Skip to main content

Diagnostic and Therapeutic Biotechnology

  • Chapter
  • First Online:
Fundamentals and Advances in Medical Biotechnology

Abstract

The term vaccination (Vacca meaning cow) came into existence with the discovery of smallpox vaccine by Edward Jenner and involves utilization of material like live avirulent microbes, attenuated microbes, peptides, and recently also nucleic acids. The history of vaccination goes back to the eighteenth century, but it was not until the twentieth century that it became possible to make immunological marker-based vaccines. The twenty-first century came with its own challenges like vaccine development for individuals with pre-existing medical conditions and compromised immune function and opportunities in vaccine development like edible vaccines, nano-particle vaccines, DNA/RNA vaccines, CRISPR based vaccines. Most recently in this field, an RNA-based vaccine for SARS CoV-2 has revolutionized and re-oriented the area of vaccination technology with hopes for vaccine development for previously uncurable conditions like many forms of cancer looming over the horizon. This chapter describes in detail different types of vaccines, technology behind their synthesis, use of plants, animals, and microbes in vaccination technology, and utilization of vaccination technology in immunization against various diseases with examples. The chapter also focuses on the molecular basis of diagnostic biotechnology, with focus on use of antibodies in molecular diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey I (1996) Edward Jenner (1749–1823): naturalist, scientist, country doctor, benefactor to mankind. J Med Biogr 4:63–70

    Article  CAS  Google Scholar 

  2. Plotkin S (2014) History of vaccination. Proc Natl Acad Sci U S A 111:12283–12287

    Article  CAS  Google Scholar 

  3. Minor PD (2015) Live attenuated vaccines: historical successes and current challenges. Virology 479–480:379–392. https://doi.org/10.1016/j.virol.2015.03.032

    Article  CAS  PubMed  Google Scholar 

  4. Gasparini R, Amicizia D, Lai PL, Panatto D (2011) Live attenuated influenza vaccine--a review. J Prev Med Hyg 52:95–101. http://www.ncbi.nlm.nih.gov/pubmed/22010534

    Article  CAS  Google Scholar 

  5. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126. http://www.nature.com/articles/nature06939

    Article  CAS  Google Scholar 

  6. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D (2006) Adjuvant-enhanced antibody responses occur without Toll-like receptor signaling *. Science 314:1936–1938. http://www.sciencemag.org/

    Article  CAS  Google Scholar 

  7. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K et al (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17:996–1002. https://doi.org/10.1038/nm.2403

    Article  CAS  PubMed  Google Scholar 

  8. Nanishi E, Dowling DJ, Levy O (2020) Toward precision adjuvants: optimizing science and safety. Curr Opin Pediatr 32:125–138

    Article  Google Scholar 

  9. Yankauckas MA, Morrow JE, Parker SE, Abai A, Rhodes GH, Dwarki VJ, Gromkowski SH (1993) Long-term anti-nucleoprotein cellular and humoral immunity is induced by intramuscular injection of plasmid DNA containing NP gene. DNA Cell Biol 12:771–776

    Article  CAS  Google Scholar 

  10. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S et al (2017) Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 4:43–63

    Article  Google Scholar 

  11. Wold W, Toth K (2014) Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 13:421–433. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1566-5232&volume=13&issue=6&spage=421

  12. Liu MA (2003) DNA vaccines: a review. J Intern Med 253:402–410

    Article  CAS  Google Scholar 

  13. Mak TW, Saunders ME, Jett BD (2014) Vaccination. In: Mak TW, Saunders ME, Jett BD (eds) Primer to the immune response. Elsevier, Amsterdam, pp 333–375

    Google Scholar 

  14. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414

    Article  CAS  Google Scholar 

  15. Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. Chem Rev 120:3210–3229

    Article  CAS  Google Scholar 

  16. Cruse JM, Lewis RE (2004) Antigens, immunogens, vaccines, and immunization. In: Cruse JM, Lewis RE, H.W. (eds) Immunology guidebook. Springer, Berlin, pp 17–45. https://doi.org/10.1007/978-3-662-11196-3_3

    Chapter  Google Scholar 

  17. Vartak A, Sucheck SJ (2016) Recent advances in subunit vaccine carriers. Vaccines 4:1

    Article  Google Scholar 

  18. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6(5):343–357. https://doi.org/10.1038/nri1837. PMID: 16622479

