Skip to main content

The Lablab Genome: Recent Advances and Future Perspectives

  • Chapter
  • First Online:
Underutilised Crop Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Lablab (Lablab purpureus (L.) Sweet) is a drought-tolerant legume mainly used as human food and livestock forage, and also as medicinal plant. However, it remains underutilised because of negative attributes, including insect pest susceptibility, anti-nutritional compounds in the seeds, a long growth period and daylength sensitivity in landraces. Lablab is often grown as an insurance crop alongside traditional or staple crops on smallholder farms because of its ability to survive dry and hot seasons that might cause other crops to fail. Recent work has begun to investigate the genetic basis of some morphological and physiological traits, the partitioning of genetic variation, and identifying varieties with important agronomic features. The crop comprises vast, but largely underexploited diversity. Being the only species in the genus Lablab and phylogenetically distinct from other cultivated legumes in the genera Vigna and Phaseolus make lablab an interesting species for comparison in the legumes. Further, the evidence suggests that lablab was domesticated twice (or is made up of two wild-domesticated pairs of taxa), and these gene pools differ in some important traits, most notable the number of seeds per pod and the genome size. This offers the potential for exciting evolutionary questions to be answered and affords more power for studies aiming to understand the genetic basis of domesticated phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesoji A, Oyebamiji N, Abubakar I (2020) Influence of incorporated lablab planted at various spacings on productivity of maize (Zea mays L.) varieties in northern Guinea savanna zone of Nigeria. Fudma J Sci 4(3):358–365. https://doi.org/10.33003/fjs-2020-0403-279

  • Ahmed MT, Miah MRU, Amin MR, Hossain MM (2015) Evaluation of some plant materials against pod borer infestation in country bean with reference to flower production. Ann Bangladesh Agric 19:71–78

    Google Scholar 

  • Al-Snafi AE (2017) The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)—a review. IOSR J Pharmacy 7(2):22–30

    Article  Google Scholar 

  • Ali M, Hasan MM, Ahmad Q (2011) Karyotype analysis in lignosus bean (Dipogon lignosus) and lablab bean (Lablab purpureus). J Bangladesh Agric Univ 9(1):27–36

    Article  Google Scholar 

  • Amkul K, Sukbang JM, Somta P (2021) Genetic diversity and structure of landrace of lablab (Lablab purpureus (L.) Sweet) cultivars in Thailand revealed by SSR markers. Breed Sci 71(2):176–183. https://doi.org/10.1270/jsbbs.20074

  • Amole TA, Oduguwa BO, Shittu O, Famakinde A, Okwelum N, Ojo VOA, Dele PA, Idowu OJ, Ogunlolu B, Adebiyi AO (2013a) Herbage yield and quality of Lablab purpureus during the late dry season in western Nigeria. Slovak J Animal Sci 46(1):22–30

    Google Scholar 

  • Amole TA, Oduguwa BO, Jolaosho AO, Arigbede MO, Olanite JA, Dele PA, Ojo VOA (2013b) Nutrient composition and forage yield, nutritive quality of silage produced from maize-lablab mixture. Malaysian J Anim Sci 16(2):45–61

    Google Scholar 

  • Angeles JGC, Villanueva JC, Uy LYC, Mercado SMQ, Tsuchiya MCL, Lado JP, Angelia MRN, Bercansil-Clemencia MCM, Estacio MAC, Torio MAO (2021) Legumes as functional food for cardiovascular disease. Appl Sci 11(12):5475. https://doi.org/10.3390/app11125475

    Article  CAS  Google Scholar 

  • Ariina MMS, Warade SD, Kanaujia SP, Gadi Y, Kayia AA, Chandrakumar Singh M (2021) Seed protein profiling, an efficient method in diversity analysis of dolichos bean (Lablab purpureus L. Sweet.) from Northeast India. Chem Sci Rev Lett 10(38):261–268. https://doi.org/10.37273/chesci.cs205108201

  • Armstrong KL, Albrecht KA, Lauer JG, Riday H (2008) Intercropping corn with lablab bean, velvet bean, and scarlet runner bean for forage. Crop Sci 48(1):371–379. https://doi.org/10.2135/cropsci2007.04.0244

    Article  Google Scholar 

  • AVRDC (World Vegetable Center) (2021). How to order seed: handling fees. Shanhua, Tainan, Taiwan. https://avrdc.org/seed/seeds/

  • Ayuning-Tyas DW, Sjofjan O, Eka-Radiati L (2014) Evaluation protein digestibility, metabolic energy of autoclaved komak beans (Lablab purpureus L Sweet) on broiler. J World’s Poult Res 4(3):60–63

    Google Scholar 

  • Bakari AE, Pauline NM (2020) Trade-offs of Dolichos lablab production in the context of the changing climate in semi-arid areas of Tanzania. Tanzania J Agric Sci 19(2):188–202

    Google Scholar 

  • Bandyopadhyay B, Santra SC (2007) In situ 4C DNA content study of twenty-nine hybrid varieties of some selected taxa of tribe Phaseolae (Fabaceae). Legume Research-an Internat J 30(4):235–242

    Google Scholar 

  • Bhardwaj HL, Hamama AA (2019) A preliminary evaluation of lablab biomass productivity in Virginia. J Agric Sci 11(13):42–47

    Google Scholar 

  • Biswas SC (2015) Summer country bean cultivation raises farm income in Bangladesh. Feedback Field (AVRDC the World Vegetable Center) 28:3–4. https://avrdc.org/wpfb-file/f0217-pdf/

    Google Scholar 

  • Bobos I, Fedosy I, Zavadska O, Tonha O, Olt J (2019) Optimization of plant densities of dolichos (Dolichos lablab L. var. lignosus) bean in the right-bank of forest-steppe of Ukraine. Agron Res 17(6):2195–2202. https://doi.org/10.15159/AR.19.223

  • Brilhante M, Varela E, P Essoh A, Fortes A, Duarte MC, Monteiro F, Maria M, Romeiras MM (2021) Tackling food insecurity in Cabo Verde Islands: the nutritional, agricultural and environmental values of the legume species. Foods 10(2):206.https://doi.org/10.3390/foods10020206

  • Cardona C, Kornegay J, Posso CE, Morales F, Ramirez H (1990) Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56:197–206. https://doi.org/10.1111/j.1570-7458.1990.tb01397.x

    Article  Google Scholar 

  • Chakoma I, Gwiriri LC, Manyawu G, Dube S, Shumba M, Gora A (2016) Forage seed production and trade as a pathway out of poverty in the smallholder sector: lessons from the Zimbabwe Crop Livestock Integration for Food Security (ZimCLIFS) project. Afr J Range Forage Sci 33(3):181–184. https://doi.org/10.2989/10220119.2016.1173097

    Article  Google Scholar 

  • Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y et al (2018) The draft genomes of five agriculturally important African orphan crops. GigaScience 8(3). https://doi.org/10.1093/gigascience/giy152

  • Chapman MA (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci 3(2):1400111. https://doi.org/10.3732/apps.1400111

  • Chapman MA (2019) Optimizing depth and type of high-throughput sequencing data for microsatellite discovery. Appl Plant Sci 7(11):e11298. https://doi.org/10.1002/aps3.11298

  • Chavan SS, Shinde AK, Burondkar MM, Sawardekar SV, Gimhavnekar V (2021a) Physiological analysis for growth and yield of lablab bean (Lablab purpureus L. Sweet) grown under residual moisture. J Pharmacognosy Phytochem 10(1):2094–2098

    Google Scholar 

  • Chavan SS, Shinde AK, Burondkar MM, Sawardekar SV, Gimhavnekar V (2021b) Identifying drought tolerant genotypes of lablab bean (Lablab purpureus L. Sweet) grown under residual moisture. J Pharmacognosy and Phytochem 10(1):2598–2601

    Google Scholar 

  • Chewaka-Tura D, Tadesse-Mosisa M (2017) Effect of processing on anti-nutritional factors and sensory qualities of ‘Hepho’, a black climbing bean (Lablab purpureus L.) flour. Food Sci Qual Manage 60:22–27. https://iiste.org/Journals/index.php/FSQM/article/view/35338

  • Clapham AJ (2019) The Archaeobotany of Nubia. In: Raue D (ed) Handbook of ancient Nubia, De Gruyter, Berlin/Boston, pp 83–102. https://doi.org/10.1515/9783110420388

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans Royal Soc B Biol Sci 363(1491):557–572. https://doi.org/10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Cullen BR, Hill JO (2006) A survey of the use of lucerne, butterfly pea and lablab in ley pastures in the mixed-farming systems of northern Australia. Trop Grasslands 40(1):24–32

    Google Scholar 

  • Ćupina B, Mikić A, Krstić Ð, Vujić S, Zorić L, Ðorđević V, Erić P (2017) Mixtures of legumes for forage production. In: Murphy-Bokern D, Stoddard FL, Watson CA (eds) Legumes in cropping systems, CABI, pp 193–208. https://doi.org/10.1079.9781780644981.0193

  • Davari SA, Gokhale NB, Palsande VN, Kasture MC (2018) Wal (Lablab purpureus L.): An unexploited potential food legumes. Internat J Chem Stud 6(2):946–949

    Google Scholar 

  • D’souza MR, Devaraj VR (2011) Specific and non-specific responses of Hyacinth bean (Dolichos lablab) to drought stress. Indian J Biotechnol 10:130–139

    Google Scholar 

  • Deka RK, Sarkar CR (1990) Nutrient composition and antinutritional factors of Dolichos lablab L. seeds. Food Chem 38(4):239–246.

    Google Scholar 

  • Devaraj VR (ed) (2016a) Hyacinth bean: a gem among legumes—State of the art in Lablab purpureus research. Legume Perspectives 13:1–41 (July 2016a). https://www.legumesociety.org/2019/12/02/legume-perspectives/

  • Devaraj VR (2016b) Economic importance of hyacinth bean (Lablab purpureus L.): an Indian perspective. Legume Perspectives 13:37–38 (July 2016). https://www.legumesociety.org/2019/12/02/legume-perspectives/

  • Dheer M, Sharma RA, Gupta VP, Punia SS (2014) Cytomorphological investigations in colchicine-induced polyploids of Lablab purpureus (L.) Sweet. Indian J Biotechnol 13:347–355

    Google Scholar 

  • Douglas MR, Chang J, Begum K, Subramanian S, Tooker JF, Alam SN, Ramasamy S (2018) Evaluation of biorational insecticides and DNA barcoding as tools to improve insect pest management in lablab bean (Lablab purpureus) in Bangladesh. J Asia-Pacific Entomol 21(4):1326–1336

    Article  Google Scholar 

  • Duke JA, Kretschmer Jr AE, Reed CF, Weder JKP (1981) Lablab purpureus (L.) Sweet. In: Duke JA (ed) Handbook of legumes of world economic importance, pp. 102–106. Plenum Press, New York, USA and London, UK

    Google Scholar 

  • Dörr de Quadros P, Martin AR, Zhalnina K, Dias R, Giongo A, Fulthorpe R, Bayer C, Triplett EW, Camargo FA de O (2019) Lablab purpureus influences soil fertility and microbial diversity in a tropical maize-based no-tillage system. Soil Syst 3(3):50.https://doi.org/10.3390/soilsystems3030050

  • Ewansiha SU, Ogedegbe SA, Falodun EJ (2016) Utilization potentials of lablab (Lablab purpureus (L.) Sweet) and the constraints of field pests and diseases in Nigeria. Agro-Science 15(1):11–16. https://doi.org/10.4314/as.v15i1.3

  • FAO (2017) FAO/INFOODS Global database for pulses on dry matter basis. Version 1.0 – PulsesDM1.0. Rome, FAO, Rome Italy. https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/

  • Furlan AL, Bianucci E, Giordano W, Castro S, Becker DF (2020) Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiol Biochem 151:566–578. https://doi.org/10.1016/j.plaphy.2020.04.010

    Article  CAS  PubMed  Google Scholar 

  • Guretzki S, Papenbrock J (2014) Characterization of Lablab purpureus regarding drought tolerance, trypsin inhibitor activity and cyanogenic potential for selection in breeding programmes. J Agron Crop Sci 200(1):24–35. https://doi.org/10.1111/jac.12043

    Article  CAS  Google Scholar 

  • Habib HM, Theuri SW, Kheadr EE, Mohamed FE (2017) Functional, bioactive, biochemical, and physicochemical properties of the Dolichos lablab bean. Food Funct 8(2):872–880. https://doi.org/10.1039/c6fo01162d

    Article  CAS  PubMed  Google Scholar 

  • Haq N, Saifullah M, Chapman MA (2016) The humble lablab bean in Bangladesh: home garden to market. Agric Dev 29:13–15

    Google Scholar 

  • Harouna DV, Mohammed EMI (2020) Biotic and abiotic stress responses of hyacinth bean (Lablab purpureus) and soybean (Glycine max): a mini-review. In: Amaresan N, Murugesan S, Kumar K, Sankaranarayanan A (eds) Microbial mitigation of stress response of food legumes. CRC Press, Boca Raton, pp 115–120

    Chapter  Google Scholar 

  • Hossain S, Ahmed R, Bhowmick S, Al Mamun A, Hashimoto M (2016) Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: implicates to both protein and essential fatty acid supplementation. SpringerPlus 5:1899. https://doi.org/10.1186/s40064-016-3587-1

  • Humphry ME, Konduri V, Lambrides CJ, Magner T, McIntyre CL, Aitken EAB et al (2002) Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes. Theor Appl Genet 105(1):160–166. https://doi.org/10.1007/s00122-002-0909-1

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Rahman MZ, Ali R, Azad AK, Sultan MK (2014) Diversity analysis and establishment of core subsets of hyacinth bean collection of Bangladesh. Pakistan J Agric Res 27(2):99–109

    Google Scholar 

  • Islam MT (2008) Morpho-agronomic diversity of hyacinth bean (Lablab purpureus (L.) Sweet) accessions from Bangladesh. Plant Genet Resour Newsl 156:73–78

    Google Scholar 

  • Islam MT (2012) Morpho-molecular characterization, diversity analysis and in vitro regeneration of hyacinth bean (Lablab purpureus L. Sweet). Ph.D. thesis, Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh

    Google Scholar 

  • Janarthanan S, Suresh P, Radke G, Morgan TD, Oppert B (2008) Arcelins from an Indian wild pulse, Lablab purpureus, and insecticidal activity in storage pests. J Agric Food Chem 56(5):1676–1682. https://doi.org/10.1021/jf071591g

    Article  CAS  PubMed  Google Scholar 

  • Kabirizi J, Mpairwe D, Mutetikka D (2005) The effect of intercropping maize with lablab on grain and fodder production in small holder dairy farming systems in Masaka district, Uganda. Uganda J Agric Sci 11:51–56

    Google Scholar 

  • Kamatchi KB, Soris PT, Mohan VR, Vadivel V (2010) Nutrient and chemical evaluation of raw seeds of five varieties of Lablab purpureus (L.) Sweet. Adv Bio Res 1(1):44–53

    Google Scholar 

  • Kamau EM, Kinyua MG, Waturu CN, Kiplagat O, Wanjala BW, Kariba RK et al (2021) Diversity and population structure of local and exotic Lablab purpureus accessions in Kenya as revealed by microsatellite markers. Global J Mol Biol 3:8

    Google Scholar 

  • Kamotho GN, Kinyua MG, Muasya RM, Gichuki ST, Wanjala BW, Kimani EN, Kamau EN (2016) Assessment of genetic diversity of Kenyan dolichos bean (Lablab purpureus L. Sweet) using simple sequence repeat (SSR) markers. Internat J Agric, Environ Bioresearch 1(1):26–43

    Google Scholar 

  • Kamotho GN, Muasya RM, Kinyua MG (2017) Assessment of phenotypic diversity of Kenyan dolichos bean (Lablab purpureus L. Sweet) germplasm based on morphological markers. Internat J Agric, Environ Bioresearch 2(6):1–22

    Google Scholar 

  • Kankwatsa P, Muzira R (2018) Agronomic performance and sensory evaluation of lablab (Lablab purpureus L. Sweet) accessions for human consumption in Uganda. Open Access Library J 5:e4481. https://doi.org/10.4236/oalib.1104481

  • Keerthi CM, Ramesh S, Byregowda M, Rao AM, Prasad BSR, Vaijayanthi PV (2014) Genetics of growth habit and photoperiodic response to flowering time in dolichos bean (Lablab purpureus (L.) Sweet). J Genet 93(1):203–206. https://doi.org/10.1007/s12041-014-0336-5

  • Keerthi CM, Ramesh S, Byregowda M, Rao AM, Prasad BSR, Vaijayanthi PV (2016) Further evidence for the genetic basis of qualitative traits and their linkage relationships in dolichos bean (Lablab purpureus L.). J Genet 95(1):89–98. https://doi.org/10.1007/s12041-015-0610-1

  • Keerthi CM, Ramesh S, Byregowda M, Rao AM, Reena GM (2018) Photo-thermal effects on time to flowering in dolichos bean (Lablab purpureus (L.) Sweet) var. lignosus. Curr Sci 115(7):1320–1327. https://doi.org/10.18520/cs/v115/i7/1320-1327

  • Khan AU, Choudhury MAR, Ferdous J, Islam MS, Rahman MS (2019) Varietal performances of country beans against insect pests in bean agroecosystem. Bangladesh J Entomol 29(2):27–37

    Google Scholar 

  • Khan AU, Choudhury MAR, Talucder MSA, Hossain MS, Ali S, Akter T, Ehsanullah M (2020) Constraints and solutions of country bean (Lablab purpureus L.) production: a review. Acta Entomol Zool 1(2):37–45

    Google Scholar 

  • Kilonzi SM (2020) Physicochemical and functional characterisation of three lablab bean (Lablab purpureus L. (Sweet) varieties grown in Kenya. Ph.D. thesis, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya. 160 pp. http://ir.jkuat.ac.ke/handle/123456789/5409

  • Kilonzi SM, Makokha AO, Kenji GM (2017) Physical characteristics, proximate composition and anti-nutritional factors in grains of lablab bean (Lablab purpureus) genotypes from Kenya. J Appl Biosci 114:11289–11298. https://doi.org/10.4314/jab.v114i1.2

    Article  Google Scholar 

  • Kimani EN, Wachira FN, Kinyua MG (2012) Molecular diversity of Kenyan Lablab (Lablab purpureus (L.) Sweet) accessions using amplified fragment length polymorphism markers. Am J Plant Sci 3:313–321

    Article  CAS  Google Scholar 

  • Kimani E, Matasyoh J, Kinyua M, Wachira FN (2019) Characterisation of volatile compounds and flavour attributes of Lablab purpureus bean accessions. Afr J Biotechnol 18(24):518–530. https://doi.org/10.5897/AJB2017.15993

    Article  CAS  Google Scholar 

  • Kokila S, Myrene RD, Devaraj VR (2014) Response of Lablab purpureus (Hyacinth bean) cultivars to drought stress. Asian J Plant Sci Res 4(5):48–55

    Google Scholar 

  • Konduri V, Godwin ID, Liu CJ (2000) Genetic mapping of the Lablab purpureus genome suggests the presence of ‘cuckoo’ gene(s) in this species. Theor Appl Genet 100(6):866–871. https://doi.org/10.1007/s001220051363

    Article  CAS  Google Scholar 

  • Lee S-I, Kim N-S (2014) Transposable elements and genome size variations in plants. Genomics Inform 12(3):87–97. https://doi.org/10.5808/GI.2014.12.3.87

    Article  PubMed  PubMed Central  Google Scholar 

  • Letting FK, Venkataramana PB, Ndakidemi PA (2021) Breeding potential of lablab [Lablab purpureus (L.) Sweet]: a review on characterization and bruchid studies towards improved production and utilization in Africa. Genet Resour Crop Evol 68(8):3081–3101. https://doi.org/10.1007/s10722-021-01271-9

  • Li N, Bai JQ, Gao S, Yang L, Li J, Du SB et al (2021) The complete molecular sequence of chloroplast genome of Lablab purpureus (L.) Sweet. Mitochondrial DNA B Resour 6(3):758–9. https://doi.org/10.1080/23802359.2021.1878958

  • Liu CJ (1996) Genetic diversity and relationships among Lablab purpureus genotypes evaluated using RAPD as markers. Euphytica 90(1):115–119. https://doi.org/10.1007/BF00025167

    Article  Google Scholar 

  • Liu H, Wei J, Yang T, Mu W, Song B, Yang T et al. (2019) Molecular digitization of a botanical garden: high-depth whole-genome sequencing of 689 vascular plant species from the Ruili Botanical Garden. GigaScience 8(4):giz007. https://doi.org/10.1093/gigascience/giz007

  • Ma D, Sun D, Wang C, Li Y, Guo T (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66. https://doi.org/10.1016/j.plaphy.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  • Maass BL (2016) Domestication, origin and global dispersal of Lablab purpureus (L.) Sweet (Fabaceae): current understanding. Legume Perspectives 13:5–8. https://www.legumesociety.org/2019/12/02/legume-perspectives/

    Google Scholar 

  • Maass BL, Pengelly BC (2019) Tropical and subtropical forage germplasm conservation and science on their deathbed! 1 A Journey to Crisis. Outlook Agric 48(3):198–209. https://doi.org/10.1177/0030727019867961

    Article  Google Scholar 

  • Maass BL, Usongo MF (2007) Changes in seed characteristics during the domestication of the lablab bean (Lablab purpureus (L.) Sweet: Papilionoideae). Crop Pasture Sci 58(1):9–19. https://doi.org/10.1071/AR05059

  • Maass BL, Jamnadass RH, Hanson J, Pengelly BC (2005) Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism. Genet Resour Crop Evol 52(6):683–695. https://doi.org/10.1007/s10722-003-6019-3

  • Maass BL, Knox MR, Venkatesha SC, Angessa TT, Ramme S, Pengelly BC (2010) Lablab purpureus—a crop lost for Africa? Trop Plant Biol 3(3):123–135. https://doi.org/10.1007/s12042-010-9046-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Maass BL, Robotham O, Chapman MA (2017) Evidence for two domestication events of hyacinth bean (Lablab purpureus (L.) Sweet): a comparative analysis of population genetic data. Genet Resour Crop Evol 64(6):1221–1230. https://doi.org/10.1007/s10722-016-0431-y

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  CAS  PubMed  Google Scholar 

  • Miller NR, Mariki W, Nord A, Snapp S (2018) Cultivar selection and management strategies for Lablab purpureus (L.) Sweet in Africa. In: Leal Filho W (ed) Handbook of Climate Change Resilience. Springer, Cham, pp 1–14. https://doi.org/10.1007/978-3-319-71025-9_102-1

  • Minde JJ, Venkataramana PB, Matemu AO (2021) Dolichos lablab—an underutilized crop with future potentials for food and nutrition security: a review. Crit Rev Food Sci Nutr 61(13):2249–2261. https://doi.org/10.1080/10408398.2020.1775173

    Article  CAS  PubMed  Google Scholar 

  • Missanga JS, Venkataramana PB, Ndakidemi PA (2021) Recent developments in Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic resources to develop stress‐resilient varieties. Legume Sci e99. https://doi.org/10.1002/leg3.99

  • Morris JB (2009) Morphological and reproductive characterization in hyacinth bean, Lablab purpureus (L.) Sweet germplasm with clinically proven nutraceutical and pharmaceutical traits for use as a medicinal food. J Dietary Suppl 6(3):263–279. https://doi.org/10.1080/19390210903070830

  • Morris JB, Grusak MA, Wang ML, Tonnis B, Kuang HX (2013) Mineral, flavonoid, and fatty acid concentrations in ten diverse Lablab purpureus (L.) Sweet accessions. In: Kuang HX (ed) Phytochemicals: Occurrence in nature, health effects and antioxidant properties. Nova Science, New York, pp 219–224

    Google Scholar 

  • Mthembu BE, Everson TM, Everson CS (2018) Intercropping maize (Zea mays L.) with lablab (Lablab purpureus L.) for sustainable fodder production and quality in smallholder rural farming systems in South Africa. Agroecology Sustain Food Syst 42(4):362–382

    Google Scholar 

  • Naeem M, Shabbir A, Ansari AA, Aftab T, Khan MMA, Uddin M (2020) Hyacinth bean (Lablab purpureus L.)—an underutilised crop with future potential. Scientia Horticulturae 272:109551. https://doi.org/10.1016/j.scienta.2020.109551

  • Nascente AS, Dambiro J, Constantino C (2017) Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique. Revista Ceres 64:607–615. https://doi.org/10.1590/0034-737X201764060007

    Article  CAS  Google Scholar 

  • Nath DD, Islam MS, Akter T, Ferdousi J (2019) Morphology and yield potentials of lablab bean genotypes grown in early Kharif season. Asian J Agric Hort Res 4(4):1–5

    Google Scholar 

  • Ngailo JA, Kaihura FBS, Baijukya FP, Kiwambo BJ (2003) Changes in land use and its impact on agricultural biodiversity in Arumeru, Tanzania. In: Kaihura F, Stocking M (eds) Agricultural biodiversity in smallholder farms of East Africa. United Nations University Press, Tokyo, pp 145–158

    Google Scholar 

  • Ngure D, Kinyua M, Kiplagat O (2021a) Morphological and microsatellite characterization of improved Lablab purpureus genotypes. J Plant Breeding Crop Sci 13(2):23–34

    Article  Google Scholar 

  • Ngure D, Kinyua M, Kiplagat O (2021b) Evaluation of cooking time and organoleptic traits of improved Dolichos (Lablab purpureus (L.) Sweet) genotypes. Afr J Food Sci 15(5):218–225. https://doi.org/10.5897/AJFS2021.2098

  • Njaci I, Waweru B, Kamal N, Shehabu Muktar M, Fisher D, Gundlach H et al (2022) Chromosome-scale assembly of the lablab genome—A model for inclusive orphan crop genomics. BioRxiv. BIORXIV/2022/491073; https://www.biorxiv.org/content/10.1101/2022.05.08.491073v2

  • Njarui DMG, Mureithi JG (2010) Evaluation of lablab and velvet bean fallows in a maize production system for improved livestock feed supply in semiarid tropical Kenya. Anim Prod Sci 50(3):193–202. https://doi.org/10.1071/AN09137

    Article  Google Scholar 

  • Nord A, Miller NR, Mariki W, Drinkwater L, Snapp S (2020) Investigating the diverse potential of a multi-purpose legume, Lablab purpureus (L.) Sweet, for smallholder production in East Africa. PloS one 15(1):e0227739. https://doi.org/10.1371/journal.pone.0227739

  • Northup BK, Rao SC (2015) Green manure and forage potential of lablab in the US Southern Plains. Agron J 107(3):1113–1118. https://doi.org/10.2134/agronj14.0455

    Article  Google Scholar 

  • Nyawade SO, Gachene CK, Karanja NN, Gitari HI, Schulte-Geldermann E, Parker ML (2019) Controlling soil erosion in smallholder potato farming systems using legume intercrops. Geoderma Reg 17:e00225. https://doi.org/10.1016/j.geodrs.2019.e00225

    Article  Google Scholar 

  • Pandey D, Adhiguru P, Pandey A, Singh PK (2021) An underexplored diversity in “Yoksik Peron” [Lablab Purpureus (L.) Sweet] in East Siang, Arunachal Pradesh, India. Preprint, 11 pp. https://doi.org/10.21203/rs.3.rs-713936/v1

  • Patil SM, Kauthale VK, Navale YP, Nalawade AD (2018) Variability study in hyacinth bean [Lablab purpureus (L.) Sweet] landraces from tribal blocks of Maharashtra, India. Crop Res 53(5&6):252–256. https://doi.org/10.31830/2454-1761.2018.0001.29

  • Pengelly BC, Maass BL (2001) Lablab purpureus (L.) Sweet–diversity, potential use and determination of a core collection of this multi-purpose tropical legume. Genet Resour Crop Evol 48(3):261–272. https://doi.org/10.1023/A:1011286111384

  • Pengelly BC, Maass BL (2019) Tropical and subtropical forage germplasm conservation and science on their deathbed! 2. Genebanks, FAO, and donors must take urgent steps to overcome the crisis. Outlook Agric 48(3):210–219. https://doi.org/10.1177/0030727019867955

  • Philip T (1982) Induced tetraploidy in Dolichos lablab Linn. Current Sci 51(19):945

    Google Scholar 

  • Pramod C, Sudhakaran N, Harindran J (2020) Anti-inflammatory effects of Lablab purpureus Linn in polyphenolic fraction from methanolic leaf extract on experimental animal model. Pharma Innov J 9(2):338–344

    CAS  Google Scholar 

  • Punyalue A, Jongjaidee J, Jamjod S, Rerkasem B (2018) Legume intercropping to reduce erosion, increase soil fertility and grain yield, and stop burning in highland maize production in Northern Thailand. Chiang Mai Univ J Nat Sci 17(4):265–274. https://doi.org/10.12982/CMUJNS.2018.0019

    Article  Google Scholar 

  • Purwanti E, Prihanta W, Fauzi A (2019a) The diversity of seed size and nutrient content of Lablab bean from three locations in Indonesia. Internat J Adv Eng Manage Sci 5(6):395–402. https://doi.org/10.22161/ijaems.5.6.7

    Article  Google Scholar 

  • Purwanti E, Prihanta W, Fauzi A (2019b) Nutritional content characteristics of Dolichos lablab L. accessions in effort to investigate functional food source. In: 6th International Conference on Community Development (ICCD 2019b). Atlantis Press, Amsterdam, p 166–170. https://doi.org/10.2991/iccd-19.2019b.45

  • Raghu BR, Samuel DK, Mohan N, Ahora TS (2018) Dolichos bean: An underutilized and unexplored crop with immense potential. Internat J Recent Adv Multi Res 5(12):4338–4341

    Google Scholar 

  • Rai N, Kumar S, Singh RK, Rai KK, Tiwari G, Kashyap SP et al (2016) Genetic diversity in Indian bean (Lablab purpureus) accessions as revealed by quantitative traits and cross-species transferable SSR markers. Indian J Agric Sci 86(9):1193–1200

    Google Scholar 

  • Rai N, Singh PK, Rai AC, Rai VP, Singh M (2011) Genetic diversity in Indian bean (Lablab purpureus) germplasm based on morphological traits and RAPD markers. Indian J Agric Sci 81(9):801–806

    CAS  Google Scholar 

  • Rai KK, Rai N, Pandey-Rai S (2021) Unlocking pharmacological and therapeutic potential of hyacinth bean (Lablab purpureus L.): role of OMICS based biology, biotic and abiotic elicitors. In: Legumes, Intech Open Book Series, pp 1–33. https://www.intechopen.com/online-first/77832

  • Rai KK, Rai N, Rai SP (2018a) Recent advancement in modern genomic tools for adaptation of Lablab purpureus L to biotic and abiotic stresses: present mechanisms and future adaptations. Acta Physiol Plant 40(9):1–29. https://doi.org/10.1007/s11738-018-2740-6

    Article  CAS  Google Scholar 

  • Rai KK, Rai N, Rai SP (2018b) Investigating the impact of high temperature on growth and yield of Lablab purpureus L. inbred lines using integrated phenotypical, physiological, biochemical and molecular approaches. Indian J Plant Physiol 23(2):209–226

    Google Scholar 

  • Rai N, Rai KK, Tiwari G, Kumar S (2014) Nutritional and antioxidant properties and their inter-relationship with pod characters in an under-exploited vegetable, Indian bean (Lablab purpureus). Indian J Agric Sci 84(9):1051–1055. https://doi.org/10.5897/AJPS12.059

    Article  CAS  Google Scholar 

  • Ram Bahadur KC, Joshi BK, Dahal SP (2016) Diversity analysis and physico-morphological characteristics of indigenous germplasm of Lablab bean. J Nepal Agric Res Counc 2:15–21

    Article  Google Scholar 

  • Ramesh S, Byregowda M (2016) Dolichos bean (Lablab purpureus L. Sweet var. lignosus) genetics and breeding–present status and future prospects. Mysore J Agric Sci 50(3):481–500

    Google Scholar 

  • Rana R, Sayem ASM, Sabuz AA, Rahman M, Hossain A (2021) Effect of lablab bean (Lablab purpureus L.) seed flour on the physicochemical and sensory properties of biscuits. Int J Food Sci Agric 5(1):52–57. https://doi.org/10.26855/ijfsa.2021.03.008

  • Rapholo E, Odhiambo JJ, Nelson WC, Rötter RP, Ayisi K, Koch M, Hoffmann MP (2020) Maize–lablab intercropping is promising in supporting the sustainable intensification of smallholder cropping systems under high climate risk in southern Africa. Expl Agric 56(1):104–117. https://doi.org/10.1017/S0014479719000206

    Article  Google Scholar 

  • Robertson CC (1997) Black, white, and red all over: Beans, women, and agricultural imperialism in twentieth-century Kenya. Agric Hist 71:259–299

    Google Scholar 

  • Robotham O, Chapman M (2017) Population genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance. Genet Resour Crop Evol 64(1):139–148. https://doi.org/10.1007/s10722-015-0339-y

  • Sahay G, Shukla P (2015) Cytological investigations of Cowpea (Vigna unguiculata (L.) Walp) and Sem (Lablab purpureus (L.) Sweet) two major fodder legumes. In: Proc 23rd Internat Grassld Congr (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection), New Delhi, India 20–24 Nov 2015. https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=2066&context=igc

  • Saravanan S, Shanmugasundaram P, Senthil N, Veerabadhiran P (2013) Comparison of genetic relatedness among Lablab bean (Lablab purpureus (L.) Sweet genotypes using DNA markers. Int J Integr Biol 14:23–30

    Google Scholar 

  • Schaaffhausen RV (1963) Dolichos lablab or hyacinth bean: its uses for feed, food and soil improvement. Econ Bot 17(2):146–153. https://doi.org/10.1007/BF02985365

    Article  CAS  Google Scholar 

  • Sen NK, Marimuthu KM (1960) Colchiploids of Dolichos lablab L. Caryologia 13(2):411–429. https://doi.org/10.1080/00087114.1960.10797090

    Article  Google Scholar 

  • Sennhenn A, Odhiambo JJO, Maass BL, Whitbread AM (2017a) Considering effects of temperature and photoperiod on growth and development of Lablab purpureus (l.) Sweet in the search of short-season accessions for smallholder farming systems. Expl Agric 53(3):375–395. https://doi.org/10.1017/S0014479716000429

  • Sennhenn A, Njarui DMG, Maass BL, Whitbread AM (2017b) Understanding growth and development of three short-season grain legumes for improved adaptation in semi-arid Eastern Kenya. Crop Pasture Sci 68(5):442–456. https://doi.org/10.1071/CP16416

    Article  Google Scholar 

  • Shaahu DT, Ikurior SA, Carew SN (2017) Effect of decorticating and cooking lablab seeds on performance and cost of producing table rabbits. Internat J Biotechnol Food Sci 5(2):18–22

    Google Scholar 

  • Shaahu DT, Kaankuka FG, Okpanachi U (2015) Proximate, amino acid, anti-nutritional factor and mineral composition of different varieties of raw Lablab purpureus seeds. Intl J Sci Technol Res 4:157–161

    Google Scholar 

  • She CW, Jiang XH (2015) Karyotype analysis of Lablab purpureus (L.) Sweet using fluorochrome banding and fluorescence in situ hybridisation with rDNA probes. Czech J Genetics and Plant Breeding 51(3):110–116

    Google Scholar 

  • Shibli MM, Rasul MG, Islam AKM, Saikat MMH, Haque MM (2021) Genetic diversity of country bean (Lablab purpureus) genotypes collected from the coastal regions of Bangladesh. J Hortic and Postharvest Res 4(2):219–230. https://doi.org/10.22077/jhpr.2020.3282.1135

    Article  Google Scholar 

  • Shivachi A, Kiplagat K, Kinyua G (2012) Microsatellite analysis of selected Lablab purpureus genotypes in Kenya. Rwanda J 28:39–52. https://doi.org/10.4314/rj.v28i1.3

    Google Scholar 

  • Shivashankar G, Kulkarni RS (1989) Lablab purpureus. pp 48–50 in: van der Maesen LJG, Sadikin Somaatmadja (eds) Plant resources of South-east Asia (PROSEA), no. 1, Pulses. Pudoc, Wageningen, The Netherlands. https://www.prota4u.org/prosea/view.aspx?id=2

  • Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinform 31(19):3210–3212. https://doi.org/10.1093/bioinformatics/btv351

  • Singh A, Abhilash PC (2019) Varietal dataset of nutritionally important Lablab purpureus (L.) Sweet from Eastern Uttar Pradesh, India. Data Brief 24:103935. https://doi.org/10.1016/j.dib.2019.103935

  • Singh V, Kudesia R (2020) Review on taxonomical and pharmacological status of Dolichos lablab. Curr Trends Biotechnol Pharm 14(2):229–235. https://doi.org/10.5530/ctbp.2020.2.23

    Article  CAS  Google Scholar 

  • Sipahli S, Dwarka D, Amonsou E, Mellem J (2021) In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. Food Sci Technol (Campinas) 42:e55220. https://doi.org/10.1590/fst.55220

  • Smith GR, Rouquette FM, Pemberton IJ (2008) Registration of ‘Rio Verde ’lablab. J Plant Registrations 2(1):15. https://doi.org/10.3198/jpr2007.03.0164crc

    Article  Google Scholar 

  • Snapp S, Roge P, Okori P, Chikowo R, Peter B, Messina J (2019) Perennial grains for Africa: possibility or pipedream? Expl Agric 55(2):251–272. https://doi.org/10.1017/S0014479718000066

    Article  Google Scholar 

  • Soetan KO (2012) Comparative evaluation of phytochemicals in the raw and aqueous crude extracts from seeds of three Lablab purpureus varieties. Afr J Pl Sci 6(15):410–415. https://doi.org/10.5897/AJPS12.059

  • Sonali A, Manju V, Ashwin K (2015) Comparative study of Indian varieties of Lablab and field bean for phenotypic and nutritional traits. Legume Genomics Genetics 6(3):1–7. https://doi.org/10.5376/lgg.2015.06.0003

    Article  Google Scholar 

  • Sserumaga JP, Kayondo SI, Kigozi A, Kiggundu M, Namazzi C, Walusimbi K, Bugeza J, Molly A, Mugerwa S (2021) Genome-wide diversity and structure variation among lablab [Lablab purpureus (L.) Sweet] accessions and their implication in a forage breeding program. Genet Resour Crop Evol 68(7):2997–3010. https://doi.org/10.1007/s10722-021-01171-y

  • Su C, Tianlong W, Heping G, Luan C (2021) Research progress on germplasm innovation and cultivation technology of lablab bean in China. Legume Perspect 21:27–30. https://www.legumesociety.org/2019/12/02/legume-perspectives/

    Google Scholar 

  • Sultana N, Ozaki Y, Okubo H (2000) The use of RAPD markers in Lablab bean (Lablab purpureus (L.) Sweet) phylogeny. Bull Inst Trop Agric Kyushu Univ 23:45–51

    Google Scholar 

  • Susmita C, Mohan N, Aghora TS (2020) Breeding for evolution of photo-insensitive pole type vegetable dolichos (Lablab purpureus L.) varieties to suit year round cultivation. Electr J Plant Breed 11(2):633–637

    Google Scholar 

  • Tadesse-Mosisa M, Chewaka-Tura D (2017) Effect of processing on proximate and mineral composition of hepho, a black climbing bean (Lablab purpureus L.) flour. J Food Nutr Sci 5(1):16–22. https://doi.org/10.11648/j.jfns.20170501.13

  • Tamiru-Workneh S (2020) Ethnobotanical knowledge of Lablab (Lablab purpureus (L.) Sweet Fabaceae) in Konso zone and genetic diversity of collections from Ethiopia using SSR markers. MSc thesis, Addis Ababa University, Ethiopia, 112 pp. http://197.156.72.153:8080/xmlui/handle/123456789/3395

  • The Kenya Gazette (2015) Crop varieties: Dolichos (Lablab purpureus) ELDO-KT Black 1, Black 2, Cream and Maridadi. The Kenya Gazette 117(2):446–447. http://kenyalaw.org/kenya_gazette/gazette/year/2015/

  • Thormann I, Engels JM, Halewood M (2019) Are the old International Board for Plant Genetic Resources (IBPGR) base collections available through the Plant Treaty’s multilateral system of access and benefit sharing? A Review. Genet Resour Crop Evol 66(2):291–310. https://doi.org/10.1007/s10722-018-0715-5

    Article  Google Scholar 

  • Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P et al (2019) Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 47(21):10994–11006. https://doi.org/10.1093/nar/gkz841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaijayanthi PV, Ramesh S, Gowda MB, Rao AM, Keerthi CM (2015) Development of core sets of dolichos bean (Lablab purpureus L. Sweet) germplasm. J Crop Improv 29(4):405–419. https://doi.org/10.1080/15427528.2015.1036955

  • Vaijayanthi PV, Chandrakant, Ramesh S (2019) Hyacinth bean (Lablab purpureus L. Sweet): Genetics, breeding and genomics. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham, pp 287–318. https://doi.org/10.1007/978-3-030-23400-3_8

  • Venkatesha SC, Byre Gowda M, Mahadevu P, Mohan Rao A, Kim DJ, Ellis THN et al (2007) Genetic diversity within Lablab purpureus and the application of gene-specific markers from a range of legume species. Plant Genet Resour 5(3):154–171. https://doi.org/10.1017/S1479262107835659

    Article  Google Scholar 

  • Verdcourt B (1970) Lablab Adans. Studies in the Leguminosae-Papilionoideae III. Kew Bull 24:409–411

