Skip to main content

Precision Exercise and Physical Activity for Diabetes

  • Chapter
  • First Online:
Precision Medicine in Diabetes

Abstract

Exercise and physical activity are important tools in the management of both type 1 and type 2 diabetes due, in part, to their ability to decrease risk factors associated with diabetes-related complications and improve overall health. Like any other treatment, however, a great deal of interindividual and intraindividual variation exists in responses to different activity doses (type, timing, intensity, frequency, and duration). This chapter provides an overview of the factors that may influence both short- and long-term adaptation to exercise and physical activity in individuals with both type 1 and type 2 diabetes so that the right treatment, for the right person, at the right time can be combined in developing an appropriate exercise/physical activity prescription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz S. Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. J Am Geriatr Soc. 1983;31(12):721–7.

    Article  CAS  PubMed  Google Scholar 

  2. Physical Activity Guidelines Advisory Committee. Physical activity guidelines advisory committee report. Washington, DC: U.S. Department of Health and Human Services; 2008.

    Google Scholar 

  3. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  PubMed  Google Scholar 

  4. Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian Society for Exercise Physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Metab. 2008;33(3):547–61.

    Article  PubMed  Google Scholar 

  5. Cassidy S, Thoma C, Houghton D, Trenell MI. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia. 2017;60(1):7–23.

    Article  PubMed  Google Scholar 

  6. Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(7):1617–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williams GM, Long AE, Wilson IV, Aitken RJ, Wyatt RC, McDonald TJ, et al. Beta cell function and ongoing autoimmunity in long-standing, childhood onset type 1 diabetes. Diabetologia. 2016;59(12):2722–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oram RA, McDonald TJ, Shields BM, Hudson MM, Shepherd MH, Hammersley S, et al. Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. Diabetes Care. 2015;38(2):323–8.

    Article  CAS  PubMed  Google Scholar 

  9. Fadiga L, Saraiva J, Catarino D, Frade J, Melo M, Paiva I. Adult-onset autoimmune diabetes: comparative analysis of classical and latent presentation. Diabetol Metab Syndr. 2020;12(1):107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popovic DS, Papanas N. Double diabetes: a growing problem requiring solutions. Exp Clin Endocrinol Diabetes. 2021. https://doi.org/10.1055/a-1392-0590.

  11. Simoniene D, Platukiene A, Prakapiene E, Radzeviciene L, Velickiene D. Insulin resistance in type 1 diabetes mellitus and its association with Patient's micro- and macrovascular complications, sex hormones, and other clinical data. Diabetes Ther. 2020;11(1):161–74.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor GS, Smith K, Capper TE, Scragg JH, Bashir A, Flatt A, et al. Postexercise Glycemic control in type 1 diabetes is associated with residual beta-cell function. Diabetes Care. 2020;43(10):2362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tielemans SM, Soedamah-Muthu SS, De Neve M, Toeller M, Chaturvedi N, Fuller JH, et al. Association of physical activity with all-cause mortality and incident and prevalent cardiovascular disease among patients with type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetologia. 2013;56(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  14. Moy CS, Songer TJ, LaPorte RE, Dorman JS, Kriska AM, Orchard TJ, et al. Insulin-dependent diabetes mellitus, physical activity, and death. Am J Epidemiol. 1993;137(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  15. Kriska AM, LaPorte RE, Patrick SL, Kuller LH, Orchard TJ. The association of physical activity and diabetic complications in individuals with insulin-dependent diabetes mellitus: the Epidemiology of Diabetes Complications Study–VII. J Clin Epidemiol. 1991;44(11):1207–14.

    Article  CAS  PubMed  Google Scholar 

  16. Bohn B, Herbst A, Pfeifer M, Krakow D, Zimny S, Kopp F, et al. Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a cross-sectional multicenter study of 18,028 patients. Diabetes Care. 2015;38(8):1536–43.

    Article  PubMed  Google Scholar 

  17. Tikkanen-Dolenc H, Waden J, Forsblom C, Harjutsalo V, Thorn LM, Saraheimo M, et al. Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes. Diabetologia. 2017;60(3):574–80.

    Article  CAS  PubMed  Google Scholar 

  18. Waden J, Tikkanen HK, Forsblom C, Harjutsalo V, Thorn LM, Saraheimo M, et al. Leisure-time physical activity and development and progression of diabetic nephropathy in type 1 diabetes: the FinnDiane study. Diabetologia. 2015;58(5):929–36.

    Article  PubMed  Google Scholar 

  19. Tikkanen-Dolenc H, Waden J, Forsblom C, Harjutsalo V, Thorn LM, Saraheimo M, et al. Frequent physical activity is associated with reduced risk of severe diabetic retinopathy in type 1 diabetes. Acta Diabetol. 2020;57(5):527–34.

    Article  CAS  PubMed  Google Scholar 

  20. Yardley JE, Sigal RJ, Perkins BA, Riddell MC, Kenny GP. Resistance exercise in type 1 diabetes. Can J Diabetes. 2013;37(6):420–6.

    Article  PubMed  Google Scholar 

  21. Yardley JE, Hay J, Abou-Setta AM, Marks SD, McGavock J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res Clin Pract. 2014;106(3):393–400.

    Article  PubMed  Google Scholar 

  22. Laaksonen DE, Atalay M, Niskanen LK, Mustonen J, Sen CK, Lakka TA, et al. Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. Med Sci Sports Exerc. 2000;32(9):1541–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wallberg-Henriksson H, Gunnarsson R, Rossner S, Wahren J. Long-term physical training in female type 1 (insulin-dependent) diabetic patients: absence of significant effect on glycaemic control and lipoprotein levels. Diabetologia. 1986;29(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yki-Jarvinen H, DeFronzo RA, Koivisto VA. Normalization of insulin sensitivity in type I diabetic subjects by physical training during insulin pump therapy. Diabetes Care. 1984;7(6):520–7.

    Article  CAS  PubMed  Google Scholar 

  25. Fuchsjager-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ, et al. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care. 2002;25(10):1795–801.

    Article  PubMed  Google Scholar 

  26. Landt KW, Campaigne BN, James FW, Sperling MA. Effects of exercise training on insulin sensitivity in adolescents with type I diabetes. Diabetes Care. 1985;8(5):461–5.

    Article  CAS  PubMed  Google Scholar 

  27. Rigla M, Sanchez-Quesada JL, Ordonez-Llanos J, Prat T, Caixas A, Jorba O, et al. Effect of physical exercise on lipoprotein(a) and low-density lipoprotein modifications in type 1 and type 2 diabetic patients. Metabolism. 2000;49(5):640–7.