    Article  CAS  PubMed  Google Scholar 

  19. Courtenay-Luck NS, Epenetos AA, Moore R et al (1986) Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res 46:6489–6493

    CAS  PubMed  Google Scholar 

  20. Drewe E, Powell RJ (2002) Clinically useful monoclonal antibodies in treatment. J Clin Pathol 55(2):81–85. https://doi.org/10.1136/jcp.55.2.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol 899:1–26. https://doi.org/10.1007/978-1-61779-921-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Unkauf T, Miethe S, Fühner V, Schirrmann T, Frenzel A, Hust M (2016) Generation of recombinant antibodies against toxins and viruses by phage display for diagnostics and therapy. Adv Exp Med Biol 917:55–76. https://doi.org/10.1007/978-3-319-32805-8_4. PMID: 27236552; PMCID: PMC7121732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adler MJ, Dimitrov DS (2012) Therapeutic antibodies against cancer. Hematol Oncol Clin North Am 26(3):447–481. https://doi.org/10.1016/j.hoc.2012.02.013. vii. PMID: 22520975; PMCID: PMC3334873

    Article  PubMed  PubMed Central  Google Scholar 

  24. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147–1157. https://doi.org/10.1038/nbt1137. PMID: 16151408

    Article  CAS  PubMed  Google Scholar 

  25. Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S (2020) Monoclonal antibodies and airway diseases. Int J Mol Sci 21(24):9477. https://doi.org/10.3390/ijms21249477

    Article  CAS  PubMed Central  Google Scholar 

  26. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, Wang L, Kirkesseli S, Rocklin R, Bock B, Hamilton J, Ming JE, Radin A, Stahl N, Yancopoulos GD, Graham N, Pirozzi G (2013) N Engl J Med 368(26):2455–2466

    Article  CAS  Google Scholar 

  27. Migone TS, Subramanian GM, Zhong J, Healey LM, Corey A, Devalaraja M, Lo L, Ullrich S, Zimmerman J, Chen A et al (2009) Raxibacumab for the treatment of inhalational anthrax. N Engl J Med 361:135–144. https://doi.org/10.1056/NEJMoa0810603

    Article  CAS  PubMed  Google Scholar 

  28. Couse Z, Cui X, Li Y, Moayeri M, Leppla S, Eichacker PQ (2021) A Review of the Efficacy of FDA-approved B. anthracis anti-toxin agents when combined with antibiotic or hemodynamic support in infection- or toxin-challenged preclinical models. Toxins (Basel) 13(1):53. https://doi.org/10.3390/toxins13010053

    Article  CAS  Google Scholar 

  29. Mazumdar S (2009) Raxibacumab. MAbs 1:531–538. https://doi.org/10.4161/mabs.1.6.10195

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maneewatch S, Thanongsaksrikul J, Songserm T et al (2009) Human single-chain antibodies that neutralize homologous and heterologous strains and clades of influenza A virus subtype H5N1. Antivir Ther 14:221–230

    Article  CAS  Google Scholar 

  31. Kotb E (2014) The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol Prog 30(3):656–672. https://doi.org/10.1002/btpr.1918. PMID:24799449

    Article  CAS  PubMed  Google Scholar 

  32. Dominguez-Muñoz JE (2018) Diagnosis and treatment of pancreatic exocrine insufficiency. Curr Opin Gastroenterol 34(5):349–354. https://doi.org/10.1097/MOG.0000000000000459. PMID: 29889111

    Article  PubMed  Google Scholar 

  33. Adivitiya KYP (2017) The evolution of recombinant thrombolytics: current status and future directions. Bioengineered 8(4):331–358. https://doi.org/10.1080/21655979.2016.1229718

    Article  CAS  PubMed  Google Scholar 

  34. Kumar SS, Sabu A (2019) Fibrinolytic enzymes for thrombolytic therapy. Adv Exp Med Biol 1148:345–381. https://doi.org/10.1007/978-981-13-7709-9_15. PMID: 31482506

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg DM (1992) Enzymes as agents for the treatment of disease. Clin Chim Acta 206(1–2):45–76. https://doi.org/10.1016/0009-8981(92)90007-d. PMID: 1572079

