Skip to main content

Instrumentation for Planetary Exploration

  • Chapter
  • First Online:
Handbook of Space Resources

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

References

  • Anderson, D., W. Miller, G. Latham, Y. Nakamura, and M. Toksöz. 1977. Seismology on Mars. Journal of Geophysical Research 82 (28): 4524–4546.

    Article  Google Scholar 

  • Arevalo, R., Z. Ni, and R.M. Danell. 2020. Mass spectrometry and planetary exploration: A brief review and future projection. Journal of Mass Spectrometry 2020 (55): e4454. https://doi.org/10.1002/jms.4454.

    Article  Google Scholar 

  • Arvidson, R.E., S.W. Squyres, R.V. Morris, A.H. Knoll, R. Gellert, B.C. Clark, and P. A. de Souza Jr. 2016. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars. American Mineralogist, 101 (6): 1389–1405.

    Google Scholar 

  • Banerdt, W.B., S. Smrekar, D. Banfield, D. Giardini, M. Golombek, C. Johnson, and P. Lognonné. 2020. Early results from the InSight mission: Mission overview and global seismic activity. Nature Geoscience 13: 183–189.

    Article  Google Scholar 

  • Bayer, T., B. Buffington, J.F. Castet, M. Jackson, G. Lee, K. Lewis, and K. Kirby. 2017, March. Europa mission update: Beyond payload selection. In 2017 IEEE Aerospace Conference, 1–12. IEEE.

    Google Scholar 

  • Beegle L, et al. 2015. SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals. In 2015 IEEE Aerospace Conference, Big Sky, MT, 1–11. https://doi.org/10.1109/AERO.2015.7119105

  • Bell, J.F., S.W. Squyres, K.E. Herkenhoff, J.N. Maki, H.M. Arneson, D. Brown, et al. 2003. Mars exploration rover athena panoramic camera (Pancam) investigation: MER ATHENA PANORAMIC CAMERA INVESTIGATION. Journal of Geophysical Research: Planets 108(E12). https://doi.org/10.1029/2003JE002070

  • Bell, J.J., J.N. Maki, G.L. Mehall, M.A. Ravine, M.A. Caplinger, Z.J. Bailey, K.M. Kinch, et al. 2020. The Mars 2020 Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereo-scopic Imaging Investigation. Space Science Reviews.

    Google Scholar 

  • Benhabib, Merwan, Thomas N. Chiesl, Amanda M. Stockton, James R. Scherer, and Richard A. Mathies. 2010. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Analytical Chemistry 82 (6): 2372–2379. https://doi.org/10.1021/ac9025994.

    Article  Google Scholar 

  • Bhartia, R., W.F. Hug, E.C. Salas, R.D. Reid, K.K. Sijapati, A. Tsapin, W. Abbey, K.H. Nealson, A.L. Lane, and P.G. Conrad. 2008. Classification of organic and biological materials with deep ultraviolet excitation. Applied Spectroscopy 62: 1070–1077. https://doi.org/10.1366/000370208786049123.

    Article  Google Scholar 

  • Bhartia, R., E.C. Salas, W.G. Hug, R.D. Reid, A.L. Lane, K.J. Edwards, and K.H. Nealson. 2010. Label-free bacterial imaging with Deep UV laser induced native fluorescence. Applied and Environmental Microbiology 76: 6231–7237. https://doi.org/10.1128/AEM.00943-10.

    Article  Google Scholar 

  • Bhartia, R., L. Beegle, L. DeFlores, et al. 2021. Perseverance’s scanning habitable environments with Raman and Luminescence for organics and chemicals (SHERLOC) investigation. Space Science Reviews 217:58. https://doi.org/10.1007/s11214-021-00812-z.

  • Brockwell, T.G., K.J. Meech, K. Pickens, et al. 2016. The mass spectrometer for planetary exploration (MASPEX). In 2016 IEEE Aerospace Conference.

    Google Scholar 

  • Byrne, B., E. Stack, N. Gilmartin, and R. O’Kennedy. 2009. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors (basel, Switzerland) 9 (6): 4407–4445. https://doi.org/10.3390/s90604407.

    Article  Google Scholar 

  • Carr, C.E., N.C. Bryan, K.N. Saboda, et al. 2020. Nanopore sequencing at Mars, Europa, and microgravity conditions. NPJ Microgravity 6:24. https://doi.org/10.1038/s41526-020-00113-9.