    Article  Google Scholar 

  • Vidigal P, Duarte B, Cavaco AR, Caçador I, Figueiredo A, Matos AR, Viegas W, Monteiro F (2018) Preliminary diversity assessment of an undervalued tropical bean (Lablab purpureus (L.) Sweet) through fatty acid profiling. Plant Physiol Biochem 132:508–514. https://doi.org/10.1016/j.plaphy.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  • Vishnu V, Radhamany P (2021) Evaluation of Lablab purpureus (L.) Sweet germplasm using yield and quality traits. Genet Resour Crop Evol (Preprint). https://doi.org/10.21203/rs.3.rs-277538/v1

  • Wang B, Zhao M, Yao L, Babu V, Wu T, Nguyen HT (2018) Identification of drought-inducible regulatory factors in Lablab purpureus by a comparative genomic approach. Crop Pasture Sci 69(6):632–641. https://doi.org/10.1071/CP17236

    Article  CAS  Google Scholar 

  • Wang ML, Morris JB, Barkley NA, Dean RE, Jenkins TM, Pederson GA (2007) Evaluation of genetic diversity of the USDA Lablab purpureus germplasm collection using simple sequence repeat markers. J Hortic Sci Biotechnol 82(4):571–578. https://doi.org/10.1080/14620316.2007.11512275

    Article  CAS  Google Scholar 

  • Wangila AJ, Gachuiri CK, Muthomi JW, Ojiem JO (2021) Biomass yield and quality of fodder from selected varieties of lablab (Lablab purpureus L) in Nandi South sub-county of Kenya. Online J Anim Feed Res 11(1):28–35. https://doi.org/10.51227/ojafr.2021.6

  • Westphal E (1974) Dolichos lablab L. In: Pulses in Ethiopia, their taxonomy and agricultural significance. Wageningen University and Research, The Netherlands, pp 91–104. https://library.wur.nl/WebQuery/wurpubs/fulltext/197905

    Google Scholar 

  • Whitbread AM, Ayisi K, Mabapa P, Odhiambo JJ, Maluleke N, Pengelly BC (2011) Evaluating Lablab purpureus (L.) Sweet germplasm to identify short-season accessions suitable for crop and livestock farming systems in southern Africa. Afr J Range Forage Sci 28(1):21–28. https://doi.org/10.2989/10220119.2011.570950

  • WHO (2007) Protein and amino acid requirements in human nutrition. World Health Organization technical report series (935), Geneva, Switzerland

    Google Scholar 

  • WIEWS (World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture) (2020) Ex situ search. FAO, Rome, Italy. http://www.fao.org/wiews/data/ex-situ-sdg-251/search/en/

  • Wu F, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11:182. https://doi.org/10.1186/1471-2164-11-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao LM, Jiang YN, Lu XX, Wang B, Zhou P, Wu TL (2016a) Overexpression of a glycine-rich protein gene in Lablab purpureus improves abiotic stress tolerance. Gen Mol Res 15(4). https://doi.org/10.4238/gmr15048063.

  • Yao LM, Jiang YN, Lu XX, Wang B, Zhou P, Wu TL (2016b) A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Mol Biol Rep 43(10):1089–1100. https://doi.org/10.1007/s11033-016-4042-7

    Article  CAS  PubMed  Google Scholar 

  • Yao LM, Wang B, Cheng LJ, Wu TL (2013) Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8(3):e58108. https://doi.org/10.1371/journal.pone.0058108

  • Yao LM, Zhang LD, Hu YL, Wang B, Wu TL (2012) Characterization of novel soybean derived simple sequence repeat markers and their transferability in hyacinth bean Lablab purpureus (L.) Sweet. Indian J Genet Plant Breed 72(1):46–53

    Google Scholar 

  • Yuan J, Wang B, Wu TL (2011) Quantitative trait loci (QTL) mapping for inflorescence length traits in Lablab purpureus (L.) Sweet. Afr J Biotechnol 10(18):3558–3566. https://doi.org/10.5897/AJB10.536

  • Yuan J, Yang RQ, Wu TL (2009) Bayesian mapping QTL for fruit and growth phenological traits in Lablab purpureus (L.) Sweet. Afr J Biotechnol 8(2):167–75

    Google Scholar 

  • Zhang G, Xu S, Mao W, Gong Y, Hu Q (2013) Development of EST-SSR markers to study genetic diversity in hyacinth bean (Lablab purpureus L.). Plant Omics J 6(4):295–301

    Google Scholar 

Download references

Acknowledgements

We would like to thank various students and researchers in our laboratories and collaborators we have worked with or are currently, including Anastasia Kolesnikova for providing comments on this chapter.

We acknowledge several researchers who provided personal comments and unique insight. The following are the affiliations for personal communications: Dr. S. Ramesh, University of Agricultural Sciences, Bengaluru, Karnataka, India, e-mail: ramesh_uasb@rediffmail.com; Dr. Md. Tariqul Islam, BARI Gazipur, Bangladesh, e-mail: dir.res@bari.gov.bd; J. Chang and Dr. M. van Zonneveld, World Vegetable Center, Taiwan, e-mails: Jessica.chang@worldveg.org and maarten.vanzonneveld@worldveg.org; Dr. Kunyaporn Pipithsangchan, Genebank, Thailand, e-mail: kunyapithsan1@gmail.com; Dr. Prakit Somta, Kasetsart University, Nakhon Pathom, Thailand, e-mail: agrpks@ku.ac.th; Dr. M. G. Kinyua, Moi University, Eldoret, Kenya, e-mail: mgkinyua@africaonline.co.ke; Dr. P. B. Venkataramana, NM-AIST, Arusha, Tanzania, e-mail: pavithravani.venkataramana@nm-aist.ac.tz; Dr. L. Guarino, Global Crop Diversity Trust, Bonn, Germany, e-mail: luigi.guarino@croptrust.org; Dr. A. J. Clapham, UK, e-mail: a.j.clapham@hotmail.co.uk; and Dr. P. Vidigal, University of Lisbon, Portugal, e-mail: pvidigal@isa.ulisboa.pt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte L. Maass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

L. Maass, B., A. Chapman, M. (2022). The Lablab Genome: Recent Advances and Future Perspectives. In: Chapman, M.A. (eds) Underutilised Crop Genomes . Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-00848-1_13

Download citation

Publish with us

Policies and ethics