    Article  CAS  PubMed  Google Scholar 

  28. de Moraes R, Van Bavel D, Gomes MB, Tibirica E. Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study. BMC Cardiovasc Disord. 2016;16:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Boff W, da Silva AM, Farinha JB, Rodrigues-Krause J, Reischak-Oliveira A, Tschiedel B, et al. Superior effects of high-intensity interval vs. moderate-intensity continuous training on endothelial function and cardiorespiratory fitness in patients with type 1 diabetes: a randomized controlled trial. Front Physiol. 2019;10:450.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wrobel M, Rokicka D, Czuba M, Golas A, Pyka L, Greif M, et al. Aerobic as well as resistance exercises are good for patients with type 1 diabetes. Diabetes Res Clin Pract. 2018;144:93–101.

    Article  PubMed  Google Scholar 

  31. Wallberg-Henriksson H, Gunnarsson R, Henriksson J, DeFronzo R, Felig P, Ostman J, et al. Increased peripheral insulin sensitivity and muscle mitochondrial enzymes but unchanged blood glucose control in type I diabetics after physical training. Diabetes. 1982;31(12):1044–50.

    Article  CAS  PubMed  Google Scholar 

  32. Ramalho AC, de Lourdes Lima M, Nunes F, Cambui Z, Barbosa C, Andrade A, et al. The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus. Diabetes Res Clin Pract. 2006;72(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  33. Maggio AB, Rizzoli RR, Marchand LM, Ferrari S, Beghetti M, Farpour-Lambert NJ. Physical activity increases bone mineral density in children with type 1 diabetes. Med Sci Sports Exerc. 2012;44(7):1206–11.

    Article  PubMed  Google Scholar 

  34. Farinha JB, Ramis TR, Vieira AF, Macedo RCO, Rodrigues-Krause J, Boeno FP, et al. Glycemic, inflammatory and oxidative stress responses to different high-intensity training protocols in type 1 diabetes: a randomized clinical trial. J Diabetes Complicat. 2018;32(12):1124–32.

    Article  Google Scholar 

  35. Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men. Diabetes Care. 1990;13(10):1039–43.

    Article  CAS  PubMed  Google Scholar 

  36. D’Hooge R, Hellinckx T, Van Laethem C, Stegen S, De Schepper J, Van Aken S, et al. Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial. Clin Rehabil. 2011;25(4):349–59.

    Article  PubMed  Google Scholar 

  37. Mosher PE, Nash MS, Perry AC, LaPerriere AR, Goldberg RB. Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus. Arch Phys Med Rehabil. 1998;79(6):652–7.

    Article  CAS  PubMed  Google Scholar 

  38. Scott SN, Cocks M, Andrews RC, Narendran P, Purewal TS, Cuthbertson DJ, et al. High-intensity interval training improves aerobic capacity without a detrimental decline in blood glucose in people with type 1 diabetes. J Clin Endocrinol Metab. 2019;104(2):604–12.

    Article  PubMed  Google Scholar 

  39. Alarcon-Gomez J, Calatayud J, Chulvi-Medrano I, Martin-Rivera F. Effects of a HIIT protocol on cardiovascular risk factors in a type 1 diabetes mellitus population. Int J Environ Res Public Health. 2021;18(3):1262.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Plotnikoff RC, Taylor LM, Wilson PM, Courneya KS, Sigal RJ, Birkett N, et al. Factors associated with physical activity in Canadian adults with diabetes. Med Sci Sports Exerc. 2006;38(8):1526–34.

    Article  PubMed  Google Scholar 

  41. Valerio G, Spagnuolo MI, Lombardi F, Spadaro R, Siano M, Franzese A. Physical activity and sports participation in children and adolescents with type 1 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2007;17(5):376–82.

    Article  PubMed  Google Scholar 

  42. Brazeau AS, Rabasa-Lhoret R, Strychar I, Mircescu H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31(11):2108–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yardley JE, Brockman NK, Bracken RM. Could age, sex and physical fitness affect blood glucose responses to exercise in type 1 diabetes? Front Endocrinol (Lausanne). 2018;9:674.

    Article  Google Scholar 

  44. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377–90.

    Article  PubMed  Google Scholar 

  46. Rodbard HW, Rodbard D. Biosynthetic human insulin and insulin analogs. Am J Ther. 2020;27(1):e42–51.

    Article  PubMed  Google Scholar 

  47. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys. 1993;265(3 Pt 1):E380–91.

    CAS  Google Scholar 

  48. Jarhult J, Holst J. The role of the adrenergic innervation to the pancreatic islets in the control of insulin release during exercise in man. Pflugers Arch. 1979;383(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  49. Hedeskov CJ. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980;60(2):442–509.

    Article  CAS  PubMed  Google Scholar 

  50. Ferrannini E, Linde B, Faber O. Effect of bicycle exercise on insulin absorption and subcutaneous blood flow in the normal subject. Clin Physiol. 1982;2(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  51. McAuley SA, Horsburgh JC, Ward GM, La Gerche A, Gooley JL, Jenkins AJ, et al. Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia. 2016;59(8):1636–44.

    Article  CAS  PubMed  Google Scholar 

  52. Ronnemaa T, Koivisto VA. Combined effect of exercise and ambient temperature on insulin absorption and postprandial glycemia in type I patients. Diabetes Care. 1988;11(10):769–73.

    Article  CAS  PubMed  Google Scholar 

  53. Thow JC, Johnson AB, Antsiferov M, Home PD. Exercise augments the absorption of isophane (NPH) insulin. Diabet Med. 1989;6(4):342–5.

    Article  CAS  PubMed  Google Scholar 

  54. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013;36(3):537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zaharieva D, Yavelberg L, Jamnik V, Cinar A, Turksoy K, Riddell MC. The effects of basal insulin suspension at the start of exercise on blood glucose levels during continuous versus circuit-based exercise in individuals with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Technol Ther. 2017;19(6):370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McMahon SK, Ferreira LD, Ratnam N, Davey RJ, Youngs LM, Davis EA, et al. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):963–8.

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell TH, Abraham G, Schiffrin A, Leiter LA, Marliss EB. Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care. 1988;11(4):311–7.

    Article  CAS  PubMed  Google Scholar 

  58. Purdon C, Brousson M, Nyveen SL, Miles PD, Halter JB, Vranic M, et al. The roles of insulin and catecholamines in the glucoregulatory response during intense exercise and early recovery in insulin-dependent diabetic and control subjects. J Clin Endocrinol Metab. 1993;76(3):566–73.

