Mottet N, Schmid HP, van der Kwast T, Wiegel T, Zattoni F. EAU guidelines on prostate cancer. Part I: screening, diagnosis, and treatment of clinically localised disease. Actas Urol Esp. 2011;35:501–14. https://doi.org/10.1016/j.acuro.2011.04.004.

    Article  CAS  PubMed  Google Scholar 

  70. Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, Yue L, Bray-Ward P, Ward DC. Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A. 2005;102:7677–82. https://doi.org/10.1073/pnas.0502178102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Enroth S, Berggrund M, Lycke M, Broberg J, Lundberg M, Assarsson E, Olovsson M, Stålberg K, Sundfeldt K, Gyllensten U. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun Biol. 2019;2:221. https://doi.org/10.1038/s42003-019-0464-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumar P, Nandi S, Tan TZ, Ler SG, Chia KS, Lim WY, Butow Z, Vordos D, De la Taille A, Al-Haddawi M, et al. Highly sensitive and specific novel biomarkers for the diagnosis of transitional bladder carcinoma. Oncotarget. 2015;6:13539–49. https://doi.org/10.18632/oncotarget.3841.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lim JC, Lee TW, Thiery KC, J.P. Novel panel of urinary biomarkers for urothelial cancer. International Journal of Urology. 2018;25(Supplement s1):323.

    Google Scholar 

  74. Konings H, Stappers S, Geens M, De Winter BY, Lamote K, van Meerbeeck JP, Specenier P, Vanderveken OM, Ledeganck KJ. A literature review of the potential diagnostic biomarkers of head and neck neoplasms. Front Oncol. 2020;10:1020. https://doi.org/10.3389/fonc.2020.01020.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fang R, Zhu Y, Khadka VS, Zhang F, Jiang B, Deng Y. The evaluation of serum biomarkers for non-small cell lung cancer (NSCLC) diagnosis. Front Physiol. 2018;9:1710. https://doi.org/10.3389/fphys.2018.01710.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Swan F, Velasquez WS, Tucker S, Redman JR, Rodriguez MA, McLaughlin P, Hagemeister FB, Cabanillas F. A new serologic staging system for large-cell lymphomas based on initial beta 2-microglobulin and lactate dehydrogenase levels. J Clin Oncol. 1989;7:1518–27. https://doi.org/10.1200/JCO.1989.7.10.1518.

    Article  PubMed  Google Scholar 

  77. Molina R, Jo J, Filella X, Zanon G, Pahisa J, Muñoz M, Farrus B, Latre ML, Gimenez N, Hage M, et al. C-erbB-2 oncoprotein in the sera and tissue of patients with breast cancer. Utility in prognosis. Anticancer Res. 1996;16:2295–300.

    CAS  PubMed  Google Scholar 

  78. Duffy MJ. Predictive markers in breast and other cancers: a review. Clin Chem. 2005;51:494–503. https://doi.org/10.1373/clinchem.2004.046227.

    Article  CAS  PubMed  Google Scholar 

  79. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, McAllister PK, Morton RF, Schilsky RL. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6. https://doi.org/10.1200/JCO.2009.21.9170.

    Article  PubMed  Google Scholar 

  80. Drake JM, Lee JK, Witte ON. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol Cell Biol. 2014;34:1722–32. https://doi.org/10.1128/MCB.01592-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 2018;17:36. https://doi.org/10.1186/s12943-018-0801-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang L, Jiang S, Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). J Hematol Oncol. 2020a;13:143. https://doi.org/10.1186/s13045-020-00977-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 2019;17:661–74. https://doi.org/10.1016/j.csbj.2019.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sharpe AH. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol Rev. 2017;276:5–8. https://doi.org/10.1111/imr.12531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Festag MM, Festag J, Fräßle SP, Asen T, Sacherl J, Schreiber S, Mück-Häusl MA, Busch DH, Wisskirchen K, Protzer U. Evaluation of a fully human, Hepatitis B Virus-specific chimeric antigen receptor in an immunocompetent mouse model. Mol Ther. 2019;27:947–59. https://doi.org/10.1016/j.ymthe.2019.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krebs K, Böttinger N, Huang LR, Chmielewski M, Arzberger S, Gasteiger G, Jäger C, Schmitt E, Bohne F, Aichler M, et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013;145:456–65. https://doi.org/10.1053/j.gastro.2013.04.047.

