Skip to main content
Log in

Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The growth arrest DNA damage-inducible gene (Gadd45) family, which is composed of Gadd45A, Gadd45B, and Gadd45G, is involved in DNA damage response and cell growth arrest. The present study was to detect the role of Gadd45 gene family in esophageal cancer and the relationship of Gadd45G methylation to a series of pathological parameters in a large esophageal squamous cell carcinoma (ESCC) sample, in order to elucidate more information on the role of Gadd45 gene family with regard to the pathogenesis of ESCC. Frequent silencing of Gadd45G but not Gadd45A and Gadd45B were found in esophageal cancer cell lines and the silencing of Gadd45G may be reversed by 5-Aza-dC or TSA treatment in Eca109 cell line. The aberrant proximal promoter methylation of Gadd45G induces silencing of Gadd45G expression in Eca109 cell line. Gadd45A mRNA and protein expression in ESCC tumor tissues was significantly different compared to corresponding normal tissues. Decreased mRNA and protein expression of Gadd45G was observed in ESCC tumor tissues and was associated with Gadd45G proximal promoter methylation. Gadd45A or Gadd45B expression was not correlated with ESCC patients survival, while Gadd45G methylation status and protein expression were independently associated with ESCC patients’ survival. These data indicated that Gadd45G may be a functional tumor suppressor and its inactivation through proximal promoter methylation may play an important role in ESCC carcinogenesis and reactivation of Gadd45G gene may has therapeutic potential and may be used as a prognostic marker for ESCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF (2012) GADD45 proteins: central players in tumorigenesis. Curr Mol Med 12:634–651

    Article  PubMed  CAS  Google Scholar 

  2. Fornace AJ Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9:4196–4203

    PubMed  CAS  Google Scholar 

  3. Rosemary Siafakas A, Richardson DR (2009) Growth arrest and DNA damage-45 alpha (GADD45alpha). Int J Biochem Cell Biol 41:986–989

    Article  PubMed  CAS  Google Scholar 

  4. Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernández-Salguero PM, Morgan WF, Deng CX, Fornace AJ Jr (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184

    Article  PubMed  CAS  Google Scholar 

  5. Vairapandi M, Balliet AG, Fornace AJ Jr, Hoffman B, Liebermann DA (1996) The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene 12:2579–2594

    PubMed  CAS  Google Scholar 

  6. Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K, Hoffman B, Liebermann DA (1999) CR6: a third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene 18:4899–4907

    Article  PubMed  CAS  Google Scholar 

  7. Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7:268–276

    PubMed  CAS  Google Scholar 

  8. Tront JS, Hoffman B, Liebermann DA (2006) Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res 66:8448–8454

    Article  PubMed  CAS  Google Scholar 

  9. Yang Z, Song L, Huang C (2009) Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 9:915–930

    Article  PubMed  CAS  Google Scholar 

  10. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192:327–338

    Article  PubMed  CAS  Google Scholar 

  11. Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B (2011) Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncog 16:129–140

    Article  PubMed  Google Scholar 

  12. Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278:43001–43007

    Article  PubMed  CAS  Google Scholar 

  13. Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q (2005) The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11:6442–6449

    Article  PubMed  CAS  Google Scholar 

  14. Na YK, Lee SM, Hong HS, Kim JB, Park JY, Kim DS (2010) Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol Cells 30:89–92

    Article  PubMed  CAS  Google Scholar 

  15. Ramachandran K, Gopisetty G, Gordian E, Navarro L, Hader C, Reis IM, Schulz WA, Singal R (2009) Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer Res 69:1527–1535

    Article  PubMed  CAS  Google Scholar 

  16. Qiu W, Zhou B, Zou H, Liu X, Chu PG, Lopez R, Shih J, Chung C, Yen Y (2004) Hypermethylation of growth arrest DNA damage-inducible gene 45 beta promoter in human hepatocellular carcinoma. Am J Pathol 165:1689–1699

    Article  PubMed  CAS  Google Scholar 

  17. Bahar A, Bicknell JE, Simpson DJ, Clayton RN, Farrell WE (2004) Loss of expression of the growth inhibitory gene GADD45gamma, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 23:936–944

    Article  PubMed  CAS  Google Scholar 

  18. Ct Wu, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  Google Scholar 

  19. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  20. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    Article  PubMed  CAS  Google Scholar 

  21. Belinsky SA (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4:707–717

    Article  PubMed  CAS  Google Scholar 

  22. Wang W, Huper G, Guo Y, Murphy SK, Olson JA Jr, Marks JR (2005) Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene 24:2705–2714

    Article  PubMed  CAS  Google Scholar 

  23. Chung HK, Yi YW, Jung NC, Kim D, Suh JM, Kim H, Park KC, Kim DW, Hwang ES, Song JH, Ku BJ, Han HJ, Ro HK, Kim JM, Shong M (2003) Gadd45gamma expression is reduced in anaplastic thyroid cancer and its reexpression results in apoptosis. J Clin Endocrinol Metab 88:3913–3920

    Article  PubMed  CAS  Google Scholar 

  24. Zhang W, Li T, Shao Y, Zhang C, Wu Q, Yang H, Zhang J, Guan M, Yu B, Wan J (2010) Semi-quantitative detection of GADD45-gamma methylation levels in gastric, colorectal and pancreatic cancers using methylation-sensitive high-resolution melting analysis. J Cancer Res Clin Oncol 136:1267–1273

    Article  PubMed  CAS  Google Scholar 

  25. Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, Klibanski A (2002) Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 87:1262–1267

    Article  PubMed  CAS  Google Scholar 

  26. Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349:2241–2252

    Article  PubMed  CAS  Google Scholar 

  27. Shahbaz Sarwar CM, Luketich JD, Landreneau RJ, Abbas G (2010) Esophageal cancer: an update. Int J Surg 8:417–422

    Article  PubMed  CAS  Google Scholar 

  28. Guo W, Zhou RM, Wan LL, Wang N, Li Y, Zhang XJ, Dong XJ (2008) Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and C and risk of esophageal squamous cell carcinoma in a population of high incidence region of North China. J Cancer Res Clin Oncol 134:263–270

    Article  PubMed  CAS  Google Scholar 

  29. Dong Z, Guo W, Guo Y, Kuang G, Yang Z (2012) Concordant promoter methylation of transforming growth factor-beta receptor types I and II occurs early in esophageal squamous cell carcinoma. Am J Med Sci 343:375–381

    Article  PubMed  Google Scholar 

  30. Heller G, Schmidt WM, Ziegler B, Holzer S, Müllauer L, Bilban M, Zielinski CC, Drach J, Zöchbauer-Müller S (2008) Genome-wide transcriptional response to 5-aza-2′-deoxycytidine and trichostatina in multiple myeloma cells. Cancer Res 68:44–54

    Article  PubMed  CAS  Google Scholar 

  31. Das PM, Ramachandran K, vanWert J, Singal R (2004) Chromatin immunoprecipitation assay. Biotechniques 37:961–969

    PubMed  CAS  Google Scholar 

  32. Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C, Liu S, Smith LT, Lee S, Rassenti L, Marcucci G, Byrd J, Caligiuri MA, Plass C (2005) Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 37:265–274

    Article  PubMed  CAS  Google Scholar 

  33. Umemoto M, Yokoyama Y, Sato S, Tsuchida S, Al-Mulla F, Saito Y (2001) Carbonyl reductase as a significant predictor of survival and lymph node metastasis in epithelial ovarian cancer. Br J Cancer 85:1032–1036

    Article  PubMed  CAS  Google Scholar 

  34. Guo W, Dong Z, Chen Z, Yang Z, Wen D, Kuang G, Guo Y, Shan B (2009) Aberrant CpG Island hypermethylation of RASSF1A in gastric cardia adenocarcinoma. Cancer Invest 27:459–465

    Article  PubMed  CAS  Google Scholar 

  35. Sasaki M, Anast J, Bassett W, Kawakami T, Sakuragi N, Dahiya R (2003) Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochem Biophys Res Commun 309:305–309

    Article  PubMed  CAS  Google Scholar 

  36. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  PubMed  CAS  Google Scholar 

  37. Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3:235–240

    PubMed  CAS  Google Scholar 

  38. Mita H, TsutsuiJ Takekawa M, Witten E, Saito H (2002) Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol Cell Biol 22:4544–4555

    Article  PubMed  CAS  Google Scholar 

  39. Higashi H, Vallböhmer D, Warnecke-Eberz U, Hokita S, Xi H, Brabender J, Metzger R, Baldus SE, Natsugoe S, Aikou T, Hölscher AH, Schneider PM (2006) Down-regulation of Gadd45 expression is associated with tumor differentiation in non-small cell lung cancer. Anticancer Res 26:2143–2147

    PubMed  CAS  Google Scholar 

  40. Schneider G, Weber A, Zechner U, Oswald F, Friess HM, Schmid RM, Liptay S (2006) GADD45alpha is highly expressed in pancreatic ductal adenocarcinoma cells and required for tumor cell viability. Int J Cancer 118:2405–2411

    Article  PubMed  CAS  Google Scholar 

  41. Reddy SP, Britto R, Vinnakota K, Aparna H, Sreepathi HK, Thota B, Kumari A, Shilpa BM, Vrinda M, Umesh S, Samuel C, Shetty M, Tandon A, Pandey P, Hegde S, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Kondaiah P, Somasundaram K, Rao MR (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14:2978–2987

    Article  PubMed  CAS  Google Scholar 

  42. Bx Wang, Yin BL, He B, Chen C, Zhao M, Wx Zhang, Xia ZK, Yz Pan, Jq Tang, Xm Zhou, Yin N (2012) Overexpression of DNA damage-induced 45 α gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J Exp Clin Cancer Res 31:11. doi:10.1186/1756-9966-31-11

    Article  Google Scholar 

  43. Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z, Wu M, Zhan Q (2005) B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem 280:10988–10996

    Article  PubMed  CAS  Google Scholar 

  44. Qiu W, David D, Zhou B, Chu PG, Zhang B, Wu M, Xiao J, Han T, Zhu Z, Wang T, Liu X, Lopez R, Frankel P, Jong A, Yen Y (2003) Down-regulation of growth arrest DNA damage-inducible gene 45beta expression is associated with human hepatocellular carcinoma. Am J Pathol 162:1961–1974

    Article  PubMed  CAS  Google Scholar 

  45. Jiang C, Zhou B, Fan K, Heung E, Xue L, Liu X, Kirschbaum M, Yen Y (2007) A sequential treatment of depsipeptide followed by 5-azacytidine enhances Gadd45beta expression in hepatocellular carcinoma cells. Anticancer Res 27:3783–3789

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by Grants from the National Natural Science Foundation (No. 81101854). We thank the patients and control individuals for taking part in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tienian Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Zhu, T., Dong, Z. et al. Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Clin Exp Metastasis 30, 977–992 (2013). https://doi.org/10.1007/s10585-013-9597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9597-2

Keywords

Navigation