Skip to main content

Surgical Management of Metastatic Disease to the Spine

  • Chapter
  • First Online:
Cancer Metastasis Through the Lymphovascular System

Abstract

The surgical management of spinal metastases has unique challenges not encountered in other aspects of spine surgery due to the needs of the oncologic patient. Among the key steps in the surgical management is the decision-making process, which must take into account the systemic and adjuvant therapies that are also necessary for systemic and local control of the disease. Decision-making frameworks, such as the NOMS system, have been designed to take into account the multiple factors that can affect the prognosis of the oncologic patient and reach an optimal surgical plan that incorporates available adjuvant treatment, such as radiation therapy. Surgical intervention for spinal metastases has evolved from large reconstructive procedures to less invasive techniques, which still allow for the preservation of neural function and restoration of spinal stability, but with the strategy of selecting the optimal intervention which can best synergize with available adjuvant therapies for effective local disease control. Advancement of surgical strategies such as “separation surgery” and minimally invasive percutaneous stabilization techniques can achieve surgical goals with decreased morbidity and shortened recovery times, which allows for minimal disruption of adjuvant or systemic therapies. The development of conformal radiation techniques such as radiosurgery has greatly assisted in achieving these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bollen L, et al. Prognostic factors associated with survival in patients with symptomatic spinal bone metastases: a retrospective cohort study of 1 043 patients. Neuro-Oncology. 2014;16(7):991–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Groenen KHJ, et al. The Dutch national guideline on metastases and hematological malignancies localized within the spine; a multidisciplinary collaboration towards timely and proactive management. Cancer Treat Rev. 2018;69:29–38.

    Article  PubMed  Google Scholar 

  3. Leithner A, et al. Predictive value of seven preoperative prognostic scoring systems for spinal metastases. Eur Spine J. 2008;17(11):1488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tomita K, et al. Surgical strategy for spinal metastases. Spine (Phila Pa 1976). 2001;26(3):298–306.

    Article  CAS  Google Scholar 

  5. Tokuhashi Y, et al. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976). 2005;30(19):2186–91.

    Article  Google Scholar 

  6. Laufer I, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bilsky MH, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.

    Article  PubMed  Google Scholar 

  8. Gerszten PC, Mendel E, Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes? Spine (Phila Pa 1976). 2009;34(22 Suppl):S78–92.

    Article  Google Scholar 

  9. Lovelock DM, et al. Correlation of local failure with measures of dose insufficiency in the high-dose single-fraction treatment of bony metastases. Int J Radiat Oncol Biol Phys. 2010;77(4):1282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Laufer I, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207–14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fisher CG, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010;35(22):E1221–9.

    Article  Google Scholar 

  12. Newman WC, Laufer I, Bilsky MH. Neurologic, oncologic, mechanical, and systemic and other decision frameworks for spinal disease. Neurosurg Clin N Am. 2020;31(2):151–66.

    Article  PubMed  Google Scholar 

  13. Young RF, Post EM, King GA. Treatment of spinal epidural metastases. Randomized prospective comparison of laminectomy and radiotherapy. J Neurosurg. 1980;53(6):741–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gilbert RW, Kim JH, Posner JB. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  15. Patchell RA, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.

    Article  PubMed  Google Scholar 

  16. Steffee AD, Biscup RS, Sitkowski DJ. Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop Relat Res. 1986;203:45–53.

    Google Scholar 

  17. Demura S, et al. Total en bloc spondylectomy for spinal metastases in thyroid carcinoma. J Neurosurg Spine. 2011;14(2):172–6.

    Article  PubMed  Google Scholar 

  18. Cloyd JM, et al. En bloc resection for primary and metastatic tumors of the spine: a systematic review of the literature. Neurosurgery. 2010;67(2):435–44; discussion 444–5.

    Article  PubMed  Google Scholar 

  19. Al-Omair A, et al. Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro-Oncology. 2013;15(10):1413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bilsky MH, et al. Single-stage posterolateral transpedicle approach for spondylectomy, epidural decompression, and circumferential fusion of spinal metastases. Spine (Phila Pa 1976). 2000;25(17):2240–9; discussion 250.

    Article  CAS  Google Scholar 

  21. Pennington Z, et al. Minimally invasive versus conventional spine surgery for vertebral metastases: a systematic review of the evidence. Ann Transl Med. 2018;6(6):103.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Than KD, et al. Complication rates associated with open versus percutaneous pedicle screw instrumentation among patients undergoing minimally invasive interbody fusion for adult spinal deformity. Neurosurg Focus. 2017;43(6):E7.

    Article  PubMed  Google Scholar 

  23. Wang H, et al. Comparison of open versus percutaneous pedicle screw fixation using the sextant system in the treatment of traumatic thoracolumbar fractures. Clin Spine Surg. 2017;30(3):E239–e246.

    Article  PubMed  Google Scholar 

  24. Moussazadeh N, et al. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015;15(7):1609–17.

    Article  PubMed  Google Scholar 

  25. Barzilai O, et al. Utility of cement augmentation via percutaneous fenestrated pedicle screws for stabilization of cancer-related spinal instability. Oper Neurosurg (Hagerstown). 2019;16(5):593–9.

    Article  Google Scholar 

  26. Versteeg AL, et al. Complications after percutaneous pedicle screw fixation for the treatment of unstable spinal metastases. Ann Surg Oncol. 2016;23(7):2343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barzilai O, Bilsky MH, Laufer I. The role of minimal access surgery in the treatment of spinal metastatic tumors. Global Spine J. 2020;10(2 Suppl):79s–87s.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dousset V, et al. Asymptomatic cervical haemangioma treated by percutaneous vertebroplasty. Neuroradiology. 1996;38:392–4.

    Article  CAS  PubMed  Google Scholar 

  29. Amar AP, et al. Percutaneous transpedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery. 2001;49(5):1105–14; discussion 1114–5.

    CAS  PubMed  Google Scholar 

  30. Berenson J, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.

    Article  PubMed  Google Scholar 

  31. Sorensen ST, et al. Vertebroplasty or kyphoplasty as palliative treatment for cancer-related vertebral compression fractures: a systematic review. Spine J. 2019;19(6):1067–75.

    Article  PubMed  Google Scholar 

  32. Lee MJ, et al. Percutaneous treatment of vertebral compression fractures: a meta-analysis of complications. Spine (Phila Pa 1976). 2009;34(11):1228–32.

    Article  Google Scholar 

  33. Stangenberg M, et al. Cervical vertebroplasty for osteolytic metastases as a minimally invasive therapeutic option in oncological surgery: outcome in 14 cases. Neurosurg Focus. 2017;43(2):E3.

    Article  PubMed  Google Scholar 

  34. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6 Suppl):305S–16S.

    Article  PubMed  Google Scholar 

  35. Lieberman IH, et al. Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine (Phila Pa 1976). 2001;26(14):1631–8.

    Article  CAS  Google Scholar 

  36. Chang X, et al. Vertebroplasty versus kyphoplasty in osteoporotic vertebral compression fracture: a meta-analysis of prospective comparative studies. Int Orthop. 2015;39(3):491–500.

    Article  PubMed  Google Scholar 

  37. Dalton BE, et al. Radiofrequency-targeted vertebral augmentation versus traditional balloon kyphoplasty: radiographic and morphologic outcomes of an ex vivo biomechanical pilot study. Clin Interv Aging. 2012;7:525–31.

    PubMed  PubMed Central  Google Scholar 

  38. Krueger A, et al. Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur Spine J. 2009;18(9):1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang LJ, et al. Pulmonary cement embolism associated with percutaneous vertebroplasty or kyphoplasty: a systematic review. Orthop Surg. 2012;4(3):182–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gosev I, et al. Right ventricular perforation and pulmonary embolism with polymethylmethacrylate cement after percutaneous kyphoplasty. Circulation. 2013;127(11):1251–3.

    Article  PubMed  Google Scholar 

  41. Barzilai O, et al. Minimal access surgery for spinal metastases: prospective evaluation of a treatment algorithm using patient-reported outcomes. World Neurosurg. 2018;120:e889–901.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tomasian A, et al. Percutaneous thermal ablation of spinal metastases: recent advances and review. AJR Am J Roentgenol. 2018;210(1):142–52.

    Article  PubMed  Google Scholar 

  43. Wallace AN, et al. Radiographic local control of spinal metastases with percutaneous radiofrequency ablation and vertebral augmentation. AJNR Am J Neuroradiol. 2016;37(4):759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh S, Saha S. Electrical properties of bone. A review. Clin Orthop Relat Res. 1984;186:249–71.

    Article  Google Scholar 

  45. Reyes M, et al. Multicenter clinical and imaging evaluation of targeted radiofrequency ablation (t-RFA) and cement augmentation of neoplastic vertebral lesions. J Neurointerv Surg. 2018;10(2):176–82.

    Article  PubMed  Google Scholar 

  46. Sloan AE, et al. Results of the NeuroBlate System first-in-humans Phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg. 2013;118(6):1202–19.

    Article  PubMed  Google Scholar 

  47. Tatsui CE, et al. Spinal laser interstitial thermal therapy: a novel alternative to surgery for metastatic epidural spinal cord compression. Neurosurgery. 2016;79(Suppl 1):S73–82.

    Article  PubMed  Google Scholar 

  48. Bastos DCA, et al. Spinal laser interstitial thermal therapy: single-center experience and outcomes in the first 120 cases. J Neurosurg Spine. 2020:1–10.

    Google Scholar 

  49. Yamada Y, et al. The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery. Neurosurg Focus. 2017;42(1):E6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moulding HD, et al. Local disease control after decompressive surgery and adjuvant high-dose single-fraction radiosurgery for spine metastases. J Neurosurg Spine. 2010;13(1):87–93.

    Article  PubMed  Google Scholar 

  51. Yamada Y, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484–90.

    Article  PubMed  Google Scholar 

  52. Tseng CL, et al. Spine stereotactic body radiotherapy: indications, outcomes, and points of caution. Global Spine J. 2017;7(2):179–97.

    Article  PubMed  PubMed Central  Google Scholar 

  53. DeLaney TF, et al. Intraoperative dural irradiation by customized 192iridium and 90yttrium brachytherapy plaques. Int J Radiat Oncol Biol Phys. 2003;57(1):239–45.

    Article  PubMed  Google Scholar 

  54. Folkert MR, et al. Intraoperative 32P high-dose rate brachytherapy of the dura for recurrent primary and metastatic intracranial and spinal tumors. Neurosurgery. 2012;71(5):1003–10; discussion 1010–1.

    Article  PubMed  Google Scholar 

  55. Bludau F, et al. Phase I/II trial of combined kyphoplasty and intraoperative radiotherapy in spinal metastases. Spine J. 2018;18(5):776–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. C. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C.P., Brisco, A., Liu, J.K.C. (2022). Surgical Management of Metastatic Disease to the Spine. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_48

Download citation

Publish with us

Policies and ethics