    Article  CAS  PubMed  Google Scholar 

  87. Basso S, Zecca M, Merli P, Gurrado A, Secondino S, Quartuccio G, Guido I, Guerini P, Ottonello G, Zavras N, et al. T cell therapy for nasopharyngeal carcinoma. J Cancer. 2011;2:341–6. https://doi.org/10.7150/jca.2.341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Slabik C, Kalbarczyk M, Danisch S, Zeidler R, Klawonn F, Volk V, Krönke N, Feuerhake F, Ferreira de Figueiredo C, Blasczyk R, et al. CAR-T cells targeting epstein-barr virus gp350 validated in a humanized mouse model of EBV infection and lymphoproliferative disease. Mol Ther Oncolytics. 2020;18:504–24. https://doi.org/10.1016/j.omto.2020.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Doran SL, Stevanović S, Adhikary S, Gartner JJ, Jia L, Kwong MLM, Faquin WC, Hewitt SM, Sherry RM, Yang JC, et al. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, Phase I/II study. J Clin Oncol. 2019;37:2759–68. https://doi.org/10.1200/JCO.18.02424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Li X, Zhang J, Mao L. Novel cellular immunotherapy using NKG2D CAR-T for the treatment of cervical cancer. Biomed Pharmacother. 2020;131:110562. https://doi.org/10.1016/j.biopha.2020.110562.

    Article  CAS  PubMed  Google Scholar 

  91. Kim SH, Lee S, Lee CH, Lee MK, Kim YD, Shin DH, Choi KU, Kim JY, Park DY, Sol MY. Expression of cancer-testis antigens MAGE-A3/6 and NY-ESO-1 in non-small-cell lung carcinomas and their relationship with immune cell infiltration. Lung. 2009;187:401–11. https://doi.org/10.1007/s00408-009-9181-3.

    Article  CAS  PubMed  Google Scholar 

  92. Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947. https://doi.org/10.3389/fimmu.2018.00947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18. https://doi.org/10.1056/NEJMoa1215134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28. https://doi.org/10.1016/S0140-6736(14)61403-3.

    Article  CAS  PubMed  Google Scholar 

  95. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021b;14:7. https://doi.org/10.1186/s13045-020-01014-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Simonetta F, Alvarez M, Negrin RS. Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol. 2017;8:465. https://doi.org/10.3389/fimmu.2017.00465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Nagell JR, DePriest PD, Reedy MB, Gallion HH, Ueland FR, Pavlik EJ, Kryscio RJ. The efficacy of transvaginal sonographic screening in asymptomatic women at risk for ovarian cancer. Gynecol Oncol. 2000;77:350–6. https://doi.org/10.1006/gyno.2000.5816.

    Article  PubMed  Google Scholar 

  99. von Kleist S. The clinical value of the tumor markers CA 19/9 and carcinoembryonic antigen (CEA) in colorectal carcinomas: a critical comparison. Int J Biol Markers. 1986;1:3–8.

