Skip to main content

Regulation of CXCR4 Expression by Taurine in Macrophage-Like Cells

  • Chapter
  • First Online:
Taurine 12

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1370))

  • 1269 Accesses

Abstract

Taurine (2-aminoethanesulfonic acid) is a free β-amino acid found at high concentrations in many mammalian tissues. Taurine plays a role in several essential biological processes, including anti-oxidation, anti-inflammation, and osmoregulation. However, its regulatory mechanisms, especially at the genetic and molecular levels, have not been elucidated. Here, we targeted immune-related genes and investigated the effects of taurine on immune-related gene expression in macrophage-like cells. J774.1 cell line was used, and the effect of taurine on mRNA expression of immune-related genes such as cytokines, their receptors, and toll-like receptors was examined. Among these, taurine significantly increased the mRNA levels of C-X-C chemokine receptor 2 (CXCR2), chemokine receptor. Furthermore, we found that the taurine-induced increase in CXCR4 mRNA levels was higher than that in CXCR2 mRNA levels. Taurine increased both mRNA and protein expression levels of CXCR4. Additionally, we examined the effects of taurine analogs, including hypotaurine, β-alanine, and γ-aminobutyric acid (GABA). While GABA increased the mRNA expression of CXCR4, hypotaurine slightly increased this expression, and β-alanine had no effect, although these taurine analogs are the substrates of taurine transporter. These findings demonstrate that taurine specifically affects CXCR4 mRNA expression in macrophage-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPK :

Adenosine monophosphate kinase

CXCL :

C-X-C chemokine ligand

CXCR :

C-X-C chemokine receptor

DSS :

Dextran sulfate sodium

GABA :

γ-aminobutyric acid

GAT :

GABA transporter

IL :

Interleukin

MIP-2 :

Macrophage inflammatory protein-2

NAFLD :

Nonalcoholic fatty liver disease

TAUT :

Taurine transporter

TLR :

Toll-like receptor

TXNIP :

Thioredoxin-interacting protein

References

  • Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165(9):5269–5277

    Article  CAS  Google Scholar 

  • Albrecht J, Schousboe A (2005) Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res 30(12):1615–1621

    Article  CAS  Google Scholar 

  • Bishayi B, Bandyopadhyay D, Majhi A, Adhikary R (2015) Expression of CXCR1 (interleukin-8 receptor) in murine macrophages after staphylococcus aureus infection and its possible implication on intracellular survival correlating with cytokines and bacterial anti-oxidant enzymes. Inflammation 38(2):812–827

    Article  CAS  Google Scholar 

  • Cabrero-de Las Heras S, Martínez-Balibrea E (2018) CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J Gastroenterol 24(42):4738–4749

    Article  CAS  Google Scholar 

  • Cavalera M, Frangogiannis NG (2014) Targeting the chemokines in cardiac repair. Curr Pharm Des 20(12):1971–1979

    Article  CAS  Google Scholar 

  • del Olmo N, Bustamante J, del Río RM, Solís JM (2000) Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res 864(2):298–307

    Article  Google Scholar 

  • Döring Y, Pawig L, Weber C, Noels H (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 5:212

    PubMed  PubMed Central  Google Scholar 

  • Du J, Zhang X, Han J, Man K, Zhang Y, Chu ES, Nan Y, Yu J (2017) Pro-inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis. Theranostics 7(17):4192–4203

    Article  CAS  Google Scholar 

  • Gondo Y, Satsu H, Ishimoto Y, Iwamoto T, Shimizu M (2012) Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells. Biochem Biophys Res Commun 426:433–437

    Article  CAS  Google Scholar 

  • Guo K, Feng G, Yan Q, Sun L, Zhang K, Shen F, Shen M, Ruan S (2019) CXCR4 and CXCR3 are two distinct prognostic biomarkers in breast cancer: Database mining for CXCR family members. Mol Med Rep 20(6):4791–4802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW (2006) The taurine transporter: mechanisms of regulation. Acta Physiol 187(1-2):61–73

    Article  CAS  Google Scholar 

  • Hughes CE, Nibbs RJB (2018) A guide to chemokines and their receptors. FEBS J 285(16):2944–2971

    Article  CAS  Google Scholar 

  • Hussy N, Deleuze C, Pantaloni A, Desarménien MG, Moos F (1997) Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol 502(Pt 3):609–621

    Article  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    Article  CAS  Google Scholar 

  • Ishizuka K, Kanayama A, Satsu H, Miyamoto Y, Furihata K, Shimizu M (2000) Identification of a taurine transport inhibitory substance in sesame seeds. Biosci Biotechnol Biochem 64(6):1166–1172

    Article  CAS  Google Scholar 

  • Ishizuka K, Miyamoto Y, Satsu H, Sato R, Shimizu M (2002) Characteristics of lysophosphatidylcholine in its inhibition of taurine uptake by human intestinal Caco-2 cells. Biosci Biotechnol Biochem 66(4):730–736

    Article  CAS  Google Scholar 

  • Janssens R, Struyf S, Proost P (2018) The unique structural and functional features of CXCL12. Cell Mol Immunol 15(4):299–311

    Article  CAS  Google Scholar 

  • Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X, Wu K (2016) The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 31:61–71

    Article  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278

    Article  CAS  Google Scholar 

  • Mochizuki T, Satsu H, Shimizu M (2002) Tumor necrosis factor alpha stimulates taurine uptake and transporter gene expression in human intestinal Caco-2 cells. FEBS Lett 517:92–96

    Article  CAS  Google Scholar 

  • Mochizuki T, Satsu H, Shimizu M (2005) Signaling pathways involved in tumor necrosis factor alpha-induced upregulation of the taurine transporter in Caco-2 cells. FEBS Lett 579:3069–3074

    Article  CAS  Google Scholar 

  • Murakami S (2017) The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci 186:80–86

    Article  CAS  Google Scholar 

  • Murakami S, Ono A, Kawasaki A, Takenaga T, Ito T (2018) Taurine attenuates the development of hepatic steatosis through the inhibition of oxidative stress in a model of nonalcoholic fatty liver disease in vivo and in vitro. Amino Acids 50(9):1279–1288

    Article  CAS  Google Scholar 

  • Paul AM, Branton WG, Walsh JG, Polyak MJ, Lu JQ, Baker GB, Power C (2014) GABA transport and neuroinflammation are coupled in multiple sclerosis: regulation of the GABA transporter-2 by ganaxolone. Neuroscience 273:24–38

    Article  CAS  Google Scholar 

  • Satsu H, Watanabe H, Arai S, Shimizu M (1997) Characterization and regulation of taurine transport in Caco-2, human intestinal cells. J Biochem 121:1082–1087

    Article  CAS  Google Scholar 

  • Satsu H, Miyamoto Y, Shimizu M (1999) Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim Biophys Acta 1419:89–96

    Article  CAS  Google Scholar 

  • Satsu H, Manabe M, Shimizu M (2004) Activation of Ca2+/calmodulin-dependent protein kinase II is involved in hyperosmotic induction of the human taurine transporter. FEBS Lett 569:123–128

    Article  CAS  Google Scholar 

  • Satsu H, Ishimoto Y, Nakano T, Mochizuki T, Iwanaga T, Shimizu M (2006) Induction by activated macrophage-like THP-1 cells of apoptotic and necrotic cell death in intestinal epithelial Caco-2 monolayers via tumour necrosis factor-alpha. Exp Cell Res 312(19):3909–3919

    Article  CAS  Google Scholar 

  • Satsu H, Hiura Y, Mochizuki K, Hamada M, Shimizu M (2008) Activation of the pregnane X receptor and induction of MDR1 by dietary phytochemicals. J Agric Food Chem 56(13):5366–5373

    Article  CAS  Google Scholar 

  • Satsu H, Gondo Y, Shimanaka H, Watari K, Fukumura M, Shimizu M (2019) Effect of taurine on cell function via TXNIP induction in Caco-2 cells. Adv Exp Med Biol 1155:163–172

    Article  CAS  Google Scholar 

  • Schaffer SW, Azuma J, Takahashi K, Mozaffari M (2003) Why is taurine cytoprotective? Adv Exp Med Biol 526:307–321

    Article  CAS  Google Scholar 

  • Susek KH, Karvouni M, Alici E, Lundqvist A (2018) The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment. Front Immunol 9:2159

    Article  Google Scholar 

  • Taber KH, Lin CT, Liu JW, Thalmann RH, Wu JY (1986) Taurine in hippocampus: localization and postsynaptic action. Brain Res 386(1-2):113–121

    Article  CAS  Google Scholar 

  • Teixidó J, Martínez-Moreno M, Díaz-Martínez M, Sevilla-Movilla S (2018) The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol 95:121–131

    Article  Google Scholar 

  • Tochitani S (2019) Functions of maternally-derived taurine in fetal and neonatal brain development. Adv Exp Med Biol 975:17–25

    Article  Google Scholar 

  • Zhao Z, Satsu H, Fujisawa M, Hori M, Ishimoto Y, Totsuka M, Nambu A, Kakuta S, Ozaki H, Shimizu M (2008) Attenuation by dietary taurine of dextran sulfate sodium-induced colitis in mice and of THP-1-induced damage to intestinal Caco-2 cell monolayers. Amino Acids 35:217–224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Satsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satsu, H., Fukumura, M., Watari, K. (2022). Regulation of CXCR4 Expression by Taurine in Macrophage-Like Cells. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_4

Download citation

Publish with us

Policies and ethics