    CAS  PubMed  Google Scholar 

  59. Sigal RJ, Purdon C, Fisher SJ, Halter JB, Vranic M, Marliss EB. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1994;79(4):1049–57.

    CAS  PubMed  Google Scholar 

  60. Turner D, Gray BJ, Luzio S, Dunseath G, Bain SC, Hanley S, et al. Similar magnitude of post-exercise hyperglycemia despite manipulating resistance exercise intensity in type 1 diabetes individuals. Scand J Med Sci Sports. 2016;26(4):404–12.

    Article  CAS  PubMed  Google Scholar 

  61. Campbell MD, West DJ, Bain SC, Kingsley MI, Foley P, Kilduff L, et al. Simulated games activity vs continuous running exercise: a novel comparison of the glycemic and metabolic responses in T1DM patients. Scand J Med Sci Sports. 2015;25(2):216–22.

    Article  CAS  PubMed  Google Scholar 

  62. Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005;28(6):1289–94.

    Article  CAS  PubMed  Google Scholar 

  63. Moser O, Tschakert G, Mueller A, Groeschl W, Pieber TR, Obermayer-Pietsch B, et al. Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-Long-acting insulin. PLoS One. 2015;10(8):e0136489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sigal RJ, Fisher SJ, Halter JB, Vranic M, Marliss EB. Glucoregulation during and after intense exercise: effects of beta-adrenergic blockade in subjects with type 1 diabetes mellitus. J Clin Endocrinol Metab. 1999;84(11):3961–71.

    CAS  PubMed  Google Scholar 

  65. Maran A, Pavan P, Bonsembiante B, Brugin E, Ermolao A, Avogaro A, et al. Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes. Diabetes Technol Ther. 2010;12(10):763–8.

    Article  PubMed  Google Scholar 

  66. Rempel M, Yardley JE, MacIntosh A, Hay JL, Bouchard D, Cornish S, et al. Vigorous intervals and hypoglycemia in type 1 diabetes: a randomized cross over trial. Sci Rep. 2018;8(1):15879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm J, Boulay P, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012;35(4):669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–6.

    Article  PubMed  Google Scholar 

  69. Kesavadev J, Saboo B, Krishna MB, Krishnan G. Evolution of insulin delivery devices: from syringes, pens, and pumps to DIY artificial pancreas. Diabetes Ther. 2020;11(6):1251–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cengiz E. Automated insulin delivery in children with type 1 diabetes. Endocrinol Metab Clin N Am. 2020;49(1):157–66.

    Article  Google Scholar 

  71. Yardley JE, Iscoe KE, Sigal RJ, Kenny GP, Perkins BA, Riddell MC. Insulin pump therapy is associated with less post-exercise hyperglycemia than multiple daily injections: an observational study of physically active type 1 diabetes patients. Diabetes Technol Ther. 2013;15(1):84–8.

    Article  CAS  PubMed  Google Scholar 

  72. Roy-Fleming A, Taleb N, Messier V, Suppere C, Cameli C, Elbekri S, et al. Timing of insulin basal rate reduction to reduce hypoglycemia during late post-prandial exercise in adults with type 1 diabetes using insulin pump therapy: a randomized crossover trial. Diabetes Metab. 2019;45(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  73. Aronson R, Li A, Brown RE, McGaugh S, Riddell MC. Flexible insulin therapy with a hybrid regimen of insulin degludec and continuous subcutaneous insulin infusion with pump suspension before exercise in physically active adults with type 1 diabetes (FIT untethered): a single-Centre, open-label, proof-of-concept, randomised crossover trial. Lancet Diabetes Endocrinol. 2020;8(6):511–23.

    Article  CAS  PubMed  Google Scholar 

  74. Boughton CK, Hovorka R. Automated insulin delivery in adults. Endocrinol Metab Clin N Am. 2020;49(1):167–78.

    Article  Google Scholar 

  75. Zaharieva DP, Messer LH, Paldus B, O'Neal DN, Maahs DM, Riddell MC. Glucose control during physical activity and exercise using closed loop technology in adults and adolescents with type 1 diabetes. Can J Diabetes. 2020;44(8):740–9.

    Article  PubMed  Google Scholar 

  76. Jacobs PG, El Youssef J, Reddy R, Resalat N, Branigan D, Condon J, et al. Randomized trial of a dual-hormone artificial pancreas with dosing adjustment during exercise compared with no adjustment and sensor-augmented pump therapy. Diabetes Obes Metab. 2016;18(11):1110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taleb N, Emami A, Suppere C, Messier V, Legault L, Ladouceur M, et al. Efficacy of single-hormone and dual-hormone artificial pancreas during continuous and interval exercise in adult patients with type 1 diabetes: randomised controlled crossover trial. Diabetologia. 2016;59(12):2561–71.

    Article  CAS  PubMed  Google Scholar 

  78. Haidar A, Rabasa-Lhoret R, Legault L, Lovblom LE, Rakheja R, Messier V, et al. Single- and dual-hormone artificial pancreas for overnight glucose control in type 1 diabetes. J Clin Endocrinol Metab. 2016;101(1):214–23.

    Article  CAS  PubMed  Google Scholar 

  79. Castle JR, El Youssef J, Wilson LM, Reddy R, Resalat N, Branigan D, et al. Randomized outpatient trial of single- and dual-hormone closed-loop systems that adapt to exercise using wearable sensors. Diabetes Care. 2018;41(7):1471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yardley JE, Rees JL, Funk DR, Toghi-Eshghi SR, Boule NG, Senior PA. Effects of moderate cycling exercise on blood glucose regulation following successful clinical islet transplantation. J Clin Endocrinol Metab. 2019;104(2):493–502.

    Article  PubMed  Google Scholar 

  81. Senior P, Lam A, Farnsworth K, Perkins B, Rabasa-Lhoret R. Assessment of risks and benefits of beta cell replacement versus automated insulin delivery systems for type 1 diabetes. Curr Diab Rep. 2020;20(10):52.

    Article  PubMed  Google Scholar 

  82. Zaharieva DP, Turksoy K, McGaugh SM, Pooni R, Vienneau T, Ly T, et al. Lag time remains with newer real-time continuous glucose monitoring technology during aerobic exercise in adults living with type 1 diabetes. Diabetes Technol Ther. 2019;21(6):313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Larose S, Rabasa-Lhoret R, Roy-Fleming A, Suppere C, Tagougui S, Messier V, et al. Changes in accuracy of continuous glucose monitoring using Dexcom G4 platinum over the course of moderate intensity aerobic exercise in type 1 diabetes. Diabetes Technol Ther. 2019;21(6):364–9.