    Article  Google Scholar 

  100. Evans CW. Program to correct inappropriate prescribing. Am J Hosp Pharm. 1989;46:69–70.

    CAS  PubMed  Google Scholar 

  101. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127:3321–30. https://doi.org/10.1182/blood-2016-04-703751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu P, Liu M, Lyu C, Lu W, Cui R, Wang J, Li Q, Mou N, Deng Q, Yang D. Acute graft-versus-host disease after humanized anti-CD19-CAR T therapy in relapsed B-ALL patients after allogeneic hematopoietic stem cell transplant. Front Oncol. 2020;10:573822. https://doi.org/10.3389/fonc.2020.573822.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bissonnette R, Maari C, Forman S, Bhatia N, Lee M, Fowler J, Tyring S, Pariser D, Sofen H, Dhawan S, et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-to-severe atopic dermatitis: results from a randomized double-blind placebo-controlled study. Br J Dermatol. 2019;181:733–42. https://doi.org/10.1111/bjd.17932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. El Bairi K, Atanasov AG, Amrani M, Afqir S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed Pharmacother. 2019;109:2492–8. https://doi.org/10.1016/j.biopha.2018.11.097.

    Article  CAS  PubMed  Google Scholar 

  105. Wang X, Zhou J, Wang T, George SL. On enrichment strategies for biomarker stratified clinical trials. J Biopharm Stat. 2018;28:292–308. https://doi.org/10.1080/10543406.2017.1379532.

    Article  PubMed  Google Scholar 

  106. Matsui S, Crowley J. Biomarker-stratified Phase III clinical trials: enhancement with a subgroup-focused sequential design. Clin Cancer Res. 2018;24:994–1001. https://doi.org/10.1158/1078-0432.CCR-17-1552.

    Article  CAS  PubMed  Google Scholar 

  107. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868–80. https://doi.org/10.1038/nrd3531.

    Article  CAS  PubMed  Google Scholar 

  108. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7:209–19. https://doi.org/10.1038/nrclinonc.2010.21.

    Article  CAS  PubMed  Google Scholar 

  109. Verbaanderd C, Meheus L, Huys I, Pantziarka P. Repurposing drugs in oncology: next steps. Trends Cancer. 2017;3:543–6. https://doi.org/10.1016/j.trecan.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  110. Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 2017;25:463–71. https://doi.org/10.1016/j.cmet.2016.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ringshausen I, Feuerstacke Y, Krainz P, den Hollander J, Hermann K, Buck A, Peschel C, Bueschenfelde MZ, C. Antifungal therapy with itraconazole impairs the anti-lymphoma effects of rituximab by inhibiting recruitment of CD20 to cell surface lipid rafts. Cancer Res. 2010;70:4292–6. https://doi.org/10.1158/0008-5472.CAN-10-0259.

    Article  CAS  PubMed  Google Scholar 

  112. Yang BR, Seong JM, Choi NK, Shin JY, Lee J, Kim YJ, Kim MS, Park S, Song HJ, Park BJ. Co-medication of statins with contraindicated drugs. PLoS One. 2015;10:e0125180. https://doi.org/10.1371/journal.pone.0125180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moorcraft SY, Gonzalez D, Walker BA. Understanding next generation sequencing in oncology: a guide for oncologists. Crit Rev Oncol Hematol. 2015;96:463–74. https://doi.org/10.1016/j.critrevonc.2015.06.007.

    Article  PubMed  Google Scholar 

  114. Hartmaier RJ, Charo J, Fabrizio D, Goldberg ME, Albacker LA, Pao W, Chmielecki J. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med. 2017;9:16. https://doi.org/10.1186/s13073-017-0408-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Presley CJ, Tang D, Soulos PR, Chiang AC, Longtine JA, Adelson KB, Herbst RS, Zhu W, Nussbaum NC, Sorg RA, et al. Association of broad-based genomic sequencing with survival among patients with advanced non-small cell lung cancer in the community oncology setting. JAMA. 2018;320:469–77. https://doi.org/10.1001/jama.2018.9824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bollinger MK, Agnew AS, Mascara GP. Osimertinib: a third-generation tyrosine kinase inhibitor for treatment of epidermal growth factor receptor-mutated non-small cell lung cancer with the acquired Thr790Met mutation. J Oncol Pharm Pract. 2018;24:379–88. https://doi.org/10.1177/1078155217712401.

