Skip to main content

Allium Breeding Against Biotic Stresses

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Vegetable Crops

Abstract

Among Allium species, onion (Allium cepa L., 2n = 2x = 16) and garlic (Allium sativum L, 2n = 2x = 16) are cultivated throughout the world for their culinary, medicinal and therapeutic values. The production, productivity and inherent nutritional potential of these crops is immensely affected by various biotic stresses before and after harvesting. Onion breeding techniques are in several aspects less developed than those available and employed in other horticultural and agricultural crops. The major biological limitations that hampers onion breeding programmes are its biennial nature, photosensitivity, outcrossing flowering behavior, combined with a high inbreeding depression. Apart from these, the huge genome size (16 GB) with highly repetitive non-coding DNA is also a big constraint to complement marker-assisted breeding. Recently, a garlic genome was completely sequenced, as the first Allium species. With the recent release of the first draft genome assembly of onion, hopefully this would help to augment onion breeding possibilities through developing more and reliable genomic resources for resistance breeding against various insect-pest and diseases. This chapter summarizes the main diseases and pests threatening onion production in tropical and temperate regions, the efforts in breeding for disease and pest resistance, the development of tools for marker assisted selection and the potential of genomic tools for the development of resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abawi GS, Lorbeer JW (1971) Pathological histology of four onion cultivars infected by Fusarium oxysporum f. sp. cepae. Phytopathology 61:1164–1169

    Article  Google Scholar 

  • Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito S, Tanaka K, Mine Y, Sugiyama N, Suzuki M, Yamauchi N, Shigyo M (2017) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum—A. cepa monosomic addition lines. PLoS One 12(8):e0181784

    Google Scholar 

  • Abo-Elyousr KA, Hussein MAM, Allam ADA, Hassan MH (2009) Salicylic acid induced systemic resistance on onion plants against Stemphylium vesicarium. Arch Phytopathol Plant Protec 42(11):1042–1050

    Article  CAS  Google Scholar 

  • Abubakar L, Ado SG, Suberu HA, Magaji MD (2006) Screening of onion (Allium cepa L.) cultivars for resistance to purple blotch (Alternaria porri L.) disease. Biol Environ Sci J Trop (BEST) 3(3):30–36

    Google Scholar 

  • Abubakar L, Ado SG (2008) Heterosis of purple blotch (Alternaria porri (Ellis) Cif.) resistance, yield and earliness in tropical onions (Allium cepa L.). Euphytica 164:63–74

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, Florida, p 921p

    Google Scholar 

  • Alimousavi SA, Hassandokht MR, Moharramipour S (2007) Evaluation of Iranian onion germplasms for resistance to thrips. Intl J Agric Biol 9:897–900

    Google Scholar 

  • Al-Safadi B, Mir AN, Arabi MIE (2000) Improvement of garlic (Allium sativum L.) resistance to white rot and storability using gamma irradiation induced mutations. J Genet Breed 54(3):175–182

    Google Scholar 

  • Alves DP, de Araújo ER, Wamser GH, de Souza Gonçalves PA, Marinho CD, Tomaz RS (2018) Field performance and screening for resistance to Peronospora destructor of 46 onion cultivars in Brazil. Australas Plant Dis Notes 13(1):5

    Article  Google Scholar 

  • Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1(2):125–129

    Article  CAS  PubMed  Google Scholar 

  • Araújo ER, Resende RS, Alves DP, Higashikawa FS (2020) Field efficacy of fungicides to control downy mildew of onion. Eur J Plant Pathol 156:305–309

    Article  CAS  Google Scholar 

  • Arias M, Curbelo N, González PH, Vicente E, Giménez G, Galván GA (2020) Inheritance of resistance against Peronospora destructor in onion cv. ‘Regia’. Aust J Crop Sci 14 (12):1999–2009

    Google Scholar 

  • Bacher JW, Pan S, Ewart L (1989) Inheritance of resistance to Fusarium oxysporum f.sp. cepae in cultivated onions. PhD thesis, Michigan State University, Michigan, US

    Google Scholar 

  • Beakes GW, Glockling SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycete “fungi.” Protoplasma 249:3–19

    Article  PubMed  Google Scholar 

  • Behera S, Santra P, Chattopadhyay S, Das S, Maity TK (2013) Variation in onion varieties for reaction to natural infection of Alternaria porri (Ellis) ciff. and Stemphylium vesicarium (Wallr.). Bioscan 8:759–761