    Article  CAS  PubMed  Google Scholar 

  36. Thomas AS, Mehta A, Hughes DA (2014) Gaucher disease: haematological presentations and complications. Br J Haematol 165(4):427–440. https://doi.org/10.1111/bjh.12804. PMID: 24588457

    Article  CAS  PubMed  Google Scholar 

  37. Dandana A, Ben Khelifa S, Chahed H, Miled A, Ferchichi S (2016) Gaucher disease: clinical, biological and therapeutic aspects. Pathobiology 83(1):13–23. https://doi.org/10.1159/000440865. PMID: 26588331

    Article  PubMed  Google Scholar 

  38. Posner J, Barrington P, Brier T, Datta-Mannan A (2019) Monoclonal antibodies: past, present and future. In: Barrett J, Page C, Michel M (eds) Concepts and principles of pharmacology. Handbook of experimental pharmacology, vol 260. Springer, Cham

    Google Scholar 

  39. Ghosh PK (1998) Aust Biotechnol 3:214–222

    Google Scholar 

  40. Padh H (1999) BioPharma (USA) 12:18–19

    Google Scholar 

  41. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    Article  CAS  Google Scholar 

  42. Tjio JH, Puck TT (1958) Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. J Exp Med 108:259–271

    Article  CAS  Google Scholar 

  43. Yasumura Y, Kawakita M (1963) The research for the SV40 by means of tissue culture technique. Nippon Rinsho 21:1201–1219

    Google Scholar 

  44. Balamurugan V, Sen A, Saravanan P, Singh R (2006) Biotechnology in the production of recombinant vaccine or antigen for animal health. J Anim Vet Adv 5(6):487–495

    CAS  Google Scholar 

  45. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. https://doi.org/10.1016/S0958-1669(99)00003-8

    Article  CAS  PubMed  Google Scholar 

  46. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  47. Picanço-Castro V, Correa C, de Freitas M, Bomfim A, de Sousa M, Russo E (2014) Patents in therapeutic recombinant protein production using mammalian cells. Rec Pat Biotechnol 8(2):165–171

    Article  Google Scholar 

  48. Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharmaceut Bull 3(2):257–263

    Google Scholar 

  49. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119–138

    Article  CAS  Google Scholar 

  50. Bill RM (2015) Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol 67(3):319–328

    Article  CAS  Google Scholar 

  51. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123(3):227–239

    Article  CAS  Google Scholar 

  52. Balamurugan V, Reddy G, Suryanarayana V (2007) Pichia pastoris: a notable heterologous expression system for the production of foreign proteins—vaccines. Indian J Biotechnol 6(2):175–186

    CAS  Google Scholar 

  53. Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis: a review. Appl Microbiol Biotechnol 41:1–3

    Article  Google Scholar 

  54. Das S, Hollenberg CP (1982) A high-frequency transformation system for the yeast Kluyveromyces lactis. Curr Genet 6(2):123–128

    Article  CAS  Google Scholar 

  55. van den Berg JA, van der Laken KJ, van Ooyen AJ, Renniers TC, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology (N Y). 1990 Feb;8(2):135-9.

    Google Scholar 

  56. Swinkels BW, van Ooyen AJ, Bonekamp FJ. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek. 1993-1994;64(2):187-201

    Google Scholar 

  57. Ricciardiello L., Bazzoli F., Fogliano V. Phytochemicals and colorectal cancer prevention – myth or reality? Nat Rev Gastroenterol Hepatol. 2011;8:592–596.

    Google Scholar 

  58. Kalra EK, Nutraceutical--definition and introduction. AAPS PharmSci. 2003; 5(3):E25.

    Google Scholar 

  59. Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B. 2014;4(3):173–181. https://doi.org/10.1016/j.apsb.2014.04.002

  60. Gerson M. The cure of advanced cancer by diet therapy: a summary of 30 years of clinical experimentation. Physiol Chem Phys. 1978;10:449–464.

    Google Scholar 

  61. Holt P.R. Dairy foods and prevention of colon cancer: human studies. J Am Coll Nutr. 1999;18:379 S–391SS.

    Google Scholar 

  62. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R. Role of nutraceuticals in human health. J Food Sci Technol. 2012;49(2):173–183. https://doi.org/10.1007/s13197-011-0269-4

  63. Dureja H, Kaushik D, Kumar V. Developments in nutraceuticals. Indian J Pharmacol. 2003;35:363–372. PMID: 21520708

    Google Scholar 

  64. Wang J, Guleria S, Koffas MA, Yan Y. Microbial production of value-added nutraceuticals. Curr Opin Biotechnol. 2016 Feb;37:97–104. https://doi.org/10.1016/j.copbio.2015.11.003. Epub 2015 Dec 21. PMID: 26716360.