    Article  CAS  PubMed  Google Scholar 

  84. Biagi L, Bertachi A, Quiros C, Gimenez M, Conget I, Bondia J, et al. Accuracy of continuous glucose monitoring before, during, and after aerobic and anaerobic exercise in patients with type 1 diabetes mellitus. Biosensors (Basel). 2018;8(1).

    Google Scholar 

  85. Taleb N, Emami A, Suppere C, Messier V, Legault L, Chiasson JL, et al. Comparison of two continuous glucose monitoring systems, Dexcom G4 platinum and Medtronic paradigm Veo Enlite system, at rest and during exercise. Diabetes Technol Ther. 2016;18(9):561–7.

    Article  CAS  PubMed  Google Scholar 

  86. Moser O, Eckstein ML, McCarthy O, Deere R, Pitt J, Williams DM, et al. Performance of the freestyle libre flash glucose monitoring (flash GM) system in individuals with type 1 diabetes: a secondary outcome analysis of a randomized crossover trial. Diabetes Obes Metab. 2019;21(11):2505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fokkert M, van Dijk PR, Edens MA, Diez Hernandez A, Slingerland R, Gans R, et al. Performance of the Eversense versus the free style libre flash glucose monitor during exercise and normal daily activities in subjects with type 1 diabetes mellitus. BMJ Open Diabetes Res Care. 2020;8(1):e001193.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Guillot FH, Jacobs PG, Wilson LM, Youssef JE, Gabo VB, Branigan DL, et al. Accuracy of the Dexcom G6 glucose sensor during aerobic, resistance, and interval exercise in adults with type 1 diabetes. Biosensors (Basel). 2020;10(10):138.

    Article  CAS  PubMed Central  Google Scholar 

  89. Moser O, Yardley JE, Bracken RM. Interstitial glucose and physical exercise in type 1 diabetes: integrative physiology, technology, and the gap in-between. Nutrients. 2018;10(1):93.

    Article  PubMed Central  CAS  Google Scholar 

  90. Moser O, Riddell MC, Eckstein ML, Adolfsson P, Rabasa-Lhoret R, van den Boom L, et al. Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Pediatr Diabetes. 2020;63:2501–20.

    CAS  Google Scholar 

  91. Brockman NK, Sigal RJ, Kenny GP, Riddell MC, Perkins BA, Yardley JE. Sex-related differences in blood glucose responses to resistance exercise in adults with type 1 diabetes: a secondary data analysis. Can J Diabetes. 2020;44(3):267–73 e1.

    Article  PubMed  Google Scholar 

  92. Al Khalifah RA, Suppere C, Haidar A, Rabasa-Lhoret R, Ladouceur M, Legault L. Association of aerobic fitness level with exercise-induced hypoglycaemia in type 1 diabetes. Diabet Med. 2016;33(12):1686–90.

    Article  PubMed  CAS  Google Scholar 

  93. Tagougui S, Goulet-Gelinas L, Taleb N, Messier V, Suppere C, Rabasa-Lhoret R. Association between body composition and blood glucose during exercise and recovery in adolescent and adult patients with type 1 diabetes. Can J Diabetes. 2020;44(2):192–5.

    Article  PubMed  Google Scholar 

  94. Barata DS, Adan LF, Netto EM, Ramalho AC. The effect of the menstrual cycle on glucose control in women with type 1 diabetes evaluated using a continuous glucose monitoring system. Diabetes Care. 2013;36(5):e70.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Widom B, Diamond MP, Simonson DC. Alterations in glucose metabolism during menstrual cycle in women with IDDM. Diabetes Care. 1992;15(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  96. Trout KK, Rickels MR, Schutta MH, Petrova M, Freeman EW, Tkacs NC, et al. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: a pilot study. Diabetes Technol Ther. 2007;9(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  97. Goldner WS, Kraus VL, Sivitz WI, Hunter SK, Dillon JS. Cyclic changes in glycemia assessed by continuous glucose monitoring system during multiple complete menstrual cycles in women with type 1 diabetes. Diabetes Technol Ther. 2004;6(4):473–80.

    Article  CAS  PubMed  Google Scholar 

  98. Brown SA, Jiang B, McElwee-Malloy M, Wakeman C, Breton MD. Fluctuations of Hyperglycemia and insulin sensitivity are linked to menstrual cycle phases in women with T1D. J Diabetes Sci Technol. 2015;9(6):1192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sacerdote A, Bleicher SJ. Oral contraceptives abolish luteal phase exacerbation of hyperglycemia in type I diabetes. Diabetes Care. 1982;5(6):651–2.

    Article  CAS  PubMed  Google Scholar 

  100. Lunt H, Brown LJ. Self-reported changes in capillary glucose and insulin requirements during the menstrual cycle. Diabetic Med. 1996;13(6):525–30.

    Article  CAS  PubMed  Google Scholar 

  101. Riddell MC, Scott SN, Fournier PA, Colberg SR, Gallen IW, Moser O, et al. The competitive athlete with type 1 diabetes. Diabetologia. 2020;63(8):1475–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, et al. Insulitis and beta-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719–31.

    Article  CAS  PubMed  Google Scholar 

  103. Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26(3):832–6.

    Article  PubMed  Google Scholar 

  104. Skyler JS. Prevention and reversal of type 1 diabetes–past challenges and future opportunities. Diabetes Care. 2015;38(6):997–1007.

    Article  PubMed  Google Scholar 

  105. Chetan MR, Charlton MH, Thompson C, Dias RP, Andrews RC, Narendran P. The type 1 diabetes ‘honeymoon’ period is five times longer in men who exercise: a case-control study. Diabet Med. 2019;36(1):127–8.

    Article  CAS  PubMed  Google Scholar 

  106. Narendran P, Jackson N, Daley A, Thompson D, Stokes K, Greenfield S, et al. Exercise to preserve beta-cell function in recent-onset type 1 diabetes mellitus (EXTOD) – a randomized controlled pilot trial. Diabet Med. 2017;34(11):1521–31.

    Article  CAS  PubMed  Google Scholar 

  107. Matson RIB, Leary SD, Cooper AR, Thompson C, Narendran P, Andrews RC. Objective measurement of physical activity in adults with newly diagnosed type 1 diabetes and healthy individuals. Front Public Health. 2018;6:360.