    Google Scholar 

  • Beretta HV, Bannoud F, Insani M, Berli F, Hirschegger P, Galmarini CR, Cavagnaro PF (2017) Relationships between bioactive compound content and the antiplatelet and antioxidant activities of six Allium vegetable species. Food Technol Biotechnol 55(2):266–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergquist RR, Lorbeer JW (1971) Reaction of Allium spp. and Allium cepa to Botryotinia (Botrytis) squamosa. Plant Dis Rep 55(5):394–398

    Google Scholar 

  • Bock KR (1964) Purple blotch (Alternaria porri) of onion in Kenya. Ann Appl Biol 54:303–311

    Article  Google Scholar 

  • Caligiori-Gei PF, Ciotti ML, Valdez JG, Galmarini CR (2020) Breeding onion for resistance to Fusarium basal rot: comparison of field selection and artificial inoculation. Trop Plant Pathol 45(5):493–498

    Article  Google Scholar 

  • Caligiori-Gei PF, Valdez JG, Piccolo RJ, Galmarini CR (2014) Influence of Fusarium spp. isolate and inoculum density on resistance screening tests in onion. Trop Plant Pathol 39:19–27

    Article  Google Scholar 

  • Chand SK, Nanda S, Joshi RK (2018). Genetics and molecular mapping of a novel purple blotch-resistant gene ApR1 in onion (Allium cepa L.) using STS and SSR markers. Mol Breed 38(9):1–13. https://doi.org/10.1007/s11032-018-0864-4

  • Chethana BS, Ganeshan G, Manjunath B (2011) Screening of genotypes and effect of fungicides against purple blotch of onion. J Agric Technol 7(5):1369–1374

    Google Scholar 

  • Coudriet DL, Kishaba AN, McCreight JD, Bohn GW (1979) Varietal resistance in onions to thrips. J Econ Entomol 72(4):614–615

    Article  Google Scholar 

  • Cramer CS, Mandal S, Sharma S, Nourbakhsh SS, Goldman I, Guzman I (2021) Advances in onion genetic improvement. Agronomy 11:482

    Article  CAS  Google Scholar 

  • Cramer CS (2000) Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica 115:159–166

    Article  Google Scholar 

  • Currah L, Maude RB (1984) Laboratory tests for leaf resistance to Botrytis squamosa in onions. Ann Appl Biol 105:277–283

    Article  Google Scholar 

  • Daljeet S, Dhiman JS, Sidhu AS, Hari S (1992) Current status of onions in India: strategies for disease resistance breeding for sustained production. Onion Newsl Trop 4:43–44

    Google Scholar 

  • Dangi R, Sinha P, Islam S, Gupta A, Kumar A, Rajput LS, Kamil D, Khar A (2019) Screening of onion accessions for Stemphylium blight resistance under artificially inoculated field experiments. Australas Plant Pathol 48(4):375–384

    Article  Google Scholar 

  • De Armas S, Galván GA, Vicente E, Pianzzola MJ, Siri MI (2019) Bacteria causing bulb rots and leaf spots in Uruguay. In: Intl allium research symposium. Madison, Wisconsin, USA

    Google Scholar 

  • De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK, Birch PR, Coutinho TA (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics 15:404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Visser CLM (1998) Development of a downy mildew advisory model based on downcast. Eur J Plant Pathol 104:933–943

    Article  Google Scholar 

  • Dhiman JS, Chadha ML, Sidhu AS (1986) Studies on the reaction of onion genotypes against purple blotch. Veg Sci 13:304–309

    Google Scholar 

  • Dhingra OD, Coelho Netto RA (2001) Reservoir and non-reservoir hosts of bean-wilt pathogen, Fusarium oxysporum f.sp. phaseoli. J Phytopathol 149:463–467

    Article  Google Scholar 

  • Diaz-Montano J, Fuchs M, Nault BA, Shelton AM (2010) Evaluation of onion cultivars for resistance to onion thrips (Thysanoptera: Thripidae) and Iris yellow spot virus. J Econ Entomol 103(3):925–937

    Article  PubMed  Google Scholar 

  • Dissanayake MLMC, Kashima R, Tanaka S, Ito SI (2009) Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. J Gen Plant Pathol 75:37–45

    Article  CAS  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Dugan FM, Hellier BC, Lupien SL (2011) Resistance to Penicillium allii in accessions from a National plant Germplasm System Allium collection. Crop Prot 30(4):483–488

    Article  Google Scholar 

  • du Toit LJ, Inglis DA, Pelter GQ (2003) Fusarium proliferatum pathogenic on onion bulbs in Washington. Plant Dis 87:750