  65. Cisneros-Zevallos L. The power of plants: how fruit and vegetables work as source of nutraceuticals and supplements. Int J Food Sci Nutr. 2021 Aug;72(5):660–664. https://doi.org/10.1080/09637486.2020.1852194. Epub 2020 Nov 25. PMID: 33238779.

  66. Mattoo AK, Shukla V, Fatima T, Handa AK, Yachha SK. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases. Adv Exp Med Biol. 2010;698:122–43. https://doi.org/10.1007/978-1-4419-7347-4_10. PMID: 21520708.

  67. Drake PM, Szeto TH, Paul MJ, Teh AY, Ma JK. Recombinant biologic products versus nutraceuticals from plants - a regulatory choice?. Br J Clin Pharmacol. 2017;83(1):82–87. https://doi.org/10.1111/bcp.13041

  68. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, et al. Plants and human health in the twenty‐first century. Trends Biotechnol 2002; 20: 522–31.

    Google Scholar 

  69. U.S. Department of Health and Human Services, Food and Drug Administration Guidance for Industry. Early clinical trials with live biotherapeutic products: Chemistry, manufacturing, and control information. http://www.fda.gov/downloads/Biologi%E2%80%A6/UCM292704.pdf (2016).

  70. Charbonneau, M.R., Isabella, V.M., Li, N. et al. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 11, 1738 (2020).

    Google Scholar 

  71. Deal, C. Science and Regulation of Live Microbiome-Based Products Used to Prevent, Treat, or Cure Diseases in Humans - 09/17/2018 - 09/17/2018. (U.S. Food and Drug Administration, 2019). http://www.fda.gov/vaccines-blood-biologics/workshops-meetings-conferences-biologics/science-and-regulation-live-microbiome-based-products-used-prevent-treat-or-cure-diseases-humans.

  72. Ross, J. J. et al. Considerations in the development of live biotherapeutic products for clinical use. Curr. Issues Mol. Biol. 10, 13–16 (2008).

    Google Scholar 

  73. Patzer, S. I., Baquero, M. R., Bravo, D., Moreno, F. & Hantke, K. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149, 2557–2570 (2003).

    Google Scholar 

  74. Beimfohr, C. A review of research conducted with probiotic E. coli marketed as symbioflor. Int. J. Bacteriol. 2016, 3535621 (2016).

    Google Scholar 

  75. Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Google Scholar 

  76. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2(3):210–219. https://doi.org/10.1038/nrc755

  77. Mills NE, Fishman CL, Scholes J, Anderson SE, Rom WN, Jacobson DR. Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis. J Natl Cancer Inst. 1995;87(14):1056–1060. https://doi.org/10.1093/jnci/87.14.1056

  78. Tobi M, Luo FC, Ronai Z. Detection of K-ras mutation in colonic effluent samples from patients without evidence of colorectal carcinoma. J Natl Cancer Inst. 1994;86(13):1007–1010. https://doi.org/10.1093/jnci/86.13.1007

  79. Merlo A, Herman JG, Mao L, et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–692. https://doi.org/10.1038/nm0795-686

  80. Rosas SL, Koch W, da Costa Carvalho MG, et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. 2001;61(3):939–942.

    Google Scholar 

  81. Ahrendt SA, Chow JT, Xu LH, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst. 1999;91(4):332–339. https://doi.org/10.1093/jnci/91.4.332

  82. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95(20):11891–11896.

    Google Scholar 

  83. Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;60(21):5954–5958.

    Google Scholar 

  84. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999;59(1):67–70.

    Google Scholar 

  85. Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61(3):900–902

    Google Scholar 

  86. Sanchez-Cespedes M, Esteller M, Wu L, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 2000;60(4):892–895.

    Google Scholar 

  87. Usadel H, Brabender J, Danenberg KD, et al. Quantitative Adenomatous Polyposis Coli Promoter Methylation Analysis in Tumor Tissue, Serum, and Plasma DNA of Patients with Lung Cancer. Cancer Res. 2002;62(2):371–375.