    Article  PubMed  PubMed Central  Google Scholar 

  108. American Academic of Pediatrics, American Public Health Association, Education NRCfHaSiCCaE. Caring for our children: national health and safety performance standards; Guidelines for early care and education programs. 3rd ed. Washington, DC: American Academy of Pediatrics; 2011.

    Google Scholar 

  109. Quirk H, Blake H, Tennyson R, Randell TL, Glazebrook C. Physical activity interventions in children and young people with type 1 diabetes mellitus: a systematic review with meta-analysis. Diabet Med. 2014;31(10):1163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. MacMillan F, Kirk A, Mutrie N, Matthews L, Robertson K, Saunders DH. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy. Pediatr Diabetes. 2014;15(3):175–89.

    Article  PubMed  Google Scholar 

  111. Ahn S, Fedewa AL. A meta-analysis of the relationship between children’s physical activity and mental health. J Pediatr Psychol. 2011;36(4):385–97.

    Article  PubMed  Google Scholar 

  112. Larun L, Nordheim LV, Ekeland E, Hagen KB, Heian F. Exercise in prevention and treatment of anxiety and depression among children and young people. Cochrane Database Syst Rev. 2006;3:CD004691.

    Google Scholar 

  113. Bachmann S, Hess M, Martin-Diener E, Denhaerynck K, Zumsteg U. Nocturnal Hypoglycemia and physical activity in children with diabetes: new insights by continuous glucose monitoring and Accelerometry. Diabetes Care. 2016;39(7):e95–6.

    Article  CAS  PubMed  Google Scholar 

  114. Metcalf KM, Singhvi A, Tsalikian E, Tansey MJ, Zimmerman MB, Esliger DW, et al. Effects of moderate-to-vigorous intensity physical activity on overnight and next-day hypoglycemia in active adolescents with type 1 diabetes. Diabetes Care. 2014;37(5):1272–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rawshani A, Sattar N, Franzen S, Rawshani A, Hattersley AT, Svensson AM, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392(10146):477–86.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Snell-Bergeon JK, Nadeau K. Cardiovascular disease risk in young people with type 1 diabetes. J Cardiovasc Transl Res. 2012;5(4):446–62.

    Article  PubMed  Google Scholar 

  117. Herbst A, Kordonouri O, Schwab KO, Schmidt F, Holl RW. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23,251 patients. Diabetes Care. 2007;30(8):2098–100.

    Article  CAS  PubMed  Google Scholar 

  118. Telama R, Yang X, Leskinen E, Kankaanpaa A, Hirvensalo M, Tammelin T, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.

    Article  PubMed  Google Scholar 

  119. Suhonen L, Hiilesmaa V, Teramo K. Glycaemic control during early pregnancy and fetal malformations in women with type I diabetes mellitus. Diabetologia. 2000;43(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  120. Evers IM, de Valk HW, Visser GH. Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands. BMJ. 2004;328(7445):915.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lin SF, Kuo CF, Chiou MJ, Chang SH. Maternal and fetal outcomes of pregnant women with type 1 diabetes, a national population study. Oncotarget. 2017;8(46):80679–87.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kumareswaran K, Elleri D, Allen JM, Caldwell K, Westgate K, Brage S, et al. Physical activity energy expenditure and glucose control in pregnant women with type 1 diabetes: is 30 minutes of daily exercise enough? Diabetes Care. 2013;36(5):1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rosenn BM, Miodovnik M, Khoury JC, Siddiqi TA. Deficient counterregulation: a possible risk factor for excessive fetal growth in IDDM pregnancies. Diabetes Care. 1997;20(5):872–4.

    Article  CAS  PubMed  Google Scholar 

  124. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes. 2011;12(4 Pt 1):345–64.

    Article  CAS  PubMed  Google Scholar 

  126. Halper-Stromberg E, Gallo T, Champakanath A, Taki I, Rewers M, Snell-Bergeon J, et al. Bone mineral density across the lifespan in patients with type 1 diabetes. J Clin Endocrinol Metab. 2020;105(3):746–53.

    Article  Google Scholar 

  127. Rasmussen NH, Dal J, den Bergh JV, de Vries F, Jensen MH, Vestergaard P. Increased risk of falls, fall-related injuries and fractures in people with type 1 and type 2 diabetes – a Nationwide Cohort Study. Curr Drug Saf. 2021;16(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  128. Carlson AL, Kanapka LG, Miller KM, Ahmann AJ, Chaytor NS, Fox S, et al. Hypoglycemia and Glycemic control in older adults with type 1 diabetes: baseline results from the WISDM study. J Diabetes Sci Technol. 2019;15(3):582–92. 1932296819894974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Campbell E, Petermann-Rocha F, Welsh P, Celis-Morales C, Pell JP, Ho FK, et al. The effect of exercise on quality of life and activities of daily life in frail older adults: a systematic review of randomised control trials. Exp Gerontol. 2021;147:111287.

    Article  PubMed  Google Scholar 

  130. Ramsey KA, Rojer AGM, D’Andrea L, Otten RHJ, Heymans MW, Trappenburg MC, et al. The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis. Ageing Res Rev. 2021;67:101266.

    Article  PubMed  Google Scholar 

  131. Cunningham C, O’Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand J Med Sci Sports. 2020;30(5):816–27.

    Article  PubMed  Google Scholar 

  132. Ruegemer JJ, Squires RW, Marsh HM, Haymond MW, Cryer PE, Rizza RA, et al. Differences between prebreakfast and late afternoon glycemic responses to exercise in IDDM patients. Diabetes Care. 1990;13(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  133. Yamanouchi K, Abe R, Takeda A, Atsumi Y, Shichiri M, Sato Y. The effect of walking before and after breakfast on blood glucose levels in patients with type 1 diabetes treated with intensive insulin therapy. Diabetes Res Clin Pract. 2002;58(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  134. Yardley JE. Fasting may alter blood glucose responses to high intensity interval exercise in adults with type 1 diabetes: a randomized acute crossover study. Can J Diabetes. 2020;44(8):727–33.

    Article  PubMed  Google Scholar 

  135. Toghi-Eshghi SR, Yardley JE. Morning (fasting) vs afternoon resistance exercise in individuals with type 1 diabetes: a randomized crossover study. J Clin Endocrinol Metab. 2019;104(11):5217–24.