    Article  PubMed  Google Scholar 

  • Eckenrode CJ, Nyrop JP (1995) Onion maggot management in New York, Michigan, and Wisconsin. New York Food & Life Sci Bul, p 144

    Google Scholar 

  • Ellis PR, Eckenrode CJ, Harman GE (1979) Influence of onion cultivars and their microbial colonizers on resistance to onion maggot. J Econ Entomol 72:512–515

    Article  Google Scholar 

  • Entwistle AR (1990) Root diseases. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops. CRC Press, Boca Raton, Florida, USA, pp 103–154

    Google Scholar 

  • Everts KL, Lacy ML (1990) The influence of dew duration, relative humidity, and leaf senescence on conidial formation and infection of onion by Alternaria porri. Phytopathology 80(11):1203–1207

    Article  Google Scholar 

  • FAOSTAT (2019) Onion production, area and productivity URL. http://www.fao.org/faostat/en/#home, Accessed 14 March 2021

  • Felix EL (1933) Disease resistance in Allium fistulosum L. Phytopathology 23:109–110

    Google Scholar 

  • Ferreira GDO, Santos CAF, Oliveira VR, Alencar JAD, Silva DOMD (2017) Evaluation of onion accessions for resistance to thrips in Brazilian semi-arid regions. J Hort Sci Biotechnol 92(5):550–558

    Article  CAS  Google Scholar 

  • Finkers R, van Kaauwen M, Ament K, Burger-Meijer K, Egging R, Huits H, Kodde L, Kroon L, Shygio M, Sato S, Vosman B, van Workum W, Scholten O (2021) Insights from the first genome assembly of onion (Allium cepa). G3, 2021, jkab243

    Google Scholar 

  • Fritsch RM, Friesen N (2002) Evolution, domestication and taxonomy. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing, pp 5–30

    Google Scholar 

  • Galeano P, González PH, Franco FL, Galván GA (2014) Age-related resistance to Fusarium oxysporum f. sp. cepae and associated enzymatic changes in seedlings of Allium cepa and A. fistulosum. Trop Plant Pathol 39(5):374–383

    Google Scholar 

  • Galván GA (2009) Resistance to Fusarium basal rot and response to arbuscular mycorrhizal fungi in Allium. PhD Dissertation, Wageningen University, The Netherlands, p 160

    Google Scholar 

  • Galván GA, Arias M, González PH, Curbelo N, Peluffo S (2016a) Selection for resistance and histopathological relationships in the onion ‘Regia’ against downy mildew (Peronospora destructor). Acta Hort 1143:15–22

    Article  Google Scholar 

  • Galván GA, Vicente E, Arias M, González RP (2016b) [Selection for resistance to Peronospora destructor in onion breeding] Selección por resistencia a Peronospora destructor en el mejoramiento genético de cebolla (Allium cepa L.) (summary). J Basic Appl Genet 27 (1)S:295

    Google Scholar 

  • Galván GA, Koning-Boucoiran CFS, Koopman WJM, Burger-Meijer K, González PH, Waalwijk C, Kik C, Scholten OE (2008) Genetic variation among Fusarium isolates from onion and resistance to Fusarium basal rot in related Allium species. Eur J Plant Pathol 121(4):499–512

    Article  CAS  Google Scholar 

  • Galván GA, Wietsma WA, Putrasemedja S, Permadi AH, Kik C (1997). Screening for resistance to anthracnose (Colletotrichum gloeosporioides Penz.) in Allium cepa and its wild relatives. Euphytica 95(2):173–178

    Google Scholar 

  • Galván GA (2011). [Breeding for disease resistance in onion]. Final report of the Project INIA-FPTA 250] Mejoramiento genético por resistencia a enfermedades en cebolla. Informe final del Proyecto INIA-FPTA 250. Montevideo, Uruguay, p 100

    Google Scholar 

  • Gavini F, Mmergaert J, Bej A, Mielcarek C, Izard D, Kersters K, De LJ (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoeagen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Intl J Syst Evol Microbiol 39:337–345

    Google Scholar 

  • Gutierrez JA, Cramer CS (2005) Screening short-day onion cultivars for resistance to Fusarium basal rot. HortScience 40:157–160

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hamilton BK, Pike LM, Sparks AN, Bender DA, Jones RW, Candeia J, De Franca G (1999) Heritability of thrips resistance in the ‘IPA-3’ onion cultivar in South Texas. Euphytica 109(2):117–122

    Article  Google Scholar 

  • Hammond-Kosack YKE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR (2007) Cell biology of plant—oomycete interactions. Cell Microbiol 9(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20(4):509–517

    Article  Google Scholar 

  • Havey MJ (2012) Onion, Allium cepa L. In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, pp 35–58