  • Castillo-Rogez, J.C., S.M. Feldman, J.D. Baker, G. Vane. 2017. Small Instruments for planetary science applications- status and way forward. In Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989).

    Google Scholar 

  • Chao, J., W. Cao, S. Su, L. Weng, S. Song, C. Fan, and L. Wang. 2016. Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. Journal of Materials Chemistry B 4 (10): 1757–1769. https://doi.org/10.1039/c5tb02135a.

    Article  Google Scholar 

  • Christensen, P.R., G.L. Mehall, S.H. Silverman, S. Anwar, G. Cannon, N. Gorelick, et al. 2003. Miniature thermal emission spectrometer for the Mars exploration rovers: MARS EXPLORATION ROVER MINI-TES. Journal of Geophysical Research: Planets 108(E12). https://doi.org/10.1029/2003JE002117.

  • Clinton, J.F., S. Ceylan, M. van Driel, D. Giardini, S.C. Stähler, M. Böse, C. Charalambous, N.L. Dahmen. 2020. The marsquake catalog from insight, sols 0–478. Physics of the Earth and Planetary Interiors

    Google Scholar 

  • D’Alessandro, A., and G. D’Anna. 2013. Suitability of low-cost three-axis MEMS accelerometers in strong-motion seismology: Tests on the LIS331DLH (iPhone) accelerometer. Bulletin of the Seismological Society of America 103 (5): 2906–2913.

    Article  Google Scholar 

  • Daw, R., and J. Finkelstein. 2006. Lab on a chip. Nature 442: 367. https://doi.org/10.1038/442367a.

    Article  Google Scholar 

  • Dworkin, J.P., L.A. Adelman, T. Ajluni, A.V. Andronikov, J.C. Aponte, A.E. Bartels, E. Beshore, E.B. Bierhaus. 2018. OSIRIS-REx contamination control strategy and implementation. Space Science Review 214(1):19. https://doi.org/10.1007/s11214-017-0439-4. Epub 2017 Dec 13. PMID: 30713357; PMCID: PMC6350808.

  • Elachi, C., M. Allison, Y. Anderson, R. Boehmer, P. Callahan, P. Encrenaz, E. Flameni, and G. Francescetti. 2005a. Cassini RADAR’s first view of the surface of Titan. Science 13: 970–974.

    Article  Google Scholar 

  • Elachi, C., M.D. Allison, L. Borgarelli, P. Encrenaz, E. Im, M.A. Janssen, W.T.K. Johnson, and R.L. Kirk. 2005b. RADAR: The Cassini Titan radar mapper. Space Science Review 117: 71–110.

    Google Scholar 

  • Elachi, C., S. Wall, M. Janssen, E. Stofan, R. Lopes, R. Kirk, R. Lorenz, and Lunine. 2006. Titan Radar mapper observations from Cassini’s T3 fly-by. Nature 441: 709–713. https://doi.org/10.1038/nature04786.

    Article  Google Scholar 

  • Eshelman, E.J., M.J. Malaska, K.S. Manatt, I.J. Doloboff, G. Wanger, M.C. Willis, W.J. Abbey, L.W. Beegle, J.C. Oriscu, and R. Bhartia. 2019. WATSON: In situ organic detection in subsurface ice using deep-UV fluorescence spectroscopy. Astrobiology 19: 1–14. https://doi.org/10.1089/ast.2018.1925.

    Article  Google Scholar 

  • Ford, J.P., et al. 1993. Guide to magellan image interpretation: JPL Publ. 93–24, 148.

    Google Scholar 

  • Freaner, C., R. Bitten, D. Emmons. 2010. Inherent optimism in early conceptual designs and its effect on cost and schedule growth: an update. In 2010 NASA PM Challenge, Houston, Texas, Feb 9‒10.

    Google Scholar 

  • Frydenvang, J., N. Mangold, R.C. Wiens, A.A. Fraeman, L.A. Edgar, C. Fedo, et al. 2020. The chemostratigraphy of the Murray formation and role of diagenesis at Vera Rubin ridge in Gale crater, Mars, as observed by the ChemCam instrument. Journal of Geophysical Research: Planets https://doi.org/10.1029/2019JE006320

  • Garcia, R.F., A. Khan, M. Drilleau, L. Margerin, T. Kawamura, D. Sun, M.A. Wieczorek, A. Rivoldini, C. Nunn, R.C. Weber, A.G. Marusiak, P. Lognonné, Y. Nakamura, and P. Zhu. 2019. Lunar seismology: An update on interior structure models. Space Science Reviews 215: 50.

