Skip to main content

Minimally Invasive Approaches to Thoracic and Lumbar Metastatic Spine Disease

  • Chapter
  • First Online:
Surgical Spinal Oncology

Abstract

Spinal metastases are the most common tumors of the axial spine. Open surgical treatment of these lesions is well established in patients with spinal instability and/or symptomatic neural element compression. However, open surgical techniques with large dissection fields can be physiologically stressful to patients with an already increased morbidity profile. Minimally invasive surgery (MIS) is a promising adjunct for treating these patients and offers the benefits of decreased soft tissue trauma and decreased physiologic insult to these patients. A wide array of techniques have been described for the decompression and stabilization of the thoracic and lumbar spine including posterior transpedicular, costrotransversectomy, and lateral extracavitary. These techniques, among others, are increasing in popularity and are discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilsky MH, Boland P, Lis E, Raizer J, Healey JH. Single-stage posterolateral transpedicle approach for spondylectomy, epidural decompression, and circumferential fusion of spinal metastases. Spine. 2000;25(17):2240–50.

    CAS  PubMed  Google Scholar 

  2. Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomized trial. Lancet. 2005;366(9486):643–8.

    PubMed  Google Scholar 

  3. Yaşargil MG. Microsurgical operation of herniated lumbar disc. Adv Neurosurg. 1977;4:81.

    Google Scholar 

  4. Oppenheimer JH, DeCastro I, McDonnell DE. Minimally invasive spine technology and minimally invasive spine surgery: a historical review. Neurosurg Focus. 2009;27:E9.

    PubMed  Google Scholar 

  5. Holly LT, Schwender JD, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus. 2006;20(3):E6.

    PubMed  Google Scholar 

  6. Lau D, Chou D. Posterior thoracic corpectomy with cage reconstruction for metastatic spinal tumors: comparing the mini-open approach to the open approach. J Neurosurg Spine. 2015;23:217–27.

    PubMed  Google Scholar 

  7. Selznick LA, Shamji MF, Isaacs RE. Minimally invasive interbody fusion for revision lumbar surgery: technical feasibility and safety. J Spinal Disord Tech. 2009;22:207–13.

    PubMed  Google Scholar 

  8. Zairi F, Arikat A, Allaoui M, Marinho P, Assaker R. Minimally invasive decompression and stabilization for the management of thoracolumbar spine metastasis. J Neurosurg Spine. 2012;17:19–23.

    PubMed  Google Scholar 

  9. Hartl R, Korge A. Minimally invasive spine surgery – techniques, evidence, and controversies. New York, NY: Thieme Publishers; 2013.

    Google Scholar 

  10. Fourney DR, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.

    PubMed  Google Scholar 

  11. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472:1711–7.

    PubMed  PubMed Central  Google Scholar 

  12. Nomura K, Yoshida M. Assessment of the learning curve for microendoscopic decompression surgery for lumbar spinal canal stenosis through an analysis of 480 cases involving a single surgeon. Global Spine J. 2017;7:54–8.

    PubMed  PubMed Central  Google Scholar 

  13. Grant R, Papadopoulos SM, Greenberg HS. Metastatic epidural spinal cord compression. Neurol Clin. 1991;9:825–41.

    CAS  PubMed  Google Scholar 

  14. Sundaresan N, Galicich JH, Lane JM, et al. Treatment of neoplastic epidural cord compression by vertebral body resection and stabilization. J Neurosurg. 1985;63(5):676–84.

    CAS  PubMed  Google Scholar 

  15. Harrington KD. Anterior cord decompression and spinal stabilization for patients with metastatic lesions of the spine. J Neurosurg. 1984;61:107–17.

    CAS  PubMed  Google Scholar 

  16. Bridwell KH, Jenny AB, Saul T, et al. Posterior segmental spinal instrumentation (PSSI) with posterolateral decompression and debulking for metastatic thoracic and lumbar spine disease. Limitations of the technique. Spine. 1988;13:1383–94.

    CAS  PubMed  Google Scholar 

  17. Han SJ, Lau D, Lu DC, Theodore P, Chou D. Anterior thoracolumbar corpectomies: approach morbidity with and with- out an access surgeon. Neurosurgery. 2011;68(5):1220–5.

    PubMed  Google Scholar 

  18. Jarrett CD, Heller JG, Tsai L. Anterior exposure of the lumbar spine with and without an “access surgeon”: morbidity analysis of 265 consecutive cases. J Spinal Disord Tech. 2009;22:559–64.

    PubMed  Google Scholar 

  19. Lau D, Song Y, Guan Z, Sullivan S, La Marca F, Park P. Perioperative characteristics, complications, and outcomes of single-level versus multilevel thoracic corpectomies via modified costotransversectomy approach. Spine (Phila Pa 1976). 2013;38:523–30.

    Google Scholar 

  20. Lu DC, Lau D, Lee JG, Chou D. The transpedicular approach compared with the anterior approach: an analysis of 80 thoracolumbar corpectomies. J Neurosurg Spine. 2010;12:583–91.

    PubMed  Google Scholar 

  21. Meredith DS, Kepler CK, Huang RC, Hegde VV. Extreme lateral interbody fusion (XLIF) in the thoracic and thoracolumbar spine: technical report and early outcomes. HSS J. 2013;9(1):25–31.

    PubMed  PubMed Central  Google Scholar 

  22. Kan P, Schmidt M. Minimally invasive thoracoscopic approach for anterior decompression and stabilization of metastatic spine disease. Neurosurg Focus. 2008;25:E8.

    PubMed  Google Scholar 

  23. Deutsch H, Boco T, Lobel J. Minimally invasive transpedicular vertebrectomy for metastatic disease to the thoracic spine. J Spinal Disord Tech. 2008;21:101–5.

    PubMed  Google Scholar 

  24. Kim DH, O’Toole JE, Ogden AT, et al. Minimally invasive posterolateral thoracic corpectomy: cadaveric feasibility study and report of four clinical cases. Neurosurgery. 2009;64(4):746–53.

    PubMed  Google Scholar 

  25. Taghva A, Li KW, Liu JC, Gokaslan ZL, Hsieh PC. Minimally invasive circumferential spinal decompression and stabilization for symptomatic metastatic spine tumor: technical case report. Neurosurgery. 2010;66:E620–2.

    PubMed  Google Scholar 

  26. Musacchio M, Patel N, Bagan B, Deutsch H, Vaccaro AR, Ratliff J. Minimally invasive thoracolumbar costotransversectomy and corpectomy via a dual-tube technique: evaluation in a cadaver model. Surg Technol Int. 2007;16:221–5.

    PubMed  Google Scholar 

  27. Khoo LT, Smith ZA, Asgarzadie F, et al. Minimally invasive extracavitary approach for thoracic discectomy and interbody fusion: 1-year clinical and radiographic outcomes in 13 patients compared with a cohort of traditional anterior transthoracic approaches. J Neurosurg. 2011;14(2):250–60.

    Google Scholar 

  28. Smith ZA, Li Z, Chen NF, Raphael D, Khoo LT. Minimally invasive lateral extracavitary corpectomy: cadaveric evaluation model and report of 3 clinical cases. J Neurosurg. 2012;16(5):463–70.

    Google Scholar 

  29. Lindsay R, Silverman SL, Cooper C. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285:320–3. https://doi.org/10.1001/jama.285.3.320.

    Article  CAS  PubMed  Google Scholar 

  30. Costa L, Badia X, Chow E, Lipton A, Wardley A. Impact of skeletal complications on patients’ quality of life, mobility, and functional independence. Support Care Cancer. 2008;16:879–89. https://doi.org/10.1007/s00520-008-0418-0.

    Article  PubMed  Google Scholar 

  31. Rao PJ, Thayaparan GK, Fairhall JM, et al. Minimally invasive percutaneous fixation techniques for metastatic spinal disease. Orthop Surg. 2014;6:187–95.

    PubMed  PubMed Central  Google Scholar 

  32. Kwan MK, Lee CK, Chan CY. Minimally invasive spinal stabilization using fluoroscopic-guided percutaneous screws as a form of palliative surgery in patients with spinal metastasis. Asian Spine J. 2016;10:99–110.

    PubMed  PubMed Central  Google Scholar 

  33. Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32:1077–83.

    Google Scholar 

  34. Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N. Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech. 2012;25:28–35.

    Google Scholar 

  35. Kim P, Won Kim S. Bone cement-augmented percutaneous screw fixation for malignant spinal metastases: is it feasible? J Korean Neurosurg Soc. 2017;60:189–94. https://doi.org/10.3340/jkns.2016.0909.003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10(4):E10.

    CAS  PubMed  Google Scholar 

  37. Zhao Q, Zhang H, Hao D, Guo H, Wang B, He B. Complications of percutaneous pedicle screw fixation in treating thoracolumbar and lumbar fracture. Medicine (Baltimore). 2018;97:e11560.

    Google Scholar 

  38. Lee CK, Chan CY, Kwan MK. Ultra long construct minimally invasive spinal stabilization using percutaneous pedicle screws in the treatment of symptomatic multicentric spinal metastasis. Asian Spine J. 2015;9:962–5.

    PubMed  PubMed Central  Google Scholar 

  39. Schwab JH, Gasbarrini A, Cappuccio M, Boriani L, De Iure F, Colangeli S, et al. Minimally invasive posterior stabilization improved ambulation and pain scores in patients with plasmocytomas and/or metastases of the spine. Int J Surg Oncol. 2011;2011:239230.

    PubMed  PubMed Central  Google Scholar 

  40. Uei H, Tokuhashi Y, Oshima M, Maseda M, Matsumoto K, Soma H, et al. Clinical results of minimally invasive spine stabilization for spinal metastases. Orthopedics. 2017;40:e693–8.

    PubMed  Google Scholar 

  41. Mesfin A, Sciubba D, Dea N, Nater A, Bird J, Quraishi NA, et al. Changing the adverse event profile in metastatic spine surgery: an evidence based approach to target wound complications and instrumentation failure. Spine. 2016;41(Suppl 20):S262–70.

    PubMed  Google Scholar 

  42. Mesfin A, Baldwin A, Bernstein D, Emanski E, Molinari RW, Menga EM, et al. Reducing surgical site infections in spine tumor surgery: a comparison of three methods. Spine. 2019;44(24):E1428–35.

    PubMed  Google Scholar 

  43. Jubril A, Sherif S, Mesfin A. Clinical outcomes of percutaneous pedicle screws and open decompression in the management of thoracolumbar and lumbar spine metastases. Lumbar spine research society annual meeting. J Neurosurg Spine. 2019:103.

    Google Scholar 

  44. Zuckerman SL, Laufer I, Sahgal A, Yamada YJ, Schmidt MH, Chou D, et al. When less is more: the indications for MIS techniques and separation surgery in metastatic spine disease. Spine. 2016;41(Suppl 20):s246–53.

    PubMed  PubMed Central  Google Scholar 

  45. Lee RS, Batke J, Weir L, Dea N, Fisher CG. Timing of surgery and radiotherapy in the management of metastatic spine disease: expert opinion. J Spine Surg. 2018;4(2):368–73. https://doi.org/10.21037/jss.2018.05.05.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moulding HD, Elder JB, Lis E, Lovelock DM, Zhang Z, Yamada Y, et al. Local disease control after decompressive surgery and adjuvant high-dose single-fraction radiosurgery for spine metastases. J Neurosurg Spine. 2010;13(1):87–93. [PubMed: 20594023].

    PubMed  Google Scholar 

  47. Turel MK, Kerolus MG, O’Toole JE. Minimally invasive “separation surgery” plus adjuvant stereotactic radiotherapy in the management of spinal epidural metastases. J Craniovertebr Junction Spine. 2017;8(2):119–26. https://doi.org/10.4103/jcvjs.JCVJS_13_17.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moussazadeh N, Laufer I, Yamada Y, Bilsky MH. Separation surgery for spinal metastases: effect of spinal radiosurgery on surgical treatment goals. Cancer Control. 2014;21(2):168–74.

    PubMed  Google Scholar 

  49. Gao Z, Wu Z, Lin Y, Zhang P. Percutaneous transforaminal endoscopic decompression in the treatment of spinal metastases: a case report. Medicine. 2019;98:e14819. https://doi.org/10.1097/MD.0000000000014819.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vess, E., Qui, B., Mesfin, A. (2020). Minimally Invasive Approaches to Thoracic and Lumbar Metastatic Spine Disease. In: Singh, K., Colman, M. (eds) Surgical Spinal Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-50722-0_19

Download citation

Publish with us

Policies and ethics