    Google Scholar 

  • He P, Sheen J, Shan L (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 9(6):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Holz G, Knox-Davies PS (1974) Resistance of onion selections to Fusarium oxysporum f. sp.cepae. Phytophylactica 6:153–156

    Google Scholar 

  • Huang YH, Mao ZC, Xie BY (2016) Chinese leek (Allium tuberosum Rottler ex Sprengel) reduced disease symptom caused by root-knot nematode. J Integr Agri 15(2):364–372

    Article  Google Scholar 

  • Jesperson GD, Sutton JC (1987) Evaluation of a forecaster for downy mildew of onion (Allium cepa L.). Crop Prot 6:95–103

    Article  CAS  Google Scholar 

  • Jones HA, Porter DR, Leach LD (1939) Breeding for resistance to onion downy mildew caused by Peronospora destructor. Hilgardia 12:531–550

    Article  Google Scholar 

  • Jones HA, Bailey SF, Emsweller SL (1934) Thrips resistance in the onion. Hilgardia 8(7):213–232

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/05286

    Article  CAS  PubMed  Google Scholar 

  • Kamal AEA, Mohamed HM, Aly AA, Mohamed HA (2008) Enhanced onion resistance against stemphylium leaf blight disease, caused by Stemphylium vesicarium, by di-potassium phosphate and benzothiadiazole treatments. Plant Pathol J 24(2):171–177

    Article  CAS  Google Scholar 

  • Kamoun S, Furzer O, Jones JDS, Judelson HS, Ali GS et al (2015) The top ten oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16(4):413–434

    Article  PubMed  Google Scholar 

  • Khar A, Lawande KE, Negi KS (2011) Microsatellite marker-based analysis of genetic diversity in SD tropical Indian onion and cross amplification in related Allium species. Genet Resour Crop Evol 58:741–752

    Article  Google Scholar 

  • Khar A, Singh H (2020) Rapid methods for onion breeding. In: Gosal SS, Wani SH. (eds) Accelerated plant breeding, vol 2: vegetables. Springer Nature, pp 57–76

    Google Scholar 

  • Khar A, Hirata S, Abdelrahman M, Shigyo M, Singh H (2020) Breeding and genomic approaches for climate-resilient garlic. In: Kole C. (ed.) Genomic designing of climate-smart vegetable crops. Springer International Publishing, pp 359–383

    Google Scholar 

  • Khosa JS, McCallum J, Dhatt AS, Macknight RC (2016) Enhancing onion breeding using molecular tools. Plant Breed 135:9–20

    Article  Google Scholar 

  • Khosa J, Hunsaker D, Havey MJ (2020) Identities of and phenotypic variation for epicuticular waxes among leaves and plants from inbred onion populations. HortScience 55(12):2008–2010

    Article  CAS  Google Scholar 

  • Khrustaleva LI, Kik C (2000) Introgression of Allium fistulosum into A. cepa mediated by A. roylei. Theor Appl Genet 100:17–26

    Article  Google Scholar 

  • Khrustaleva LI, Mardini M, Kudryavtseva N, Alizh R, Romanov D, Sokolov P, Monakhos G (2019) The power of genomic in situ hybridization in interspecific breeding of bulb onion (Allium cepa L) resistant to downy mildew (Peronospora destructor [Berk.] Casp.). Plants 8:36

    Google Scholar 

  • Kik C, Buiteveld J, Verbeek WHJ (1997) Biotechnological aspects of Allium breeding. Acta Hort 433:291–297

    Article  Google Scholar 

  • Kik C (2002) Exploitation of wild relatives for the breeding of cultivated Allium species. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing, Wallingford, pp 81–100

    Chapter  Google Scholar 

  • Kim S, Kim CW, Choi MS, Kim S (2016) Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew (Peronospora destructor) in onion (Allium cepa L.). Euphytica 208:561–569

    Article  CAS  Google Scholar 

  • Klaas M, Friesen N (2002) Molecular markers in Allium. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing, Wallingford-New York, pp 159–186

    Chapter  Google Scholar 

  • Kofoet A, Kik C, Wietsma WA, de Vries JN (1990) Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) fromAllium roylei Stearn in the backcross Allium cepa L. x (A. roylei x A. cepa). Plant Breed 105:144–149

    Article  Google Scholar 

  • Kofoet A, Zinkernagel V (1989) Resistance to downy mildew (Peronospora destructor (Berk.) Casp.) in Allium species. J Plant Dis Protec 97(1):13–23