    Article  Google Scholar 

  • García-Descalzo, L., V. Parro, M. García-Villadangos, C.S. Cockell, C. Moissl-Eichinger, A. Perras, Rettberg. 2019. Microbial markers profile in anaerobic mars analogue environments using the LDChip (Life Detector Chip) antibody microarray core of the SOLID (Signs of Life Detector) platform. Microorganisms 7(9):365. https://doi.org/10.3390/microorganisms7090365.

  • Gasda, P.J., E.B. Haldeman, R.C. Wiens, W. Rapin, T.F. Bristow, J.C. Bridges, et al. 2017. In situ detection of boron by ChemCam on Mars: First detection of Boron on Mars. Geophysical Research Letters 44 (17): 8739–8748. https://doi.org/10.1002/2017GL074480.

    Article  Google Scholar 

  • Goins, N.R., A.M. Dainty, and M.N. Toksöz. 1981. Lunar seismology: The internal structure of the Moon. Journal of Geophysical Research 86 (B6): 5061–5074.

    Article  Google Scholar 

  • Griggs, C.E., H.J. Paik, T. Chui, K. Penanen, and J. Young. 2007. Seismometer for strange quark nugget search and for lunar science studies. Nuclear Physics B-Proceedings Supplements 166: 209–213.

    Article  Google Scholar 

  • Henderson, F.M., A.J. Lewis, (eds.). 1998. Principles and applications of imaging radar: Manual of remote sensing, 3rd edn, vol 2. Wiley and Son, New York, NY

    Google Scholar 

  • Hensley, S., et al. 2021. A comparison of L-band and S-band interferometry and tomography of the BERMS Borel forest with UAVSAR and F-SAR Datasets, EUSAR 2021. In 13th European Conference on Synthetic Aperture Radar, 1‒4.

    Google Scholar 

  • Hibbert, R., M.J. Cole, M.C. Price, et al. 2017. The hypervelocity impact facility at the University of Kent: Recent upgrades and specialized capabilities. Procedia Engineering 204: 208–214.

    Article  Google Scholar 

  • Hsu, H.-W., F. Postberg, Y. Sekine, et al. 2015. Ongoing hydrothermal activities within Enceladus. Nature 519: 207.

    Article  Google Scholar 

  • Janssen, M.A., A. Le Gall, R.M. Lopes, R.D. Lorenz, M.J. Malaska, A.G. Hayes, C.D. Neish, A. Solomonidou, K.L. Mitchell, J. Radebaugh, and S.J. Keihm. 2016. Titan’s surface at 2.18-cm wavelength imaged by the Cassini RADAR radiometer: Results and interpretations through the first ten years of observation. Icarus 270: 443–459.

    Article  Google Scholar 

  • Janssen et al., 2009 Janssen, M.A., R.D. Lorenz, R. West, F. Paganelli, R.M. Lopes, R.L. Kirk, C. Elachi, S.D. Wall, W.T.K. Johnson, Y. Anderson, R.A. Boehmer, P. Callahan, Y. Gim, G.A. Hamilton, K.D. Kelleher, L. Roth, B. Stiles, A. Le Gall and the Cassini Radar Team 2009. 2008. Titan’s surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results. Icarus 200, 222–239. https://doi.org/10.1016/j.icarus.2008.10.017

  • Jaramillo, E.A., and A.C. Noell. 2020. Development of miniature solid contact ion selective electrodes for in situ instrumentation. Electroanalysis 32 (9): 1896–1904. https://doi.org/10.1002/elan.201900761.

    Article  Google Scholar 

  • Jaramillo-Botero, A., M.L. Cable, A.E. Hofmann, M. Malaska, R. Hodyss, and J. Lunine. 2021. Understanding hypervelocity sampling of biosignatures in space missions. Astrobiololgy 21: 421–442. https://doi.org/10.1089/ast.2020.2301.

    Article  Google Scholar 

  • Chen Jianrong, Miao Yuqing, He Nongyue, Wu Xiaohua, Li Sijiao. 2004. Nanotechnology and biosensors. Biotechnology Advances 22(7). ISSN 505–518 0734 9750. https://doi.org/10.1016/j.biotechadv.2004.03.004

  • Johnson, J.R., J.F. Bell, S. Bender, D. Blaney, E. Cloutis, L. DeFlores, et al. 2015. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus 249: 74–92. https://doi.org/10.1016/j.icarus.2014.02.028.

    Article  Google Scholar 

  • Junge, K., H. Eicken, and J. Deming. 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Applied and Environmental Microbiology 70: 550–557. https://doi.org/10.1128/AEM.70.1.550-557.2004.

    Article  Google Scholar 

  • Khawaja, N., F. Postberg, J. Hillier, et al. 2019. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Monthly Notices of the Royal Astronomical Society 489 (4): 5231–5243.

    Article  Google Scholar 

  • Kim, Y.I., T.S. Park, J.H. Kang, M.C. Lee, J.T. Kim, J.H. Park, H.K. Baik. 2006. Biosensors for label free detection based on RF and MEMS technology. Sensors and Actuators B: Chemical 119(2):592–599. ISSN 0925-4005. https://doi.org/10.1016/j.snb.2006.01.015.

  • Klenner, F., F. Postber, J. Hillier, et al. 2020a. Discriminating abiotic and biotic fingerprints of amino acids and fatty acids in ice grains relevant to ocean worlds. Astrobiology 20 (12): 1–17.

    Google Scholar 

  • Klenner, F., F. Postber, J. Hillier, et al. 2020b. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. Astrobiology 20 (2): 179–189.

    Article  Google Scholar 

  • Kovach, R.L., J.S. Watkins. 1976. Apollo 14 and 16 active seismic experiments, Apollo 17 lunar seismic profiling. Tech. rep., Stanford University. https://repository.hou.usra.edu/handle/20.500.11753/822

  • Lanza, N.L., W.W. Fischer, R.C. Wiens, J. Grotzinger, A.M. Ollila, A. Cousin, et al. 2014. High manganese concentrations in rocks at Gale crater, Mars. Geophysical Research Letters 41 (16): 5755–5763. https://doi.org/10.1002/2014GL060329.

    Article  Google Scholar 

  • Lanza, N.L., R.C. Wiens, R.E. Arvidson, B.C. Clark, W.W. Fischer, R. Gellert, et al. 2016. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars: Manganese Fracture Fills in Gale Crater. Geophysical Research Letters 43 (14): 7398–7407. https://doi.org/10.1002/2016GL069109.

    Article  Google Scholar 

  • Le Gall, A., M.J. Malaska, R.D. Lorenz, M.A. Janssen, T. Tokano, A.G. Hayes, M. Mastroguiseppe, J.I. Lunine, G. Veyssière, P. Encrenaz, and O. Karatekin. 2016. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan derived from microwave thermal emission. Journal of Geophysical Research: Planets 121: 233–251. https://doi.org/10.1002/2015JE004920.

  • Legett, C., R. T. Newell, A. L. Reyes-Newell, A. E. Nelson, P. Bernardi, S. C. Bender, et al. 2022. Optical calibration of the SuperCam instrument body unit spectrometers. Applied Optics 61 (11), 2967. https://doi.org/10.1364/AO.447680.

  • Levasseur-Regourd, A.C., J. Agarwal, H. Cottin, C. Engrand, G. Flynn, M. Fulle, and A. Westphal. 2018. Cometary dust. Space Science Reviews, 214 (3): 1–56.

    Google Scholar 

  • Lognonné, P., W.T. Pike. 2015. Planetary seismometry. In: Extraterrestrial Seismology, eds. Tong, V.C.H., R. Garcia, R., 36–48. Cambridge, UK, Cambridge University Press.

    Google Scholar 

  • Lognonné, P., W.B. Banerdt, D. Giardini, W.T. Pike, U. Christensen, P. Laudet, S. de Raucourt, S., Zweifel, P., Calcutt, S., 2019. SEIS: The seismic experiment for internal structure of inSight. Space Science Review 215.

    Google Scholar 

  • Lopes, R.M.C., S.D. Wall, C. Elachi, S.P.D. Birch, P. Corlie, A. Coustenis, A.G. Hayes, and J.D. Hofgartner. 2019. Titan as revealed by the Cassini Radar. Space Science Reviews 215: 1–50. https://doi.org/10.1007/s11214-019-0598-6.

    Article  Google Scholar 

  • Lopes, R.M.L., M.J. Malaska, A.M. Schoenfeld, A. Solomonidou, S.P.D. Birch, M. Florence, A.G. Hayes, D.A. Williams, J. Radebaugh, T. Verlander, E.P. Turtle, A. Le Gall, and S. Wall. 2020. A global geomorphological map of Saturn’s moon Titan. Nature Astronomy 4: 228–233.

    Google Scholar 

  • Lorenz, R.D., and M.P. Panning. 2018. Empirical recurrence rates for ground motion signals on planetary surfaces. Icarus 303: 273–279.

    Article  Google Scholar 

  • Madou, M.J. 2011. Fundamentals of microfabrication and nanotechnology, vol. 1. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Malaska, M.J., R.M.C. Lopes, D.A. Williams, C.D. Neish, A. Solominidou, J.M. Soderblom, A.M. Schoenfeld, S.P.D. Birch, A.G. Hayes, A. Le Gall, M.A. Janssen, T.G. Farr, R.D. Lorenz, J. Radebaugh, and E.P. Turtle. 2016. Geomorphological map of the Afekan Crater region, Titan: Terrain relationships in the equatorial and mid-latitude regions. Icarus 270: 130–161. https://doi.org/10.1016/j.icarus.2016.02.021.

    Article  Google Scholar 

  • Malaska, M.J., R. Bhartia, K.S. Manatt, J.C. Priscu, W.J. Abbey, B. Mellerowicz, J. Palmowski, G.L. Paulsen, K. Zacny, E.J. Eshelman, and J. D’Andrilli. 2020. Subsurface in situ detection of microbes and diverse organic matter hotspots in the Greenland ice sheet. Astrobiology 20: 1185–1211. https://doi.org/10.1089/ast.2020.2241.

    Article  Google Scholar 

  • Malaska et al. 2020 Malaska, M.J., J. Radebaugh, R.M.C. Lopes, K.L. Mitchell, T. Verlander, A.M. Schoenfeld, M.M. Florence, A. Le Gall, A. Solomonidou, A.G. Hayes, S.P.D. Birch, M.A. Janssen, L. Shurmeier, T. Cornet, C. Ahrens, T.G. Farr, Cassini RADAR Team. 2020. Labyrinth Terrain on Titan. Icarus 344:113764. https://doi.org/10.1016/j.icarus.2020.113764

  • Malin, M.C., M.A. Ravine, M.A. Caplinger, F. Tony Ghaemi, J.A. Schaffner, J.N. Maki, et al. 2017. The mars science laboratory (MSL) mast cameras and descent imager: Investigation and instrument descriptions: MSL Mastcam/MARDI descriptions. Earth and Space Science 4 (8): 506–539. https://doi.org/10.1002/2016EA000252.

    Article  Google Scholar 

  • Marusiak, A.G., N.C. Schmerr, D.N. DellaGiustina, E.C. Pettit, P.H. Dahl, B. Avenson, S.H. Bailey, V.J. Bray, N. Wagner, C.G. Carr, and R.C. Weber. 2020. The deployment of the seismometer to investigate ice and ocean structure (SIIOS) on Gulkana Glacier, Alaska. Seismological Research Letters 91 (3): 1901–1914.

    Article  Google Scholar 

  • Maule, J., Wainwright, N., Steele, A., Monaco, L., Morris, H., Gunter, D., Flroes, G., Effinger, M., Damon, M., Wells, M., Williams, S. 2008. LOCAD-PTS: Operation of a new system for microbial monitoring aboard the International Space Station (ISS). In Space 2008 Conference. https://doi.org/10.2514/6.2008-7900.

  • Maurice, S., R.C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault, O. Forni, et al. 2012. The ChemCam instrument suite on the mars science laboratory (MSL) rover: Science objectives and mast unit description. Space Science Reviews 170 (1–4): 95–166. https://doi.org/10.1007/s11214-012-9912-2.

    Article  Google Scholar 

  • Maurice, S., et al. The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description. Space Science Review.

    Google Scholar 

  • Meslin, P.-Y., O. Gasnault, O. Forni, S. Schroder, A. Cousin, G. Berger, et al. 2013. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars. Science 341 (6153): 1238670–1238670. https://doi.org/10.1126/science.1238670.

    Article  Google Scholar 

  • Meyer, C., A.H. Treiman, and T. Kostiuk, eds. 1996. Planetary Surface Instruments Workshop. LPI Tech. Rpt. 95‒05. Lunar and Planetary Institute, Houston, 115.

    Google Scholar 

  • Meyyappan, M., M. Dastoor. 2004. Nanotechnology in space exploration. In NSET Report of the National Nanotechnology Initiative Workshop.

    Google Scholar 

  • Mielczarek, P., J. Silberring, and M. Smoluch. 2019. Miniaturization in mass spectrometry. Mass Spectrometry Reviews 39 (5–6): 453–470. https://doi.org/10.1002/mas.21614.

    Article  Google Scholar 

  • Miles, D.M., I.R. Mann, M. Ciurzynski, D. Barona, B.B. Narod, J.R. Bennest, D.K. Milling. 2016. A miniature, low-power scientific fluxgate magnetometer: A stepping-stone to cube-satellite constellation missions. Journal of Geophysical Research: Space Physics 121(12). https://doi.org/10.1002/2016ja023147

  • Miller, M.E.C., R. Hodyss, M.J. Malaska, et al. 2019. Hypervelocity enceladus ice grain analogue production with the aerosol impact spectrometer. In EPSC-DPS Joint Meeting 2019, vol 13. Geneva, Switzerland, EPSC-DPS2019–353–1.

    Google Scholar 

  • Maria F. Mora, Florian Kehl, Eric Tavares da Costa, Nathan Bramall, and Peter A. Willis. 2020. Fully automated microchip electrophoresis analyzer for potential life detection missions. Analytical Chemistry 92(19):12959–12966. https://doi.org/10.1021/acs.analchem.0c01628

  • McConnochie, T.H., M.D. Smith, M.J. Wolff, S. Bender, M. Lemmon, R.C. Wiens, and J.F. Bell III. 2018. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307: 294–326.

    Google Scholar 

  • Nakamura, Y., G.V. Latham, H.J. Dorman, J.E. Harris. 1981. Passive seismic experiment long-period event catalog, final version. Tech. Rep. UTIG Technical Report No. 18. Galveston Geophysics Laboratory of the University of Texas at Austin, Marine Science Institute.

    Google Scholar 

  • NASA. 2010. Draft science instruments, observatories, and sensor system roadmap, technology area 08.

    Google Scholar 

  • NASA. 2011. Planetary protection provisions for robotic extraterrestrial missions, NASA Procedural Requirements, NPR 8020.12D. NASA, Washington, DC.

    Google Scholar 

  • Nelson, A.O., R. Dee, M.S. Gudipati, et al. 2016. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces. Review of Scientific Instruments 87 (2): 024502.

    Article  Google Scholar 

  • New, J.S., R.A. Mathies, M.C. Price, et al. 2020a. Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes. Meteoritics & Planetary Science 55 (3): 465–479.

    Article  Google Scholar 

  • New, J.S., B. Kazemi, M.C. Price, et al. 2020b. Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts. Meteoritics & Planetary Science 1‒13.

    Google Scholar 

  • Nunn, C., R.F. Garcia, Y. Nakamura, A.G. Marusiak, T. Kawamura, D. Sun, L. Margerin, R. Weber, M. Drilleau, M.A. Wieczorek, A. Khan, A. Rivoldini, P. Lognonné, and P. Zhu. 2020. Lunar seismology: A data and instrumentation review. Space Science Reviews 216: 89.

    Article  Google Scholar 

  • Palmer, P.T., T.F. Limero. 2001. Mass spectrometry in the U.S. space program: past, present, and future. Journal of the American Society for Mass Spectrometry 12(6):656‒75. https://doi.org/10.1016/S1044-0305(01)00249-5. PMID: 11401157.

  • Panning, M.P., W.T. Pike, P. Lognonné, W.B. Banerdt, N. Murdoch, D. Banfield, C. Charalambous, S. Kedar, R.D. Lorenz, A.G. Marusiak, J.B. McClean, C. Nunn, S.C. Stähler, A.E. Stott, T. Warren. 2020. On-deck seismology: Lessons for InSight for future planetary seismology. Journal of Geophysical Research: Planets 125(4).

    Google Scholar 

  • Postberg, F., S. Kempf, J. Schmidt, et al. 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459: 1098.

    Article  Google Scholar 

  • Postberg, F., J. Schmidt, J. Hillier, et al. 2011. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474: 620.

    Article  Google Scholar 

  • Postberg, F., N. Khawaja, B. Abel, et al. 2018. Macromolecular organic compounds from the depths of Enceladus. Nature 558 (7711): 564–568.

    Article  Google Scholar 

  • Postberg, F., S. Kempf, J.K. Hillier, et al. 2008. The E-ring in the vicinity of Enceladus: II. Probing the moon's interior—the composition of E-ring particles. Icarus, 193(2):438‒454.

    Google Scholar 

  • Rapin, W., P.-Y. Meslin, S. Maurice, D. Vaniman, M. Nachon, N. Mangold, et al. 2016. Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth and Planetary Science Letters 452: 197–205. https://doi.org/10.1016/j.epsl.2016.07.045.

    Article  Google Scholar 

  • Reh, K., L. Spilker, J.L. Lunine, et al. 2016. In Enceladus Life Finder: The search for life in a habitable Moon. In IEEE Aerospace Conference, 1‒8, Mar 5‒12.

    Google Scholar 

  • Rincon, R., et al. 2016. Development of next generation digital beamforming synthetic aperture radar architectures. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2109‒2111. https://doi.org/10.1109/IGARSS.2016.7729544.

  • Rodgers, P.W. 1994. Self-noise spectra for 34 common electromagnetics seismometer/preamplifier pairs. Bulletin of the Seismological society of America 84 (1): 222–228.

    Article  Google Scholar 

  • Roman, P., W. Brinckerhoff, F. Herrero, R. Hu, H. Jones, D. Kahle, T. King, and Mahaffy, P. 2008. A miniature MEMS and NEMS enabled time-of-flight mass spectrometer for investigations in planetary science–art. no. 69590G. In Proc SPIE. 6959. https://doi.org/10.1117/12.777670.

  • Ruff, S.W., J.D. Farmer, W.M. Calvin, K.E. Herkenhoff, J.R. Johnson, R.V. Morris, and S.W. Squyres. 2011. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. Journal of Geophysical Research: Planets, 116 (E7).

    Google Scholar 

  • Sapers, H.M., J. Razzel-Hollis, R. Bhartia, L. Beegle, V.J. Orphan, and J. Amend. 2019. The cell and the sum of its parts: Patterns of complexity in biosignatures as revealed by Deep UV Raman spectroscopy. Frontiers in Microbiology 10: 679. https://doi.org/10.3389/fmicb.2019.00679.

    Article  Google Scholar 

  • Sautter, V., M.J. Toplis, R.C. Wiens, A. Cousin, C. Fabre, O. Gasnault, et al. 2015. In situ evidence for continental crust on early Mars. Nature Geoscience 8 (8): 605–609. https://doi.org/10.1038/ngeo2474.

    Article  Google Scholar 

  • Schoenfeld, A.M., R.M.C. Lopes, M.J. Malaska, A. Solomonidou, D.A. Williams, S.P.D. Birch, A.G. Hayes, P. Corlies, A. Le Gall, M.A. Janssen, S. Le Mouélic Le, E. Turtle, M. Florence, T. Verlander. 2021. Geomorphological map of the South Belet Region of Titan. Icarus 366:114516. https://doi.org/10.1016/j.icarus.2021.114516

  • Schröder, C., D.S. Rodionov, T.J. McCoy, B.L. Jolliff, R. Gellert, L.R. Nittler, and T. Economou. 2008. Meteorites on Mars observed with the Mars exploration rovers. Journal of Geophysical Research: Planets 113 (E6).

    Google Scholar 

  • Sekine, Y., T. Shibuya, F. Postberg, et al. 2015. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Communications 6: 8604.

    Article  Google Scholar 

  • Srama, R., T.J. Ahrens, N. Altobelli, et al. 2004. The Cassini cosmic dust analyzer. Space Science Reviews 114 (1): 465–518.

    Article  Google Scholar 

  • Stalport, F., D.P. Glavin, J.L. Eigenbrode, D. Bish, D. Blake, P. Coll, C. Szopa, A. Buch, A. McAdam, J.P. Dworkin, P.R. Mahaffy. 2012. The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one-pot” derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite. Planetary and Space Science 67(1):1–13. ISSN 0032-0633. https://doi.org/10.1016/j.pss.2012.02.010

  • Stone, 2017 Stone, E. 2017. The voyagers. Nature Astronomy 1:896. https://doi.org/10.1038/s41550-017-0339-2

  • Tulej, M., N.F.W. Ligterink, C. de Koning, V. Grimaudo, R. Lukmanov, P. Keresztes Schmidt, A. Riedo, and P. Wurz. 2021. Current progress in femtosecond laser ablation/ionisation time-of-flight mass spectrometry. Applied Sciences. 11 (6): 2562. https://doi.org/10.3390/app11062562.

    Article  Google Scholar 

  • Turtle, E.P., M.G. Trainer, J.W. Barnes, R.D. Lorenz, K.E. Hibbard, D.S. Adams, P. Bedini, W.B. Brinckerhoff. 2020. Dragonfly: In situ exploration of Titan’s organic chemistry and habitability. In: 51st Lunar and Planetary Science Conference. Lunar and Planetary Inst., Houston, TX, Abstract #2288.

    Google Scholar 

  • Ulibarri, Z., T.L. Munsat, B. Abel, et al. 2019. On the gensis and detectability of organic chemistry in hypervelocity impact ice spectra. In AGU Fall Meeting 2019, San Francisco, CA, USA, vol abstract #P43C-3485.

    Google Scholar 

  • Voiculescu, Ioana, Anis Nurashikin Nordin. 2012. Acoustic wave based MEMS devices for biosensing applications. Biosensors and Bioelectronics 33(1):1‒9. ISSN 0956-5663. https://doi.org/10.1016/j.bios.2011.12.041.

  • Waite, J.H., M.R. Combi, W.-H. Ip, et al. 2006. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311 (5766): 1419–1422.

    Article  Google Scholar 

  • Waite, J.H., W.S. Lewis, B.A. Magee, et al. 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460: 487.

    Article  Google Scholar 

  • Waller, S.E., N.R. Tallarida, J.L. Lambert, et al. 2020. In Analyzing Enceladus’ plume: First steps to experimentally simulating hypervelocity impacts ACS Spring. In 2020 National Meeting & Expo, Philadelphia, PA, USA, Mar 22–26, American Chemical Society, Philadelphia, PA, USA.

    Google Scholar 

  • Weber, R., P.-Y. Lin, E. Garnero, Q. Williams, and P. Lognonné. 2011. Seismic detection of the lunar core. Science 331 (6015): 309–312.

    Article  Google Scholar 

  • Wellington, D.F., J.F. Bell, J.R. Johnson, K.M. Kinch, M.S. Rice, A. Godber, and C. Hardgrove. 2017. Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high interest science targets within Gale Crater, Mars. American Mineralogist, 102 (6): 1202–1217.

    Google Scholar 

  • Wiens, R.C., S. Maurice, B. Barraclough, M. Saccoccio, W.C. Barkley, J.F. Bell, et al. 2012. The ChemCam instrument suite on the mars science laboratory (MSL) rover: body unit and combined system tests. Space Science Reviews 170 (1–4): 167–227. https://doi.org/10.1007/s11214-012-9902-4.

    Article  Google Scholar 

  • Wiens, R.C., S. Maurice, S.H. Robinson, A.E. Nelson, P. Cais, P. Bernardi, et al. 2021. The SuperCam instrument suite on the NASA Mars 2020 Rover: Body unit and combined system tests. Space Science Reviews 217 (1): 4. https://doi.org/10.1007/s11214-020-00777-5.

    Article  Google Scholar 

  • Yamada, R., I. Yamada, H. Shiraishi, S. Tanaka, Y. Takagi, N. Kobayashi, N. Takeuchi, Y. Ishihara, H. Murakami, K. Yomogida, K. Koyama, A. Fujimura, and H. Mizutani. 2009. Capability of the penetrator seismometer system for lunar seismic event observation. Planetary and Space Science 57 (7): 751–776.

    Article  Google Scholar 

  • Zubarev, R.A., A. Makarov. 2013. Orbitrap mass spectrometry. Analytical Chemistry 85(11):5288‒5396. https://doi.org/10.1021/ac4001223. Epub 2013 May 13. PMID: 23590404.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily F. Klonicki-Ference .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klonicki-Ference, E.F., Malaska, M.J., Panning, M.P., Waller, S.E., Gasda, P.J. (2023). Instrumentation for Planetary Exploration. In: Badescu, V., Zacny, K., Bar-Cohen, Y. (eds) Handbook of Space Resources. Springer, Cham. https://doi.org/10.1007/978-3-030-97913-3_6

Download citation

Publish with us

Policies and ethics