    Article  PubMed  Google Scholar 

  136. Yardley JE, Sigal RJ, Riddell MC, Perkins BA, Kenny GP. Performing resistance exercise before versus after aerobic exercise influences growth hormone secretion in type 1 diabetes. Appl Physiol Nutr Metab. 2014;39(2):262–5.

    Article  CAS  PubMed  Google Scholar 

  137. Vendelbo MH, Christensen B, Gronbaek SB, Hogild M, Madsen M, Pedersen SB, et al. GH signaling in human adipose and muscle tissue during ‘feast and famine’: amplification of exercise stimulation following fasting compared to glucose administration. Eur J Endocrinol. 2015;173(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  138. Vieira AF, Costa RR, Macedo RC, Coconcelli L, Kruel LF. Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis. Br J Nutr. 2016;116(7):1153–64.

    Article  CAS  PubMed  Google Scholar 

  139. Gomez AM, Gomez C, Aschner P, Veloza A, Munoz O, Rubio C, et al. Effects of performing morning versus afternoon exercise on glycemic control and hypoglycemia frequency in type 1 diabetes patients on sensor-augmented insulin pump therapy. J Diabetes Sci Technol. 2015;9(3):619–24.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Campbell MD, Walker M, Trenell MI, Stevenson EJ, Turner D, Bracken RM, et al. A low-glycemic index meal and bedtime snack prevents postprandial hyperglycemia and associated rises in inflammatory markers, providing protection from early but not late nocturnal hypoglycemia following evening exercise in type 1 diabetes. Diabetes Care. 2014;37(7):1845–53.

    Article  CAS  PubMed  Google Scholar 

  141. Campbell MD, Walker M, Bracken RM, Turner D, Stevenson EJ, Gonzalez JT, et al. Insulin therapy and dietary adjustments to normalize glycemia and prevent nocturnal hypoglycemia after evening exercise in type 1 diabetes: a randomized controlled trial. BMJ Open Diabetes Res Care. 2015;3(1):e000085.

    Article  PubMed  PubMed Central  Google Scholar 

  142. West DJ, Stephens JW, Bain SC, Kilduff LP, Luzio S, Still R, et al. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus. J Sports Sci. 2011;29(3):279–89.

    Article  PubMed  Google Scholar 

  143. Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.

    Article  PubMed  Google Scholar 

  144. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

    Article  CAS  PubMed  Google Scholar 

  145. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790–9.

    Article  CAS  PubMed  Google Scholar 

  146. Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006;29(11):2518–27.

    Article  PubMed  Google Scholar 

  147. Pan B, Ge L, Xun YQ, Chen YJ, Gao CY, Han X, et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Liubaoerjijin Y, Terada T, Fletcher K, Boule NG. Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: a meta-analysis of head-to-head randomized trials. Acta Diabetol. 2016;53(5):769–81.

    Article  CAS  PubMed  Google Scholar 

  149. Forbes CC, Plotnikoff RC, Courneya KS, Boule NG. Physical activity preferences and type 2 diabetes: exploring demographic, cognitive, and behavioral differences. Diabetes Educ. 2010;36(5):801–15.

    Article  PubMed  Google Scholar 

  150. Rees JL, Johnson ST, Boule NG. Aquatic exercise for adults with type 2 diabetes: a meta-analysis. Acta Diabetol. 2017;54(10):895–904.

    Article  PubMed  Google Scholar 

  151. Sigal RJ, Kenny GP, Boule NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69.

    Article  PubMed  Google Scholar 

  152. Sigal RJ, Armstrong MJ, Bacon SL, Boule NG, Dasgupta K, Kenny GP, et al. Physical activity and diabetes. Can J Diabetes. 2018;42(Suppl 1):S54–63.

    Article  PubMed  Google Scholar 

  153. Terada T, Boule NG, Forhan M, Prado CM, Kenny GP, Prud’homme D, et al. Cardiometabolic risk factors in type 2 diabetes with high fat and low muscle mass: at baseline and in response to exercise. Obesity (Silver Spring). 2017;25(5):881–91.

    Article  CAS  Google Scholar 

  154. Sigal RJ, Armstrong JA, Fowles JR, Kenny GP, McGinley SK, Dineen T, et al. Resistance bands training improved strength and glycemic control: the DARE-bands trial. Can J Diabetes. 2018;42(5 Suppl):S11.

    Article  Google Scholar 

  155. McGinley SK, Armstrong MJ, Boule NG, Sigal RJ. Effects of exercise training using resistance bands on glycaemic control and strength in type 2 diabetes mellitus: a meta-analysis of randomised controlled trials. Acta Diabetol. 2015;52(2):221–30.

    Article  PubMed  Google Scholar 

  156. Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942–61.

    Article  CAS  PubMed  Google Scholar 

  157. Terada T, Toghi Eshghi SR, Liubaoerjijin Y, Kennedy M, Myette-Cote E, Fletcher K, et al. Overnight fasting compromises exercise intensity and volume during sprint interval training but improves high-intensity aerobic endurance. J Sports Med Phys Fitness. 2019;59(3):357–65.

    Article  CAS  PubMed  Google Scholar 

  158. Rodgers WM, Blanchard CM, Sullivan MJ, Bell GJ, Wilson PM, Gesell JG. The motivational implications of characteristics of exercise bouts. J Health Psychol. 2002;7(1):73–83.

    Article  PubMed  Google Scholar 

  159. Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.

    Article  CAS  PubMed  Google Scholar 

  160. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  161. Loh R, Stamatakis E, Folkerts D, Allgrove JE, Moir HJ. Effects of interrupting prolonged sitting with physical activity breaks on blood glucose, insulin and triacylglycerol measures: a systematic review and meta-analysis. Sports Med. 2020;50(2):295–330.

    Article  PubMed  Google Scholar 

  162. Duvivier BM, Schaper NC, Hesselink MK, van Kan L, Stienen N, Winkens B, et al. Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes. Diabetologia. 2017;60(3):490–8.

    Article  CAS  PubMed  Google Scholar 

  163. Blankenship JM, Chipkin SR, Freedson PS, Staudenmayer J, Lyden K, Braun B. Managing free-living hyperglycemia with exercise or interrupted sitting in type 2 diabetes. J Appl Physiol (1985). 2019;126(3):616–25.