    Google Scholar 

  • Lakra BS (1999) Development of purple blotch incited by Alternaria porri and its losses in seed crops of onion (Allium cepa). Indian J Agric Sci 69(2):144–146

    Google Scholar 

  • Lamour K, Kamoun S (eds) (2009) Oomycete genetics and genomics: diversity, interactions, and research tools. Wiley, Hoboken, New Jersey, p 582

    Google Scholar 

  • Le D, Audenaert K, Haessaert G (2021) Fusarium basal rot: profile of an increasingly important disease in Allium spp. Trop Plant Pathol. https://doi.org/10.1007/s40858-021-00421-9

  • Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD (2019) Angiosperm DNA C-values database (release 9.0, Apr 2019). https://cvalues.science.kew.org/

  • Leoni C, De Vries M, Ter Braak CJF, van Bruggen AHC, Rossing WAH (2013) Fusarium oxysporum f.sp. cepae dynamics: in-plant multiplication and crop sequence simulations. Eur J Plant Pathol 137(3):545–561

    Google Scholar 

  • Li W, Deng Y, Ning Y, He Z, Wang GL (2020) Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu Rev Plant Biol 71:25.1–25.2

    Google Scholar 

  • Licona-Juárez KC, Acosta-García G, Ramírez-Medina H, Huanca-Mamani W, Guevara-Olvera L (2019) Rapid and accurate PCR-based and boiling DNA isolation methodology for specific detection of Sclerotium cepivorum in garlic (Allium sativum) cloves. Interciencia 44(2):71–74

    Google Scholar 

  • Lindhout P (1995) Mapping disease resistance genes in tomato: a toy for the geneticist or a joy for the breeder? Acta Hort 412:39–48

    Article  CAS  Google Scholar 

  • Link KP, Angell HR, Walter JC (1929) The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. J Biol Chem 81:369–375

    Article  CAS  Google Scholar 

  • Lopes LHR, Boitreux LS, Rossato M, Aguiar FM, Fonseca MEN, Oliveira VR (2021) Diversity of Colletotrichum species causing onion anthracnose in Brazil. Eur J Plant Pathol 159:339–357

    Article  CAS  Google Scholar 

  • Lorbeer JW, Kuhar TP, Hoffmann MP (2002). Monitoring and forecasting for disease and insect attack in onions and Allium crops within IPM strategies. In: Rabinowitch HD, Currah L (ed), Allium crop science: recent advances. CABI, pp 293–310

    Google Scholar 

  • Ludwin AC, Hubstenberger JF, Phillips GC, Southward GM (1992) Screening of Allium tester lines in vitro with Pyrenochaeta terrestris filtrates. HortScience 27:166–168

    Article  Google Scholar 

  • Maeso D (2005) [Onion crop diseases] Enfermedades del cultivo de cebolla. In: Arboleya J (ed), Tecnología para la producción de cebolla. INIA Boletín de divulgación 88, Uruguay, pp 151–188

    Google Scholar 

  • Mandal S, Cramer CS (2020) An artificial inoculation method to select mature onion bulbs resistant to Fusarium basal rot. HortScience 55(11):1840–1847

    Article  CAS  Google Scholar 

  • Martin NA, Workman PJ (2006) A new bioassay for determining the susceptibility of onion (Allium cepa) bulbs to onion thrips, Thrips tabaci (Thysanoptera: Thripidae). NZ J Crop Hort Sci 34(1):85–92

    Article  Google Scholar 

  • Maude RB (1990) Leaf disease of onion. In: Rabinowitch HD, Brewster JL (eds), Onion and allied crops, vol II. CRC Press. Boca Raton, Florida, pp 173–190

    Google Scholar 

  • Maude R (2006) Onion diseases. In: Cooke B, Jones D, Kaye B (eds) The epidemiology of plant diseases. Springer, Dordrecht, pp 491–520. https://doi.org/10.1007/1-4020-4581-6_19

  • McCallum J, Thomson S, Pither-Joyce M, Kenel F, Clarke A, Havey MJ (2008) Genetic diversity analysis and single-nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag–simple sequence repeat markers. Am J Hort Sci 133(6):810–818

    Article  Google Scholar 

  • McFerson JR, Walters TW, Eckenrode CJ (1996) Variation in Allium spp. damage by onion maggot. HortScience 31(7):1219–1222

    Google Scholar 

  • Melo IG, Costa CP (1983) [Mass selection in onion (Allium cepa L.) population Pira Ouro for resistance to Colletotrichum gloeosporioides Penz] Selecao massal em cebola (Allium cepa L.) para resistencia a Colletotrichum gloeosporioides Penz. Summ Phytopathol 9:214–218