    Google Scholar 

  88. Sherman ME, Schiffman MH, Lorincz AT, et al. Cervical specimens collected in liquid buffer are suitable for both cytologic screening and ancillary human papillomavirus testing. Cancer. 1997;81(2):89–97.

    Google Scholar 

  89. Capone RB, Pai SI, Koch WM, et al. Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6(11):4171–4175.

    Google Scholar 

  90. Gerhard M, Juhl H, Kalthoff H, Schreiber HW, Wagener C, Neumaier M. Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J Clin Oncol Off J Am Soc Clin Oncol. 1994;12(4):725–729. https://doi.org/10.1200/JCO.1994.12.4.725

  91. Novaes M, Bendit I, Garicochea B, del Giglio A. Reverse transcriptase-polymerase chain reaction analysis of cytokeratin 19 expression in the peripheral blood mononuclear cells of normal female blood donors. Mol Pathol. 1997;50(4):209–211.

    Google Scholar 

  92. Smith B, Selby P, Southgate J, Pittman K, Bradley C, Blair GE. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet Lond Engl. 1991;338(8777):1227–1229. https://doi.org/10.1016/0140-6736(91)92100-g

  93. Foss AJ, Guille MJ, Occleston NL, Hykin PG, Hungerford JL, Lightman S. The detection of melanoma cells in peripheral blood by reverse transcription-polymerase chain reaction. Br J Cancer. 1995;72(1):155–159. https://doi.org/10.1038/bjc.1995.293

  94. Gold P, Freedman SO. Tests for Carcinoembryonic Antigen: Role in Diagnosis and Management of Cancer. JAMA. 1975;234(2):190–192. https://doi.org/10.1001/jama.1975.03260150060026

  95. Ballehaninna UK, Chamberlain RS. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol. 2012;3(2):105–119. https://doi.org/10.3978/j.issn.2078-6891.2011.021

  96. Slesak B, Harlozinska-Szmyrka A, Knast W, Sedlaczek P, van Dalen A, Einarsson R. Tissue polypeptide specific antigen (TPS), a marker for differentiation between pancreatic carcinoma and chronic pancreatitis. A comparative study with CA 19-9. Cancer. 2000;89(1):83–88. https://doi.org/10.1002/1097-0142(20000701)89:13.0.co;2-j

  97. Sjöström J, Alfthan H, Joensuu H, Stenman UH, Lundin J, Blomqvist C. Serum tumour markers CA 15-3, TPA, TPS, hCGbeta and TATI in the monitoring of chemotherapy response in metastatic breast cancer. Scand J Clin Lab Invest. 2001;61(6):431–441. https://doi.org/10.1080/00365510152567068

  98. Cañizares F, Sola J, Pérez M, et al. Preoperative values of CA 15-3 and CEA as prognostic factors in breast cancer: a multivariate analysis. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2001;22(5):273–281. https://doi.org/10.1159/000050627

  99.  Wright WE, Shay JW, Piatyszek MA. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res. 1995;23(18):3794–3795. https://doi.org/10.1093/nar/23.18.3794

  100. Califano J, Ahrendt SA, Meininger G, Westra WH, Koch WM, Sidransky D. Detection of telomerase activity in oral rinses from head and neck squamous cell carcinoma patients. Cancer Res. 1996;56(24):5720–5722.

    Google Scholar 

  101. Yoshida K, Sugino T, Goodison S, et al. Detection of telomerase activity in exfoliated cancer cells in colonic luminal washings and its related clinical implications. Br J Cancer. 1997;75(4):548–553. https://doi.org/10.1038/bjc.1997.96

  102. Hamler RL, Zhu K, Buchanan NS, et al. A two-dimensional liquid-phase separation method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification. Proteomics. 2004;4(3):562–577. https://doi.org/10.1002/pmic.200300606

  103. Verma M, Wright GL, Hanash SM, Gopal-Srivastava R, Srivastava S. Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N Y Acad Sci. 2001;945:103–115. https://doi.org/10.1111/j.1749-6632.2001.tb03870.x

  104. Favaretto RL, Zequi SC, Oliveira RAR, et al. Tissue-based molecular markers in upper tract urothelial carcinoma and their prognostic implications. Int Braz J Urol. 2018;44(1):22–37. https://doi.org/10.1590/s1677-5538.ibju.2017.0204

  105. Chen Y-WR, Leung JM, Sin DD. A Systematic Review of Diagnostic Biomarkers of COPD Exacerbation. PLoS ONE. 2016;11(7). https://doi.org/10.1371/journal.pone.0158843

  106. Duvoix A, Dickens J, Haq I, et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax. 2013;68(7):670–676. https://doi.org/10.1136/thoraxjnl-2012-201871

  107. Peng C, Tian C, Zhang Y, Yang X, Feng Y, Fan H. C-reactive protein levels predict bacterial exacerbation in patients with chronic obstructive pulmonary disease. Am J Med Sci. 2013;345(3):190–194. https://doi.org/10.1097/MAJ.0b013e318253c921

  108. Ferrari R, Tanni SE, Caram LMO, Corrêa C, Corrêa CR, Godoy I. Three-year follow-up of Interleukin 6 and C-reactive protein in chronic obstructive pulmonary disease. Respir Res. 2013;14:24. https://doi.org/10.1186/1465-9921-14-24

  109. Wang Z, Weng Y, Ishihara Y, et al. Loading history changes the morphology and compressive force-induced expression of receptor activator of nuclear factor kappa B ligand/osteoprotegerin in MLO-Y4 osteocytes. PeerJ. 2020;8. https://doi.org/10.7717/peerj.10244

  110. Gonçalves I, Guimarães MJ, van Zeller M, et al. Clinical and molecular markers in COPD. Pulmonology. 2018;24(4):250–259. https://doi.org/10.1016/j.pulmoe.2018.02.005

  111. Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol. 2017;134(3):505–512. https://doi.org/10.1007/s11060-017-2379-y

  112. Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005;37(4):715-719. doi:10.1016/j.biocel.2004.08.010

    Google Scholar 

  113. Schmohl JU, Vallera DA. CD133, Selectively Targeting the Root of Cancer. Toxins. 2016;8(6). https://doi.org/10.3390/toxins8060165

  114. Xie L, Zeng X, Hu J, Chen Q. Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int. 2015;2015:762098. https://doi.org/10.1155/2015/762098

  115. Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Front Surg. 2016;3:21. https://doi.org/10.3389/fsurg.2016.00021

  116. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 1990;75(10):1947–1950.

    Google Scholar 

  117. Storms RW, Trujillo AP, Springer JB, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A. 1999;96(16):9118–9123. https://doi.org/10.1073/pnas.96.16.9118

  118. Douville J, Beaulieu R, Balicki D. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev. 2009;18(1):17–25. https://doi.org/10.1089/scd.2008.0055

  119. Lagadec C, Vlashi E, Bhuta S, et al. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer. 2014;14:152. https://doi.org/10.1186/1471-2407-14-152.

  120. Kingsbury DT. DNA probes in the diagnosis of genetic and infectious diseases. Trends Biotechnol. 1987 Apr;5(4):107–11.

    Google Scholar 

  121. Tenover FC. Diagnostic Deoxyribonucleic Acid Probes for Infectious Diseases. CLIN MICROBIOL REV. 1988;1:20.

    Google Scholar 

  122. Al-Hakim AH, Hull R. Studies towards the development of chemically synthesized non-radioactive biotinylated nucleic acid hybridization probes. Nucleic Acids Res. 1986 Dec 9;14(24):9965–76.

    Google Scholar 

  123. Leary JJ, Brigati DJ, Ward DC. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4045–9.

    Google Scholar 

  124. Jablonski E, Moomaw EW, Tullis RH, Ruth JL. Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res. 1986 Aug 11;14(15):6115–28.

    Google Scholar 

  125. Seriwatana J, Echeverria P, Taylor DN, Sakuldaipeara T, Changchawalit S, Chivoratanond O. Identification of enterotoxigenic Escherichia coli with synthetic alkaline phosphatase-conjugated oligonucleotide DNA probes. J Clin Microbiol. 1987 Aug 1;25(8):1438–41.

    Google Scholar 

  126. Tchen P, Fuchs RP, Sage E, Leng M. Chemically modified nucleic acids as immunodetectable probes in hybridization experiments. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3466–70.

    Google Scholar 

  127. Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL, et al. Characterization of monoclonal antibody to DNA · RNA and its application to immunodetection of hybrids. J Immunol Methods. 1986 May 1;89(1):123–30.

    Google Scholar 

  128. Doran TA. Chorionic villus sampling as the primary diagnostic tool in prenatal diagnosis. Should it replace genetic amniocentesis? J Reprod Med. 1990 Oct;35(10):935–40.

    Google Scholar 

  129. Vnencak-Jones CL, Phillips JA, Chen EY, Seeburg PH. Molecular basis of human growth hormone gene deletions. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5615–9.¬¬

    Google Scholar 

  130. Chang JC, Kan YW. A sensitive new prenatal test for sickle-cell anemia. N Engl J Med. 1982 Jul 1;307(1):30–2.

    Google Scholar 

  131. Prenatal diagnosis of alpha 1-antitrypsin deficiency by direct analysis of the mutation site in the gene - PubMed [Internet]. [cited 2021 Jan 21].

    Google Scholar 

  132. Gibbs RA, Caskey CT. Identification and localization of mutations at the Lesch-Nyhan locus by ribonuclease A cleavage. Science. 1987 Apr 17;236(4799):303–5.

    Google Scholar 

  133. Kan YW, Dozy AM. Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amniotic-fluid cells. Lancet Lond Engl. 1978 Oct 28;2(8096):910–2.

    Google Scholar 

  134. Brickell PM. Chapter 15 DNA probes in human diseases. In: Principles of Medical Biology [Internet]. Elsevier; 1996 [cited 2021 Jan 19]. p. 307–29.

    Google Scholar 

  135. Kidd VJ, Woo SLC. Recombinant DNA Probes Used to Detect Genetic Disorders of the Liver. Hepatology. 1984;4(4):731–6.

    Google Scholar 

  136. Gadek JE, Hunninghake GW, Fells GA, Zimmerman RL, Keogh BA, Crystal RG. Evaluation of the protease-antiprotease theory of human destructive lung disease. Bull Eur Physiopathol Respir. 1980;16 Suppl:27–40.

    Google Scholar 

  137. Allen RC, Harley RA, Talamo RC. A new method for determination of alpha-1-antitrypsin phenotypes using isoelectric focusing on polyacrylamide gel slabs. Am J Clin Pathol. 1974 Dec;62(6):732–9.

    Google Scholar 

  138. Elias S. Fetoscopy in Prenatal Diagnosis. Clin Perinatol. 1983 Jun 1;10(2):357–67.

    Google Scholar 

  139. Yoshida A, Lieberman J, Gaidulis L, Ewing C. Molecular abnormality of human alpha1-antitrypsin variant (Pi-ZZ) associated with plasma activity deficiency. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1324–8.

    Google Scholar 

  140. Sterchi DL. Molecular Pathology—In Situ Hybridization. Theory Pract Histol Tech. 2008;537–58.

    Google Scholar 

  141. Tsui CKM, Woodhall J, Chen W, Lévesque CA, Lau A, Schoen CD, et al. Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus Glob Mycol J. 2011 Dec;2(2):177–89.

    Google Scholar 

  142. Weiss JB. DNA Probes and PCR for Diagnosis of Parasitic Infections. CLIN MICROBIOL REV. 1995;8:18.

    Google Scholar 

  143. Wirth DF, Pratt DM. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6999–7003.

    Google Scholar 

  144. Franzén L, Westin G, Shabo R, Aslund L, Perlmann H, Persson T, et al. Analysis of clinical specimens by hybridisation with probe containing repetitive DNA from Plasmodium falciparum. A novel approach to malaria diagnosis. Lancet Lond Engl. 1984 Mar 10;1(8376):525–8.

    Google Scholar 

  145. Crowley P, Oliver SG. A microculture hybridization technique for the detection of specific DNA sequences in filamentous fungi. Exp Mycol. 1987 Mar 1;11(1):70–3.

    Google Scholar 

  146. Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol. 2020 Sep;235(9):5867-5881. https://doi.org/10.1002/jcp.29583. Epub 2020 Feb 14. PMID: 32057111; PMCID: PMC7228273.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, A., Villingiri, V., Jehan, S., Qadir, S.A. (2022). Diagnostic and Therapeutic Biotechnology. In: Anwar, M., Ahmad Rather, R., Farooq, Z. (eds) Fundamentals and Advances in Medical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-98554-7_10

Download citation

Publish with us

Policies and ethics