    Article  CAS  Google Scholar 

  164. van der Berg JD, Stehouwer CD, Bosma H, van der Velde JH, Willems PJ, Savelberg HH, et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: the Maastricht study. Diabetologia. 2016;59(4):709–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Sardinha LB, Magalhaes JP, Santos DA, Judice PB. Sedentary patterns, physical activity, and cardiorespiratory fitness in association to Glycemic control in type 2 diabetes patients. Front Physiol. 2017;8:262.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bancks MP, Chen H, Balasubramanyam A, Bertoni AG, Espeland MA, Kahn SE, et al. Type 2 diabetes subgroups, risk for complications, and differential effects due to an intensive lifestyle intervention. Diabetes Care. 2021;44(5):1203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.

    Article  CAS  Google Scholar 

  168. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nanayakkara N, Curtis AJ, Heritier S, Gadowski AM, Pavkov ME, Kenealy T, et al. Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses. Diabetologia. 2021;64(2):275–87.

    Article  PubMed  Google Scholar 

  170. Lu J, Guo M, Wang H, Pan H, Wang L, Yu X, et al. Association between pancreatic atrophy and loss of insulin secretory capacity in patients with type 2 diabetes mellitus. J Diabetes Res. 2019;2019:6371231.

    PubMed  PubMed Central  Google Scholar 

  171. Zangeneh F, Arora PS, Dyck PJ, Bekris L, Lernmark A, Achenbach SJ, et al. Effects of duration of type 2 diabetes mellitus on insulin secretion. Endocr Pract. 2006;12(4):388–93.

    Article  PubMed  Google Scholar 

  172. Zammitt NN, Frier BM. Hypoglycemia in type 2 diabetes: pathophysiology, frequency, and effects of different treatment modalities. Diabetes Care. 2005;28(12):2948–61.

    Article  PubMed  Google Scholar 

  173. Wing RR, Hamman RF, Bray GA, Delahanty L, Edelstein SL, Hill JO, et al. Achieving weight and activity goals among diabetes prevention program lifestyle participants. Obes Res. 2004;12(9):1426–34.

    Article  PubMed  Google Scholar 

  174. Diabetes Prevention Program Research Group, Crandall J, Schade D, Ma Y, Fujimoto WY, Barrett-Connor E, et al. The influence of age on the effects of lifestyle modification and metformin in prevention of diabetes. J Gerontol A Biol Sci Med Sci. 2006;61(10):1075–81.

    Google Scholar 

  175. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  176. Bullard KM, Cowie CC, Lessem SE, Saydah SH, Menke A, Geiss LS, et al. Prevalence of diagnosed diabetes in adults by diabetes type – United States, 2016. MMWR Morb Mortal Wkly Rep. 2018;67(12):359–61.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cowie CC, Casagrande SS, Geiss LS. Prevalence and incidence of type 2 diabetes and prediabetes. In: Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, et al. editors. Diabetes in america. Bethesda: national institute of diabetes and digestive and kidney diseases (US). 2018.

    Google Scholar 

  178. Boule NG, Weisnagel SJ, Lakka TA, Tremblay A, Bergman RN, Rankinen T, et al. Effects of exercise training on glucose homeostasis: the HERITAGE Family Study. Diabetes Care. 2005;28(1):108–14.

    Article  PubMed  Google Scholar 

  179. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63(3):453–61.

    Article  PubMed  Google Scholar 

  180. Perreault L, Ma Y, Dagogo-Jack S, Horton E, Marrero D, Crandall J, et al. Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care. 2008;31(7):1416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Scott D, de Courten B, Ebeling PR. Sarcopenia: a potential cause and consequence of type 2 diabetes in Australia’s ageing population? Med J Aust. 2016;205(7):329–33.

    Article  PubMed  Google Scholar 

  183. Tanaka K, Kanazawa I, Sugimoto T. Reduction in endogenous insulin secretion is a risk factor of sarcopenia in men with type 2 diabetes mellitus. Calcif Tissue Int. 2015;97(4):385–90.

    Article  CAS  PubMed  Google Scholar 

  184. Vissers D, Hens W, Taeymans J, Baeyens JP, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One. 2013;8(2):e56415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2012;13(1):68–91.

    Article  CAS  PubMed  Google Scholar 

  186. Kay SJ, Fiatarone Singh MA. The influence of physical activity on abdominal fat: a systematic review of the literature. Obes Rev. 2006;7(2):183–200.

    Article  CAS  PubMed  Google Scholar 

  187. Davidson LE, Hudson R, Kilpatrick K, Kuk JL, McMillan K, Janiszewski PM, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Arch Intern Med. 2009;169(2):122–31.

    Article  PubMed  Google Scholar 

  188. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297(19):2081–91.

    Article  CAS  PubMed  Google Scholar 

  189. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304(20):2253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nabuco HC, Tomeleri CM, Junior PS, Fernandes RR, Cavalcante EF, Nunes JP, et al. Effects of higher habitual protein intake on resistance-training-induced changes in body composition and muscular strength in untrained older women: a clinical trial study. Nutr Health. 2019;25(2):103–12.

    Article  CAS  PubMed  Google Scholar 

  191. Memelink RG, Pasman WJ, Bongers A, Tump A, van Ginkel A, Tromp W, et al. Effect of an enriched protein drink on muscle mass and Glycemic control during combined lifestyle intervention in older adults with obesity and type 2 diabetes: a double-blind RCT. Nutrients. 2020;13(1):64.

    Article  PubMed Central  CAS  Google Scholar 

  192. Wycherley TP, Noakes M, Clifton PM, Cleanthous X, Keogh JB, Brinkworth GD. A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes Care. 2010;33(5):969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535(Pt 1):301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, et al. The Indian Diabetes Prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–97.

    Article  CAS  PubMed  Google Scholar 

  195. Boule NG, Robert C, Bell GJ, Johnson ST, Bell RC, Lewanczuk RZ, et al. Metformin and exercise in type 2 diabetes: examining treatment modality interactions. Diabetes Care. 2011;34(7):1469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sharoff CG, Hagobian TA, Malin SK, Chipkin SR, Yu H, Hirshman MF, et al. Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals. Am J Physiol Endocrinol Metab. 2010;298(4):E815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial. Aging Cell. 2019;18(6):e13039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Goodpaster BH, Delany JP, Otto AD, Kuller L, Vockley J, South-Paul JE, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304(16):1795–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kuznetsov L, Simmons RK, Sutton S, Kinmonth AL, Griffin SJ, Hardeman W, et al. Predictors of change in objectively measured and self-reported health behaviours among individuals with recently diagnosed type 2 diabetes: longitudinal results from the ADDITION-Plus trial cohort. Int J Behav Nutr Phys Act. 2013;10:118.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Youngs W, Gillibrand WP, Phillips S. The impact of pre-diabetes diagnosis on behaviour change: an integrative literature review. Pract Diabetes. 2016;33(5):171–5.