    Google Scholar 

  • Miller ME, Taber RA, Amador JM (1978) Stemphylium blight of onion in South Texas. Plant Dis Rep 62:851–853

    Google Scholar 

  • Molenaar ND (1984) Genetics Thrips (Thrips tabaci L.) resistance and epicuticular wax characteristics of non-glossy onions (Allium cepa L.). Diss Abstr B (Sci & Eng) 45(4)

    Google Scholar 

  • Montes L (2004) Evaluation of thirty-two onion cultivars in Honduras. In: Currah L (ed) International onion trial report, pp 72–73

    Google Scholar 

  • Monzen K (1926) The woolly apple aphid in Japan with special reference to its life history and susceptibility of the host plant Verhandl. In: Proceedings of the 3rd international entomological congress, Zurich, 1925, pp 249–75

    Google Scholar 

  • Munger HM, Page RF (1974) Preliminary results in testing for onion maggot resistance. Veg Improv Newsl 16:4–6

    Google Scholar 

  • Nanda S, Chand SK, Mandal P, Tripathy P, Joshi RK (2016) Identification of novel source of resistance and differential response of Allium genotypes to purple blotch pathogen, Alternaria porri (Ellis) Ciferri. Plant Pathol J 32:519–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Natural Resource Institute (1990) Allium and its relatives: production and utilization, NRI Catham, UK, pp 1–189

    Google Scholar 

  • Netzer D, Rabinowitch HD, Weintal C (1985) Greenhouse technique to evaluate onion resistance topink root. Euphytica 34:385–391

    Article  Google Scholar 

  • Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Enfield Pub & Distribution Co, Enfield, p 200

    Google Scholar 

  • Njau GM, Nyomora AM, Dinssa FF, Chang JC, Malini P, Subramanian S, Srinivasan R (2017) Evaluation of onion (Allium cepa) germplasm entries for resistance to onion thrips, Thrips tabaci (Lindeman) in Tanzania. Intl J Trop Insect Sci 37:98–113

    Article  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Panstruga R, Parker JE, Schulze-Lefert P (2009) SnapShot: plant immune response pathways. Cell 136:978e1

    Google Scholar 

  • Pathak CS, Black LL, Cheng SJ, Wang TC, Ko SS (2001) Breeding onions for Stemphylium leaf blight resistance. Acta Hort 555:77–81. https://doi.org/10.17660/ActaHortic.2001.555.7

    Article  Google Scholar 

  • Pathak DP, Singh AA, Deshpande STS (1986) Sources of resistance to purple blotch in onion. Veg Sci 13:300–303

    Google Scholar 

  • Patil AP, Nawale RN, Ajri DS, Moholkar PR (1988) Field screening of onion cultivars for their reaction to thrips. Indian Cocoa Arecanut Spices J 12:10–11

    Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, León-Reyes A, van der Ent S, van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • Ponce de León I, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Intl J Mol Sc 14(2):3178–3200

    Article  CAS  Google Scholar 

  • Porter DR, Jones HA (1933) Resistance of some of the cultivated species of Allium to pink root (Phoma terrestris). Phytopathology 23:290–298

    Google Scholar 

  • Reiter J, Hübbers AM, Albrecht F, Leichert LIO, Slusarenko AJ (2020) Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. Intl J Med Microb 310:151359

    Article  CAS  Google Scholar 

  • Ricroch A, Yockteng R, Brown SC, Nadot S (2005) Evolution of genome size across some cultivated Allium species. Genome 48:511–520

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez S,Hausbeck (2018) Evaluating host resistance to limit Colletotrichum coccodes on onion. HortScience 53(7):916–919

    Google Scholar 

  • Rout E, Tripathy P, Nanda S, Nayak S, Joshi RK (2015) Accessions for resistance to Fusarium oxysporum f.sp. cepae. Proc Natl Acad Sci India Sect B Biol Sci 86:643–649

    Article  Google Scholar 

  • Sayed AO, Kasem ZA, Abdel-Rahem TAR, Abdel-Rahem AM (2016) In vitro technique for selecting onion for white rot disease resistance. Afr Crop Sci J 24(3):305–315

    Article  Google Scholar 

  • Scholten OE, van Kaauwen MP, Shahin HPM, Keizer LCP, Burger K, van Heusden AW, van der Linden CG, Vosman B (2016) SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol 16:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scholten OE, Van Heusden AW, Khrustaleva LI, Burger-Meijer K, Mank RA, Antonise RGC, Harrewijn JL, Van Haecke W, Oost EH, Peters RJ, Kik C (2007) The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 156:345–353