    Article  CAS  PubMed  Google Scholar 

  117. Coit DG, Thompson JA, Algazi A, Andtbacka R, Bichakjian CK, Carson WE, Daniels GA, DiMaio D, Fields RC, Fleming MD, et al. NCCN guidelines insights: melanoma, version 3.2016. J Natl Compr Canc Netw. 2016;14:945–58. https://doi.org/10.6004/jnccn.2016.0101.

    Article  PubMed  Google Scholar 

  118. Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang JY, Chirieac LR, D'Amico TA, Dilling TJ, Dobelbower M, et al. NCCN guidelines insights: non-small cell lung cancer, version 5.2018. J Natl Compr Canc Netw. 2018;16:807–21. https://doi.org/10.6004/jnccn.2018.0062.

    Article  PubMed  Google Scholar 

  119. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376:629–40. https://doi.org/10.1056/NEJMoa1612674.

    Article  CAS  PubMed  Google Scholar 

  120. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, Giannone V, D'Amelio AM, Zhang P, Mookerjee B, Johnson BE. Dabrafenib plus trametinib in patients with previously untreated BRAF. Lancet Oncol. 2017;18:1307–16. https://doi.org/10.1016/S1470-2045(17)30679-4.

    Article  CAS  PubMed  Google Scholar 

  121. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9. https://doi.org/10.1056/NEJMoa1412690.

    Article  CAS  PubMed  Google Scholar 

  122. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378:113–25. https://doi.org/10.1056/NEJMoa1713137.

    Article  CAS  PubMed  Google Scholar 

  123. Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, Duyvesteyn K, Haidari S, van Hoeck A, Onstenk W, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature. 2019;575:210–6. https://doi.org/10.1038/s41586-019-1689-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bo X, Burnstock G. Triphosphate, the key structure of the ATP molecule responsible for interaction with P2X-purinoceptors. Gen Pharmacol. 1993;24:637–40. https://doi.org/10.1016/0306-3623(93)90223-k.

    Article  CAS  PubMed  Google Scholar 

  125. Meric-Bernstam F, Brusco L, Shaw K, Horombe C, Kopetz S, Davies MA, Routbort M, Piha-Paul SA, Janku F, Ueno N, et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol. 2015;33:2753–62. https://doi.org/10.1200/JCO.2014.60.4165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mertens WC, Bramwell VH, Banerjee D, Gwadry-Sridhar F, Lala PK. Sustained indomethacin and ranitidine with intermittent continuous infusion interleukin-2 in advanced malignant melanoma: a phase II study. Clin Oncol (R Coll Radiol). 1993;5:107–13. https://doi.org/10.1016/s0936-6555(05)80858-1.

    Article  CAS  Google Scholar 

  127. Stockley TL, Oza AM, Berman HK, Leighl NB, Knox JJ, Shepherd FA, Chen EX, Krzyzanowska MK, Dhani N, Joshua AM, et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: the princess margaret IMPACT/COMPACT trial. Genome Med. 2016;8:109. https://doi.org/10.1186/s13073-016-0364-2.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Cavelier L, Ameur A, Häggqvist S, Höijer I, Cahill N, Olsson-Strömberg U, Hermanson M. Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing. BMC Cancer. 2015;15:45. https://doi.org/10.1186/s12885-015-1046-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kohli M, Ho Y, Hillman DW, Van Etten JL, Henzler C, Yang R, Sperger JM, Li Y, Tseng E, Hon T, et al. Androgen receptor variant AR-V9 Is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin Cancer Res. 2017;23:4704–15. https://doi.org/10.1158/1078-0432.CCR-17-0017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nattestad M, Goodwin S, Ng K, Baslan T, Sedlazeck FJ, Rescheneder P, Garvin T, Fang H, Gurtowski J, Hutton E, et al. Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. Genome Res. 2018;28:1126–35. https://doi.org/10.1101/gr.231100.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tevz G, McGrath S, Demeter R, Magrini V, Jeet V, Rockstroh A, McPherson S, Lai J, Bartonicek N, An J, et al. Identification of a novel fusion transcript between human relaxin-1 (RLN1) and human relaxin-2 (RLN2) in prostate cancer. Mol Cell Endocrinol. 2016;420:159–68. https://doi.org/10.1016/j.mce.2015.10.011.

    Article  CAS  PubMed  Google Scholar 

  132. Euskirchen P, Bielle F, Labreche K, Kloosterman WP, Rosenberg S, Daniau M, Schmitt C, Masliah-Planchon J, Bourdeaut F, Dehais C, et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 2017;134:691–703. https://doi.org/10.1007/s00401-017-1743-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yeh IJ, Liu KT, Shen JH, Wu YH, Liu YH, Yen MC, Kuo PL. Identification of the potential prognostic markers from the miRNA-lncRNA-mRNA interactions for metastatic renal cancer via next-generation sequencing and bioinformatics. Diagnostics (Basel). 2020;10 https://doi.org/10.3390/diagnostics10040228.

  134. Frangieh CJ, Melms JC, Thakore PI, Geiger-Schuller KR, Ho P, Luoma AM, Cleary B, Jerby-Arnon L, Malu S, Cuoco MS, et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat Genet. 2021;53:332–41. https://doi.org/10.1038/s41588-021-00779-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Davies JA, Tindall H, Paton RC, Menys VC, Doig RL, Kester RC, McNicol GP. Platelet survival in patients treated with ticlopidine following reconstructive arterial surgery. Thromb Res. 1982;27:365–9. https://doi.org/10.1016/0049-3848(82)90083-4.

    Article  CAS  PubMed  Google Scholar 

  136. Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, Chiocchi M, Cipriani C, Di Daniele N, Ganini C, Juhl H, et al. Liquid biopsies and cancer omics. Cell Death Discov. 2020;6:131. https://doi.org/10.1038/s41420-020-00373-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, Nyalwidhe JO, Gramolini AO, Lance RS, Troyer DA, Drake RR, et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat Commun. 2016;7:11906. https://doi.org/10.1038/ncomms11906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mader S, Pantel K. Liquid biopsy: current status and future perspectives. Oncol Res Treat. 2017;40:404–8. https://doi.org/10.1159/000478018.

    Article  CAS  PubMed  Google Scholar 

  139. Gupta S, Vanderbilt C, Abida W, Fine SW, Tickoo SK, Al-Ahmadie HA, Chen YB, Sirintrapun SJ, Chadalavada K, Nanjangud GJ, et al. Immunohistochemistry-based assessment of androgen receptor status and the AR-null phenotype in metastatic castrate resistant prostate cancer. Prostate Cancer Prostatic Dis. 2020;23:507–16. https://doi.org/10.1038/s41391-020-0214-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Waltering KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol. 2012;360:38–43. https://doi.org/10.1016/j.mce.2011.12.019.

    Article  CAS  PubMed  Google Scholar 

  141. McLeer-Florin A, Moro-Sibilot D, Melis A, Salameire D, Lefebvre C, Ceccaldi F, de Fraipont F, Brambilla E, Lantuejoul S. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. J Thorac Oncol. 2012;7:348–54. https://doi.org/10.1097/JTO.0b013e3182381535.

    Article  PubMed  Google Scholar 

  142. Yoshida A, Tsuta K, Wakai S, Arai Y, Asamura H, Shibata T, Furuta K, Kohno T, Kushima R. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol. 2014;27:711–20. https://doi.org/10.1038/modpathol.2013.192.

    Article  CAS  PubMed  Google Scholar 

  143. Byers R, Hornick JL, Tholouli E, Kutok J, Rodig SJ. Detection of IDH1 R132H mutation in acute myeloid leukemia by mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol. 2012;20:37–40. https://doi.org/10.1097/PAI.0b013e31822c132e.

    Article  CAS  PubMed  Google Scholar 

  144. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56. https://doi.org/10.1158/1535-7163.MCT-14-0983.

    Article  CAS  PubMed  Google Scholar 

  145. Scheel AH, Schäfer SC. Current PD-L1 immunohistochemistry for non-small cell lung cancer. J Thorac Dis. 2018;10:1217–9. https://doi.org/10.21037/jtd.2018.02.38.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, Hoang M, Jung J, Liang Y, McKay-Fleisch J, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38:586–99. https://doi.org/10.1038/s41587-020-0472-9.

    Article  CAS  PubMed  Google Scholar 

  147. McCart Reed AE, Bennett J, Kutasovic JR, Kalaw E, Ferguson K, Yeong J, Simpson PT, Lakhani SR. Digital spatial profiling application in breast cancer: a user’s perspective. Virchows Arch. 2020;477:885–90. https://doi.org/10.1007/s00428-020-02821-9.

    Article  PubMed  Google Scholar 

  148. Doll S, Gnad F, Mann M. The case for proteomics and phospho-proteomics in personalized cancer medicine. Proteomics Clin Appl. 2019;13:e1800113. https://doi.org/10.1002/prca.201800113.

    Article  CAS  PubMed  Google Scholar 

  149. Käll L, Vitek O. Computational mass spectrometry-based proteomics. PLoS Comput Biol. 2011;7:e1002277. https://doi.org/10.1371/journal.pcbi.1002277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T. Proteomic maps of breast cancer subtypes. Nat Commun. 2016;7:10259. https://doi.org/10.1038/ncomms10259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu X, Zheng W, Wang W, Shen H, Liu L, Lou W, Wang X, Yang P. A new panel of pancreatic cancer biomarkers discovered using a mass spectrometry-based pipeline. Br J Cancer. 2017;117:1846–54. https://doi.org/10.1038/bjc.2017.365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hu HF, Xu WW, Wang Y, Zheng CC, Zhang WX, Li B, He QY. Comparative proteomics analysis identifies Cdc42-Cdc42BPA signaling as prognostic biomarker and therapeutic target for colon cancer invasion. J Proteome Res. 2018;17:265–75. https://doi.org/10.1021/acs.jproteome.7b00550.

    Article  CAS  PubMed  Google Scholar 

  153. BÄ…chor R, Waliczek M, Stefanowicz P, Szewczuk Z. Trends in the design of new isobaric labeling reagents for quantitative proteomics. Molecules. 2019;24 https://doi.org/10.3390/molecules24040701.

  154. Yang T, Fu Z, Zhang Y, Wang M, Mao C, Ge W. Serum proteomics analysis of candidate predictive biomarker panel for the diagnosis of trastuzumab-based therapy resistant breast cancer. Biomed Pharmacother. 2020;129:110465. https://doi.org/10.1016/j.biopha.2020.110465.

    Article  CAS  PubMed  Google Scholar 

  155. Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, Obuchi W, Baba T, Watanabe M, Terasaki T, Nakada M. Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One. 2018;13:e0193799. https://doi.org/10.1371/journal.pone.0193799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen Z, Li Z, Li H, Jiang Y. Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther. 2019;12:6797–811. https://doi.org/10.2147/OTT.S215628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dalal N, Jalandra R, Sharma M, Prakash H, Makharia GK, Solanki PR, Singh R, Kumar A. Omics technologies for improved diagnosis and treatment of colorectal cancer: technical advancement and major perspectives. Biomed Pharmacother. 2020;131:110648. https://doi.org/10.1016/j.biopha.2020.110648.

    Article  CAS  PubMed  Google Scholar 

  158. Wang Q, Sun T, Cao Y, Gao P, Dong J, Fang Y, Fang Z, Sun X, Zhu Z. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. Onco Targets Ther. 2016;9:1389–98. https://doi.org/10.2147/OTT.S95862.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7. https://doi.org/10.1016/j.cell.2008.08.026.

    Article  CAS  PubMed  Google Scholar 

  160. Abderrahman B. Exhaled breath biopsy: a new cancer detection paradigm. Future Oncol. 2019;15:1679–82. https://doi.org/10.2217/fon-2019-0091.

    Article  CAS  PubMed  Google Scholar 

  161. Durán-Acevedo CM, Jaimes-Mogollón AL, Gualdrón-Guerrero OE, Welearegay TG, Martinez-Marín JD, Caceres-Tarazona JM, Sánchez-Acevedo ZC, Beleño-Saenz KJ, Cindemir U, Österlund L, Ionescu R. Exhaled breath analysis for gastric cancer diagnosis in Colombian patients. Oncotarget. 2018;9:28805–17. https://doi.org/10.18632/oncotarget.25331.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Li M, Yang D, Brock G, Knipp RJ, Bousamra M, Nantz MH, Fu XA. Breath carbonyl compounds as biomarkers of lung cancer. Lung Cancer. 2015;90:92–7. https://doi.org/10.1016/j.lungcan.2015.07.005.

    Article  PubMed  Google Scholar 

  163. Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, et al. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res. 2018;12:046005. https://doi.org/10.1088/1752-7163/aacbfb.

    Article  CAS  PubMed  Google Scholar 

  164. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28:595–9. https://doi.org/10.1038/nbt.1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schubert SM, Arendt LM, Zhou W, Baig S, Walter SR, Buchsbaum RJ, Kuperwasser C, Walt DR. Ultra-sensitive protein detection via single molecule arrays towards early stage cancer monitoring. Sci Rep. 2015;5:11034. https://doi.org/10.1038/srep11034.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wei P, Wu F, Kang B, Sun X, Heskia F, Pachot A, Liang J, Li D. Plasma extracellular vesicles detected by single molecule array technology as a liquid biopsy for colorectal cancer. J Extracell Vesicles. 2020;9:1809765. https://doi.org/10.1080/20013078.2020.1809765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Darlix A, Hirtz C, Thezenas S, Maceski A, Gabelle A, Lopez-Crapez E, De Forges H, Firmin N, Guiu S, Jacot W, Lehmann S. The prognostic value of the Tau protein serum level in metastatic breast cancer patients and its correlation with brain metastases. BMC Cancer. 2019;19:110. https://doi.org/10.1186/s12885-019-5287-z.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bera A, Russ E, Manoharan MS, Eidelman O, Eklund M, Hueman M, Pollard HB, Hu H, Shriver CD, Srivastava M. Proteomic analysis of inflammatory biomarkers associated with breast cancer recurrence. Mil Med. 2020;185:669–75. https://doi.org/10.1093/milmed/usz254.

    Article  PubMed  Google Scholar 

  169. Liu J, Li Y, Li Q, Liang D, Wang Q, Liu Q. Biomarkers of response to camrelizumab combined with apatinib: an analysis from a phase II trial in advanced triple-negative breast cancer patients. Breast Cancer Res Treat. 2021a;186:687–97. https://doi.org/10.1007/s10549-021-06128-4.

    Article  CAS  PubMed  Google Scholar 

  170. Shen Q, Polom K, Williams C, de Oliveira FMS, Guergova-Kuras M, Lisacek F, Karlsson NG, Roviello F, Kamali-Moghaddam M. A targeted proteomics approach reveals a serum protein signature as diagnostic biomarker for resectable gastric cancer. EBioMedicine. 2019;44:322–33. https://doi.org/10.1016/j.ebiom.2019.05.044.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92:8072–80. https://doi.org/10.1021/acs.analchem.9b05135.

    Article  CAS  PubMed  Google Scholar 

  172. Rauniyar N, Peng G, Lam TT, Zhao H, Mor G, Williams KR. Data-independent acquisition and parallel reaction monitoring mass spectrometry identification of serum biomarkers for ovarian cancer. Biomark Insights. 2017;12:1177271917710948. https://doi.org/10.1177/1177271917710948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nigjeh EN, Chen R, Brand RE, Petersen GM, Chari ST, von Haller PD, Eng JK, Feng Z, Yan Q, Brentnall TA, Pan S. Quantitative proteomics based on optimized data-independent acquisition in plasma analysis. J Proteome Res. 2017;16:665–76. https://doi.org/10.1021/acs.jproteome.6b00727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5:e15004. https://doi.org/10.1371/journal.pone.0015004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huang J, Chen X, Fu X, Li Z, Huang Y, Liang C. Advances in aptamer-based biomarker discovery. Front Cell Dev Biol. 2021;9:659760. https://doi.org/10.3389/fcell.2021.659760.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2021;22:19–37. https://doi.org/10.1038/s41576-020-0268-2.

    Article  CAS  PubMed  Google Scholar 

  177. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558:73–9. https://doi.org/10.1038/s41586-018-0175-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ostroff RM, Mehan MR, Stewart A, Ayers D, Brody EN, Williams SA, Levin S, Black B, Harbut M, Carbone M, et al. Early detection of malignant pleural mesothelioma in asbestos-exposed individuals with a noninvasive proteomics-based surveillance tool. PLoS One. 2012;7:e46091. https://doi.org/10.1371/journal.pone.0046091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Webber J, Stone TC, Katilius E, Smith BC, Gordon B, Mason MD, Tabi Z, Brewis IA, Clayton A. Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan™) platform. Mol Cell Proteomics. 2014;13:1050–64. https://doi.org/10.1074/mcp.M113.032136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9:e95192. https://doi.org/10.1371/journal.pone.0095192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Price ND, Magis AT, Earls JC, Glusman G, Levy R, Lausted C, McDonald DT, Kusebauch U, Moss CL, Zhou Y, et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat Biotechnol. 2017;35:747–56. https://doi.org/10.1038/nbt.3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhong W, Edfors F, Gummesson A, Bergström G, Fagerberg L, Uhlén M. Next generation plasma proteome profiling to monitor health and disease. Nat Commun. 2021;12:2493. https://doi.org/10.1038/s41467-021-22767-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6:605–18. https://doi.org/10.1016/j.trecan.2020.02.022.

    Article  CAS  PubMed  Google Scholar 

  184. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, Frederick DT, Barzily-Rokni M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175:998–1013.e1020. https://doi.org/10.1016/j.cell.2018.10.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356 https://doi.org/10.1126/science.aah4573.

  186. Le Tourneau C, Kamal M, Tsimberidou AM, Bedard P, Pierron G, Callens C, Rouleau E, Vincent-Salomon A, Servant N, Alt M, et al. Treatment algorithms based on tumor molecular profiling: the essence of precision medicine trials. J Natl Cancer Inst. 2016;108 https://doi.org/10.1093/jnci/djv362.

  187. Hess JM, Bernards A, Kim J, Miller M, Taylor-Weiner A, Haradhvala NJ, Lawrence MS, Getz G. Passenger hotspot mutations in cancer. Cancer Cell. 2019;36:288–301.e214. https://doi.org/10.1016/j.ccell.2019.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman Å, Schork A, Page K, Zhernakova DV, Wu Y, Peters J, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020;2:1135–48. https://doi.org/10.1038/s42255-020-00287-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Jean Paul Thiery is supported by a core funding from The Bioland and Guangzhou Laboratory, Bioisland Guangzhou. Graphics were created using Icons from www.flaticon.com. We are much indebted to Dr. Rebecca Jackson for careful editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jing Sim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sim, W.J., Lee, K.C., Thiery, J.P. (2022). Cancer Biomarkers: A Long and Tortuous Journey. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-030-98950-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98950-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98949-1

  • Online ISBN: 978-3-030-98950-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics