Skip to main content

Roles for GADD45 in Development and Cancer

  • Chapter
  • First Online:
Gadd45 Stress Sensor Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1360))

Abstract

The Growth Arrest and DNA Damage-inducible 45 (GADD45) family of proteins are critical stress sensors that mediate various cellular responses, including DNA repair, cell cycle arrest, and apoptosis. Here, we review current literature investigating GADD45 family members as they relate to normal development and carcinogenesis. We first describe how modulation of GADD45 in model organisms has facilitated our understanding of roles for GADD45 family members in development and homeostasis. We then review current literature exploring roles for GADD45 in human cancer, describing cancer-associated alterations in expression of GADD45 family members; tumor suppressive and tumor promoting functions attributed to GADD5; and roles for GADD45 in cancer therapy. In exploring roles for GADD45 in development, homeostasis, and carcinogenesis, we aim to provide an informational resource that both highlighst current knowledge on this topic while also noting key gaps in our understanding of the biology of GADD45 that may be filled in order to best guide the development of novel approaches to improve diagnosis, monitoring, and therapy of human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asuthkar S, Nalla AK, Gondi CS, Dinh DH, Gujrati M, Mohanam S et al (2011) Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9-mediated EMT. Neuro Oncol 13(10):1059–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA (2001) Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control. J Biol Chem 276(4):2766–2774

    Article  CAS  PubMed  Google Scholar 

  • Bahar A, Bicknell JE, Simpson DJ, Clayton RN, Farrell WE (2004) Loss of expression of the growth inhibitory gene GADD45gamma, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 23(4):936–944

    Article  CAS  PubMed  Google Scholar 

  • Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675

    Article  CAS  PubMed  Google Scholar 

  • Beaty TH, Taub MA, Scott AF, Murray JC, Marazita ML, Schwender H et al (2013) Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum Genet 132(7):771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bgatova N, Dubatolova T, Omelyanchuk L, Plyusnina E, Shaposhnikov M, Moskalev A (2015) Gadd45 expression correlates with age dependent neurodegeneration in Drosophila melanogaster. Biogerontology 16(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Blaszyk H, Hartmann A, Sommer SS, Kovach JS (1996) A polymorphism but no mutations in the GADD45 gene in breast cancers. Hum Genet 97(4):543–547

    Article  CAS  PubMed  Google Scholar 

  • Brito DVC, Kupke J, Gulmez Karaca K, Zeuch B, Oliveira AMM (2020) Mimicking age-associated Gadd45gamma dysregulation results in memory impairments in young adult mice. J Neurosci 40(6):1197–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruix J, Sherman M, American Association for the Study of Liver Diseases (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022

    Article  PubMed  Google Scholar 

  • Bulavin DV, Kovalsky O, Hollander MC, Fornace AJ Jr (2003) Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol 23(11):3859–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camilleri-Robles C, Serras F, Corominas M (2019) Role of D-GADD45 in JNK-dependent apoptosis and regeneration in Drosophila. Genes (Basel) 10(5):378

    Article  CAS  Google Scholar 

  • Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ et al (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19(3):1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YR, Meyer CF, Tan TH (1996) Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J Biol Chem 271(2):631–634

    Article  CAS  PubMed  Google Scholar 

  • Cheng YM, Tsai CC, Hsu YC (2016) Sulforaphane, a dietary isothiocyanate, induces G(2)/M arrest in cervical cancer cells through cyclinB1 downregulation and GADD45beta/CDC2 association. Int J Mol Sci 17(9)

    Google Scholar 

  • de la Calle-Mustienes E, Glavic A, Modolell J, Gomez-Skarmeta JL (2002) Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech Dev 119(1):69–80

    Article  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J et al (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414(6861):308–313

    Article  PubMed  Google Scholar 

  • Desjardins S, Ouellette G, Labrie Y, Simard J, INHERIT BRCAs, Durocher F (2008) Analysis of GADD45A sequence variations in French Canadian families with high risk of breast cancer. J Hum Genet 53(6):490–498

    Article  CAS  PubMed  Google Scholar 

  • Eroglu Z, Ribas A (2016) Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8(1):48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Richter G, Cereseto A, Beadling C, Smith KA (1999) Cytokine response gene 6 induces p21 and regulates both cell growth and arrest. Oncogene 18(47):6573–6582

    Article  CAS  PubMed  Google Scholar 

  • Gierl MS, Gruhn WH, von Seggern A, Maltry N, Niehrs C (2012) GADD45G functions in male sex determination by promoting p38 signaling and Sry expression. Dev Cell 23(5):1032–1042

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Dong Z, Guo Y, Chen Z, Kuang G, Yang Z (2013a) Methylation-mediated repression of GADD45A and GADD45G expression in gastric cardia adenocarcinoma. Int J Cancer 133(9):2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhu T, Dong Z, Cui L, Zhang M, Kuang G (2013b) Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Clin Exp Metastasis 30(8):977–992

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B et al (2005) Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24(48):7170–7179

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Gupta SK, Hoffman B, Liebermann DA (2006a) Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem 281(26):17552–17558

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Gupta M, Hoffman B, Liebermann DA (2006b) Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene 25(40):5537–5546

    Article  CAS  PubMed  Google Scholar 

  • Higashi H, Vallbohmer D, Warnecke-Eberz U, Hokita S, Xi H, Brabender J et al (2006) Down-regulation of Gadd45 expression is associated with tumor differentiation in non-small cell lung cancer. Anticancer Res 26(3A):2143–2147

    CAS  PubMed  Google Scholar 

  • Hoffmeyer A, Piekorz R, Moriggl R, Ihle JN (2001) Gadd45gamma is dispensable for normal mouse development and T-cell proliferation. Mol Cell Biol 21(9):3137–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R et al (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Kovalsky O, Salvador JM, Kim KE, Patterson AD, Haines DC et al (2001) Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res 61(6):2487–2491

    CAS  PubMed  Google Scholar 

  • Hou W, Yin J, Vogel U, Sun Z, Liang D (2017) 19p13.3-GADD45B common variants and 19q13.3-PPP1R13L and 19q13.3-CD3EAP in lung cancer risk among Chinese. Chem Biol Interact 277:74–78

    Article  CAS  PubMed  Google Scholar 

  • Hsu YC, Huang TY, Chen MJ (2014a) Therapeutic ROS targeting of GADD45gamma in the induction of G2/M arrest in primary human colorectal cancer cell lines by cucurbitacin E. Cell Death Dis 5:e1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YC, Chen MJ, Huang TY (2014b) Inducement of mitosis delay by cucurbitacin E, a novel tetracyclic triterpene from climbing stem of Cucumis melo L., through GADD45gamma in human brain malignant glioma (GBM) 8401 cells. Cell Death Dis 5:e1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WS, Kuo YH, Kuo HC, Hsieh MC, Huang CY, Lee KC et al (2017) CIL-102-induced cell cycle arrest and apoptosis in colorectal cancer cells via upregulation of p21 and GADD45. PLoS One 12(1):e0168989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung CM, Chang CC, Lin CW, Ko SY, Hsu YC (2013) Cucurbitacin E as inducer of cell death and apoptosis in human oral squamous cell carcinoma cell line SAS. Int J Mol Sci 14(8):17147–17156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N et al (2005) A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 280(46):38544–38555

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X et al (2002) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21(57):8696–8704

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71(4):587–597

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann LT, Niehrs C (2011) Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. Mech Dev 128(7–10):401–411

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann LT, Gierl MS, Niehrs C (2011) Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. Gene Expr Patterns 11(8):465–470

    Article  CAS  PubMed  Google Scholar 

  • Kawahara A, Che YS, Hanaoka R, Takeda H, Dawid IB (2005) Zebrafish GADD45beta genes are involved in somite segmentation. Proc Natl Acad Sci U S A 102(2):361–366

    Article  CAS  PubMed  Google Scholar 

  • Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA (1995) Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11(9):1675–1683

    CAS  PubMed  Google Scholar 

  • Liebermann DA, Hoffman B (2008) Gadd45 in stress signaling. J Mol Signal 3:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Jiang G, Mao P, Zhang J, Zhang L, Liu L et al (2018) Down-regulation of GADD45A enhances chemosensitivity in melanoma. Sci Rep 8(1):4111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou M, Li R, Lang TY, Zhang LY, Zhou Q, Li L (2021) Aberrant methylation of GADD45A is associated with decreased radiosensitivity in cervical cancer through the PI3K/AKT signaling pathway. Oncol Lett 21(1):8

    CAS  PubMed  Google Scholar 

  • Lu B, Yu H, Chow C, Li B, Zheng W, Davis RJ et al (2001) GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14(5):583–590

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Ferrandino AF, Flavell RA (2004) Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat Immunol 5(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liang M, Zhang Q, Liu Z, Song Y, Lai L et al (2019) Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition (EMT). Biochim Biophys Acta Mol basis Dis 1865(9):2356–2367

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, Tron VA (2002) GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol 119(1):22–26

    Article  CAS  PubMed  Google Scholar 

  • Magimaidas A, Madireddi P, Maifrede S, Mukherjee K, Hoffman B, Liebermann DA (2016) Gadd45b deficiency promotes premature senescence and skin aging. Oncotarget 7(19):26935–26948

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Sha X, Magimaidas A, Maifrede S, Skorski T, Bhatia R et al (2017) Gadd45a deficiency accelerates BCR-ABL driven chronic myelogenous leukemia. Oncotarget 8(7):10809–10821

    Article  PubMed  PubMed Central  Google Scholar 

  • Myint KZ, Kongpracha P, Rattanasinganchan P, Leelawat K, Moolthiya P, Chaiyabutr K et al (2018) Gadd45beta silencing impaired viability and metastatic phenotypes in cholangiocarcinoma cells by modulating the EMT pathway. Oncol Lett 15(3):3031–3041

    PubMed  Google Scholar 

  • Ou DL, Shyue SK, Lin LI, Feng ZR, Liou JY, Fan HH et al (2015) Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. Oncotarget 6(29):27953–27965

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey M, Kannepali KK, Dixit R, Kumar M (2018) Effect of neoadjuvant chemotherapy and its correlation with HPV status, EGFR, Her-2-neu, and GADD45 expression in oral squamous cell carcinoma. World J Surg Oncol 16(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  • Papa S, Monti SM, Vitale RM, Bubici C, Jayawardena S, Alvarez K et al (2007) Insights into the structural basis of the GADD45beta-mediated inactivation of the JNK kinase, MKK7/JNKK2. J Biol Chem 282(26):19029–19041

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Zazzeroni F, Fu YX, Bubici C, Alvarez K, Dean K et al (2008) Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118(5):1911–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peretz G, Bakhrat A, Abdu U (2007) Expression of the Drosophila melanogaster GADD45 homolog (CG11086) affects egg asymmetric development that is mediated by the c-Jun N-terminal kinase pathway. Genetics 177(3):1691–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perugini M, Iarossi DG, Kok CH, Cummings N, Diakiw SM, Brown AL et al (2013) GADD45A methylation predicts poor overall survival in acute myeloid leukemia and is associated with IDH1/2 and DNMT3A mutations. Leukemia 27(7):1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Plyusnina EN, Shaposhnikov MV, Moskalev AA (2011) Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology 12(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, David D, Zhou B, Chu PG, Zhang B, Wu M et al (2003) Down-regulation of growth arrest DNA damage-inducible gene 45beta expression is associated with human hepatocellular carcinoma. Am J Pathol 162(6):1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu W, Zhou B, Zou H, Liu X, Chu PG, Lopez R et al (2004) Hypermethylation of growth arrest DNA damage-inducible gene 45 beta promoter in human hepatocellular carcinoma. Am J Pathol 165(5):1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran K, Gopisetty G, Gordian E, Navarro L, Hader C, Reis IM et al (2009) Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer Res 69(4):1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Reddy SP, Britto R, Vinnakota K, Aparna H, Sreepathi HK, Thota B et al (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14(10):2978–2987

    Article  CAS  PubMed  Google Scholar 

  • Rowswell-Turner RB, Rutishauser JA, Kim KK, Khazan N, Sivagnanalingam U, Jones AM et al (2019) Novel small molecule MEK inhibitor URML-3881 enhances cisplatin sensitivity in clear cell ovarian cancer. Transl Oncol 12(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajedi N, Homayoun M, Mohammadi F, Soleimani M (2020) Myricetin exerts its apoptotic effects on MCF-7 breast cancer cells through evoking the BRCA1-GADD45 pathway. Asian Pac J Cancer Prev 21(12):3461–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK et al (2002) Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16(4):499–508

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Weber A, Zechner U, Oswald F, Friess HM, Schmid RM et al (2006) GADD45alpha is highly expressed in pancreatic ductal adenocarcinoma cells and required for tumor cell viability. Int J Cancer 118(10):2405–2411

    Article  CAS  PubMed  Google Scholar 

  • Schule KM, Leichsenring M, Andreani T, Vastolo V, Mallick M, Musheev MU et al (2019) GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells. Genes Dev 33(13–14):782–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sha X, Hoffman B, Liebermann DA (2018) Loss of Gadd45b accelerates BCR-ABL-driven CML. Oncotarget 9(70):33360–33367

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM et al (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266(5189):1376–1380

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Sajedi N (2020) Myricetin apoptotic effects on T47D breast cancer cells is a P53-independent approach. Asian Pac J Cancer Prev 21(12):3697–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Gong R, Wan B, Huang X, Wu C, Zhang X et al (2003) GADD45gamma, down-regulated in 65% hepatocellular carcinoma (HCC) from 23 Chinese patients, inhibits cell growth and induces cell cycle G2/M arrest for hepatoma Hep-G2 cell lines. Mol Biol Rep 30(4):249–253

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95(4):521–530

    Article  CAS  PubMed  Google Scholar 

  • Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF (2012) GADD45 proteins: central players in tumorigenesis. Curr Mol Med 12(5):634–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura RE, Paccez JD, Duncan KC, Morale MG, Simabuco FM, Dillon S et al (2016) GADD45alpha and gamma interaction with CDK11p58 regulates SPDEF protein stability and SPDEF-mediated effects on cancer cell migration. Oncotarget 7(12):13865–13879

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang XH, Deng S, Li M, Lu MS (2016) Cross-reacting material 197 reverses the resistance to paclitaxel in paclitaxel-resistant human ovarian cancer. Tumour Biol 37(4):5521–5528

    Article  CAS  PubMed  Google Scholar 

  • Tornatore L, Sandomenico A, Raimondo D, Low C, Rocci A, Tralau-Stewart C et al (2014) Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors. Cancer Cell 26(4):495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornatore L, Capece D, D’Andrea D, Begalli F, Verzella D, Bennett J et al (2019a) Preclinical toxicology and safety pharmacology of the first-in-class GADD45beta/MKK7 inhibitor and clinical candidate, DTP3. Toxicol Rep 6:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornatore L, Capece D, D’Andrea D, Begalli F, Verzella D, Bennett J et al (2019b) Clinical proof of concept for a safe and effective NF-kappaB-targeting strategy in multiple myeloma. Br J Haematol 185(3):588–592

    Article  PubMed  Google Scholar 

  • Torp R, Su JH, Deng G, Cotman CW (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol Dis 5(4):245–252

    Article  CAS  PubMed  Google Scholar 

  • Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L et al (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A 96(7):3706–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Huper G, Guo Y, Murphy SK, Olson JA Jr, Marks JR (2005) Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene 24(16):2705–2714

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Chang TY, Lin WC, Wei KC, Shin JW (2017) GADD45A plays a protective role against temozolomide treatment in glioblastoma cells. Sci Rep 7(1):8814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warr N, Carre GA, Siggers P, Faleato JV, Brixey R, Pope M et al (2012) Gadd45gamma and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell 23(5):1020–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Zhang L, Ma A, Qian Y, Ding Q, Liu Y et al (2015) SIP1 is a downstream effector of GADD45G in senescence induction and growth inhibition of liver tumor cells. Oncotarget 6(32):33636–33647

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasawa K, Nio Y, Dong M, Yamaguchi K, Itakura M (2002) Clinicopathological significance of abnormalities in Gadd45 expression and its relationship to p53 in human pancreatic cancer. Clin Cancer Res 8(8):2563–2569

    CAS  PubMed  Google Scholar 

  • Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK et al (2005) The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11(18):6442–6449

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr et al (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278(44):43001–43007

    Article  CAS  PubMed  Google Scholar 

  • Yu KD, Di GH, Li WF, Rao NY, Fan L, Yuan WT et al (2010) Genetic contribution of GADD45A to susceptibility to sporadic and non-BRCA1/2 familial breast cancers: a systematic evaluation in Chinese populations. Breast Cancer Res Treat 121(1):157–167

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zuo X, He M, Gao J, Fu Y, Qin C et al (2017) Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat Commun 8:14364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Liu X, Liu X, Yang N, Liu Z, Yan S et al (2015) The GADD45A (1506T>C) polymorphism is associated with ovarian cancer susceptibility and prognosis. PLoS One 10(9):e0138692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zerbini LF, Libermann TA (2005) GADD45 deregulation in cancer: frequently methylated tumor suppressors and potential therapeutic targets. Clin Cancer Res 11(18):6409–6413

    Article  CAS  PubMed  Google Scholar 

  • Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K et al (2004) NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci U S A 101(37):13618–13623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D et al (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14(4):2361–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Hoffman B, Liebermann DA (2001) Ectopic expression of MyD118/Gadd45/CR6 (Gadd45beta/alpha/gamma) sensitizes neoplastic cells to genotoxic stress-induced apoptosis. Int J Oncol 18(4):749–757

    PubMed  Google Scholar 

  • Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B et al (2002) Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 87(3):1262–1267

    CAS  PubMed  Google Scholar 

  • Zhao YL, Chen YL, Tzeng CC, Chen IL, Wang TC, Han CH (2005) Synthesis and cytotoxic evaluation of certain 4-(phenylamino)furo[2,3-b]quinoline and 2-(furan-2-yl)-4-(phenylamino)quinoline derivatives. Chem Biodivers 2(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Shao Y, Xu L, Yu L, Sun L (2009) Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol Biol Rep 36(8):2075–2085

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, K., Murray, M.G., Whelan, K.A. (2022). Roles for GADD45 in Development and Cancer. In: Zaidi, M.R., Liebermann, D.A. (eds) Gadd45 Stress Sensor Genes. Advances in Experimental Medicine and Biology, vol 1360. Springer, Cham. https://doi.org/10.1007/978-3-030-94804-7_2

Download citation

Publish with us

Policies and ethics