    Article  Google Scholar 

  • Schwartz HF, Mohan SK (2008) Compendium of onion and garlic diseases. APS Press, St Paul, MN, p 54

    Google Scholar 

  • Schwartz HF (2004). Botrytis, downy mildew, and purple blotch of onion. Doctoral dissertation, Colorado State University, Libraries

    Google Scholar 

  • Shahanaz E, Razdan VK, Raina PK (2007) Survival, dispersal and management of foliar blight pathogen of onion. J Mycol Plant Pathol 37:213–214

    Google Scholar 

  • Sharma-Poudyal D, Paulitz TC, du Toit LJ (2015) Evaluation of onion genotypes for resistance to stunting caused by Rhizoctonia solani AG 8. HortScience 50(4):551–554

    Article  Google Scholar 

  • Shigyo M, Kik C (2008) Onion. In: Prohens J, Nuez F (eds) Vegetables: handbook of plant breeding, vol 2. Springer, Berlin, pp 121–162

    Chapter  Google Scholar 

  • Shigyo M, Khar A, Abdelrahman M (eds) (2018) The Allium genomes. Springer International Publishing, Cham, Switzerland, p 217

    Google Scholar 

  • Silva VCPD, Bettoni MM, Bona C, Foerster LA (2015) Morphological and chemical characteristics of onion plants (Allium cepa L.) associated with resistance to onion thrips. Acta Sci Agron 37(1):85–92

    Google Scholar 

  • Singh N, Cramer CS (2019) Improved tolerance for onion thrips and Iris Yellow Spot in onion plant introductions after two selection cycles. Horticulturae 5:18

    Article  CAS  Google Scholar 

  • Singh H, Khar A (2021) Perspectives of onion hybrid breeding in India: an overview. Indian J Agric Sci 91(10):1426–1432

    Google Scholar 

  • Singh H, Khar A, Verma P (2021a) Induced mutagenesis for genetic improvement of Allium genetic resources: a comprehensive review. Genet Resour Crop Evol 68(7):2669–2690. https://doi.org/10.1007/s10722-021-01210-8

    Article  Google Scholar 

  • Singh H, Verma P, Lal SK, Khar A (2021b) Optimization of EMS mutagen dose for short day Indian onion. Indian J Hortic 78(1):35–40. https://doi.org/10.5958/0974-0112.2021b.00005.0

  • Snowdon AI (2010) Post-harvest diseases and disorders of fruit and vegetables, vol 2. CRC Press, Boca Raton, FL, USA, p 260

    Book  Google Scholar 

  • Stankovic S, Levic J, Petrovic T, Logrieco A, Moretti A (2007) Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur J Plant Pathol 118:165–172

    Article  CAS  Google Scholar 

  • Steentjes MBF, Scholten OE, van Kan JAL (2021) Peeling the onion: towards a better understanding of Botrytis diseases of onion. Phytopathology. https://doi.org/10.1094/PHYTO-06-20-0258-IA

    Article  PubMed  Google Scholar 

  • Stice SP, Shin GY, De Armas S, Koirala S, Galván GA, Siri MI, Severns PM, Coutinho T, Dutta B, Kvitko BH (2021) The distribution of onion virulence gene clusters among Pantoea spp. Front Plant Sci 12:643787

    Article  PubMed  PubMed Central  Google Scholar 

  • Stice SP, Thao KK, Khang CH, Baltrus DA, Dutta B, Kvitko BH (2020) Thiosulfinate tolerance is a virulence strategy of an atypical bacterial pathogen of onion. Curr Biol 30:3130–3140

    Article  CAS  PubMed  Google Scholar 

  • Suheri H, Price TV (2000) Infection of onion leaves by Alternaria porri and Stemphylium vesicarium and disease development in controlled environments. Plant Pathol 49:375–382

    Article  Google Scholar 

  • Suheri H, Price TV (2001) The epidemiology of purple leaf blotch on leeks in Victoria. Australia. Eur J Plant Pathol 107(5):503–510

    Article  Google Scholar 

  • Sumner DR (1995) Fusarium basal rot. In: Schwartz HF, Mohan SK (eds) Compendium of onion and garlic diseases. APS Press, St. Paul, MN, USA, pp 10–11

    Google Scholar 

  • Sun X, Zhu S Li N, Cheng Y, Zhao J et al. (2020) A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and Allicin Biosynthesis. Mol Plant 13:1328–1339

    Google Scholar 

  • Taylor A, Teakle GR, Walley PG, Finch-Savage WE, Jackson AC, Jones JE, Hand P, Thomas B, Havey MJ, Pink DAC, Clarkson JP (2019) Assembly and characterization of a unique onion diversity set identifies resistance to Fusarium basal rot and improved seedling vigour. Theor Appl Genet 132:3245–3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor A, Vágány V, Jackson AC, Harrison RJ, Rainoni A, Clarkson JP (2016) Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Mol Plant Pathol 17(7):1032–1047

    Google Scholar 

  • Taylor A, Vagany V, Barbara DJ, Thomas B, Pink DAC, Jones JE, Clarkson JP (2013) Identification of differential resistance to six Fusarium oxysporum f.sp. cepae isolates in commercial onion cultivars through the development of a rapid seedling assay. Plant Pathol 62:103–111

    Article  Google Scholar 

  • Tripathy P, Priyadarshini A, Das SK, Sahoo BB, Dash DK (2013) Evaluation of onion (Allium cepa L.) genotypes for tolerance to thrips (Thrips tabaci L.) and purple blotch [Alternaria porri (Ellis) Ciferri]. Intl J Bio-Resour Stress Manag 4:561–564

    Google Scholar 

  • Ullah S, Atiq M, Younas M, Rajput NA, Sahi ST, Sharif A, Talib MZ, Fatima K, Majeed MU, Ashraf W, Raza H (2020) Monitoring of epidemiological factors promotive for the expansion of downy mildew of onion and its chemotherapeutic management under field conditions. Intl J Biosci 16:173–182

    Google Scholar 

  • Valdez J, Makuch MA, Marini GV (2004). [Pathogenicity of Fusarium isolates on onion seedlings (summary)] Patogenicidad de aislamientos de Fusarium spp. en plántulas de cebolla (Allium cepa L). In: 27th Congreso Argentino de Horticultura, p 60

    Google Scholar 

  • van Heusden AW, van Ooijen JW, Vrielink-van Ginkel R, Verbeek WHJ, Wietsma WA, Kik C (2000) A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLPTM) markers. Theor Appl Genet 100:118–126

    Article  Google Scholar 

  • Van Raamsdonk LWD, Ensink W, Van Heusden AW, Vrielink van Ginkel M, Kik C (2003) Biodiversity assessment based on cpDNA and crossability analysis in selected species of Allium subgenus Rhizirideum. Theor Appl Genet 107:1048–1058

    Article  PubMed  CAS  Google Scholar 

  • Verma SK (1996) Studies on the host preference of the onion thrips (Thrips tabaci Lindeman) to the varieties of onion. Indian J Entomol 28:396–398

    Google Scholar 

  • Viruel J, Kantar MB, Gargiulo R, Hesketh-Prichard P, Leong N, Cockel C, Forest F, Gravendeel B, Pérez Barrales R, Leitch IJ, Wilkin P (2021) Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification. Bot J Linn Soc 195:1–33

    Article  Google Scholar 

  • Vu HQ, Yoshimatsu Y, Khrustaleva LI, Yamauchi N, Masayoshi S (2012) Alien genes introgression and development of alien monosomic addition lines from a threatened species, Allium roylei Stearn, to Allium cepa L. Theor Appl Genet 124(7):s.1241–s.1257

    Google Scholar 

  • Walters TW, Ellerbrock LA, van der Heide JJ, Lorbeer JW, LoParco DP (1996) Field and greenhouse procedures to evaluate onions for Botrytis leaf blight resistance. HortScience 31(3):436–438

    Article  Google Scholar 

  • Warid W, Tims EC (1952) Studies on the inheritance of resistance to downy mildew studies in onion incited by Peronospora destructor. Phytopathology 42:22

    Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8(5):561–580

    Article  CAS  PubMed  Google Scholar 

  • Wordell Filho JA, Stadnik MJ (2008) [Evaluation of varietal reaction of onion to leaf anthracnose] Avaliação da reação varietal de cebola à antracnose foliar. Summa Phytopathol 34(3):284–286

    Article  Google Scholar 

  • Wright PJ, Chynoweth RW, Beresford RM, Henshall WR (2002) Comparison of strategies for timing protective and curative fungicides for control of onion downy mildew (Peronospora destructor) in New Zealand. In: Proceeding of the British Crop Protection Council Conference, Pests & Diseases, pp 207–212

    Google Scholar 

  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia Palleroni and Holmes 1981 comb. nov. Microbiol Immunol 36:1251–1275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Khar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khar, A., Galván, G.A., Singh, H. (2022). Allium Breeding Against Biotic Stresses. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-97785-6_6

Download citation

Publish with us

Policies and ethics