    Article  Google Scholar 

  201. Ali HI, Baynouna LM, Bernsen RM. Barriers and facilitators of weight management: perspectives of Arab women at risk for type 2 diabetes. Health Soc Care Community. 2010;18(2):219–28.

    Article  PubMed  Google Scholar 

  202. Sohal T, Sohal P, King-Shier KM, Khan NA. Barriers and facilitators for Type-2 diabetes management in South Asians: a systematic review. PLoS One. 2015;10(9):e0136202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Terada T, Friesen A, Chahal BS, Bell GJ, McCargar LJ, Boule NG. Exploring the variability in acute glycemic responses to exercise in type 2 diabetes. J Diabetes Res. 2013;2013:591574.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Poirier P, Tremblay A, Catellier C, Tancrede G, Garneau C, Nadeau A. Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2000;85(8):2860–4.

    CAS  PubMed  Google Scholar 

  205. Terada T, Wilson BJ, Myette-Cote E, Kuzik N, Bell GJ, McCargar LJ, et al. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism. 2016;65(5):599–608.

    Article  CAS  PubMed  Google Scholar 

  206. Munan M, Dyck RA, Houlder S, Yardley JE, Prado CM, Snydmiller G, et al. Does exercise timing affect 24-hour glucose concentrations in adults with type 2 diabetes? A follow up to the exercise-physical activity and diabetes glucose monitoring study. Can J Diabetes. 2020;44(8):711–8.e1.

    Article  PubMed  Google Scholar 

  207. Savikj M, Gabriel BM, Alm PS, Smith J, Caidahl K, Bjornholm M, et al. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia. 2019;62(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  208. Nygaard H, Ronnestad BR, Hammarstrom D, Holmboe-Ottesen G, Hostmark AT. Effects of exercise in the fasted and postprandial state on interstitial glucose in Hyperglycemic individuals. J Sports Sci Med. 2017;16(2):254–63.

    PubMed  PubMed Central  Google Scholar 

  209. Heden TD, Winn NC, Mari A, Booth FW, Rector RS, Thyfault JP, et al. Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes. J Appl Physiol (1985). 2015;118(5):624–34.

    Article  CAS  Google Scholar 

  210. Colberg SR, Zarrabi L, Bennington L, Nakave A, Thomas Somma C, Swain DP, et al. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc. 2009;10(6):394–7.

    Article  PubMed  Google Scholar 

  211. Chacko E. Timing and intensity of exercise for glucose control. Diabetologia. 2014;57(11):2425–6.

    Article  PubMed  Google Scholar 

  212. Chacko E. Timing, intensity and frequency of exercise for glucose control. Acta Diabetol. 2016;54(1):103–4.

    Article  PubMed  Google Scholar 

  213. Chacko E. A time for exercise: the exercise window. J Appl Physiol (1985). 2017;122(1):206–9.

    Article  Google Scholar 

  214. Erickson ML, Jenkins NT, McCully KK. Exercise after you eat: hitting the postprandial glucose target. Front Endocrinol. 2017;8:228.

    Article  Google Scholar 

  215. Haxhi J, Scotto di Palumbo A, Sacchetti M. Exercising for metabolic control: is timing important? Ann Nutr Metab. 2013;62(1):14–25.

    Article  CAS  PubMed  Google Scholar 

  216. Diabetes Canada Clinical Practice Guidelines Expert C, Sigal RJ, Armstrong MJ, Bacon SL, Boule NG, Dasgupta K, et al. Physical activity and diabetes. Can J Diabetes. 2018;42(Suppl 1):S54–63.

    Google Scholar 

  217. Boule NG, Terada T, Francois ME, Hawley JA, Cotter JD, Kruse NT, et al. Commentaries on viewpoint: a time for exercise: the exercise window. J Appl Physiol (1985). 2017;122(1):210–3.

    Article  Google Scholar 

  218. Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol (1985). 2011;110(1):236–45.

    Article  Google Scholar 

  219. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322(4):223–8.

    Article  CAS  PubMed  Google Scholar 

  220. Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996;335(18):1357–62.

    Article  CAS  PubMed  Google Scholar 

  221. Macauley M, Smith FE, Thelwall PE, Hollingsworth KG, Taylor R. Diurnal variation in skeletal muscle and liver glycogen in humans with normal health and type 2 diabetes. Clin Sci. 2015;128(10):707–13.

    Article  CAS  Google Scholar 

  222. Goodpaster BH, Brown NF. Skeletal muscle lipid and its association with insulin resistance: what is the role for exercise? Exerc Sport Sci Rev. 2005;33(3):150–4.

    Article  PubMed  Google Scholar 

  223. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FG, Goodpaster BH, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298(1):E49–58.

    Article  CAS  PubMed  Google Scholar 

  225. Terada T, Wilson BJ, Myette-Cote E, Kuzik N, Bell GJ, McCargar LJ, et al. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metab Clin Exp. 2016;65(5):599–608.

    Article  CAS  PubMed  Google Scholar 

  226. Eshghi SR, Fletcher K, Myette-Cote E, Durrer C, Gabr RQ, Little JP, et al. Glycemic and metabolic effects of two long bouts of moderate-intensity exercise in men with normal glucose tolerance or type 2 diabetes. Front Endocrinol. 2017;8:154.

    Article  Google Scholar 

  227. Van Proeyen K, Szlufcik K, Nielens H, Pelgrim K, Deldicque L, Hesselink M, et al. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol. 2010;588(Pt 21):4289–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Brinkmann C, Weh-Gray O, Brixius K, Bloch W, Predel HG, Kreutz T. Effects of exercising before breakfast on the health of T2DM patients-a randomized controlled trial. Scand J Med Sci Sports. 2019;29(12):1930–6.

    Article  PubMed  Google Scholar 

  229. Verboven K, Wens I, Vandenabeele F, Stevens AN, Celie B, Lapauw B, et al. Impact of exercise-nutritional state interactions in patients with type 2 diabetes. Med Sci Sports Exerc. 2020;52(3):720–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Yardley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boulé, N.G., Yardley, J.E. (2022). Precision Exercise and Physical Activity for Diabetes. In: Basu, R. (eds) Precision Medicine in Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-98927-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98927-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98926-2

  • Online ISBN: 978-3-030-98927-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics