Skip to main content

Electro – Technologies

  • Chapter
  • First Online:
Nonthermal Processing in Agri-Food-Bio Sciences

Abstract

This chapter provides an overview of specific technologies used in nonthermal processing of food: pulsed electric field (PEF), cold plasma (CP), radio-frequency electric field (RFEF), oscillating magnetic field (OMF), electrohydrodynamic processing (EHDF), electron beam (EB) processing and ionizing radiation (IR). These technologies are called electro-technologies because they use the electric field. The electric field is applied in pulses (e.g., pulsed electric field), continuous (e.g., radio-frequency, electrohydrodynamic), or to produce an oscillating magnetic field. Also, the electric field helps the movement of electrons in electron beam processing and contribute to cold plasma. Electro-technologies are subject to intensive scientific research as alternative techniques to heat treatment processing. The main topics of the discussion addressed are the fundamental principle of each electro-technology, the mechanism of inactivation or destruction of microorganisms, research and practical applications, process parameters and factors, advantages and disadvantages. Special attention is paid to advanced control of microbial quality and safety in food technology, agriculture, and biology achieved by applying these electro-technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Pulsed Electric Field

  • Ade-Omowaye BIO, Angersbach A, Eshtiaghi NM, Knorr D (2000) Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innov Food Sci Emerg Technol 1:203–209

    Article  CAS  Google Scholar 

  • Ade-Omowaye BIO, Rastogi NK, Angersbach A, Knorr D (2002) Osmotic dehydration of bell peppers: influence of high intensity electric field pulses and elevated temperature treatment. J Food Eng 54:35–43

    Article  Google Scholar 

  • Ade-Omowaye BIO, Rastogi NK, Angersbach A, Knorr D (2003a) Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behavior of red bell pepper. J Food Eng 60:89–98

    Article  Google Scholar 

  • Ade-Omowaye BIO, Taiwo KA, Eshtiaghi NM, Angersbach A, Knorr D (2003b) Comparative evaluation of the effects of pulsed electric field and freezing on cell membrane permeabilisation and mass transfer during dehydration of red bell peppers. Innov Food Sci Emerg Technol 4:177–188

    Article  CAS  Google Scholar 

  • Albagnac G, Varoquaux P, Montigaux JC (2002) Technologies de transformation des fruits. Lavoisier, Paris

    Google Scholar 

  • Amami E, Vorobiev E, Kechaou N (2006) Modelling of mass transfer during osmotic dehydration of apple tissue pretreated by pulsed electric field. LWT-Food Sci Technol 39:1014–1021

    Article  CAS  Google Scholar 

  • Amami E, Fersi A, Vorobiev E, Kechaou N (2007) Osmotic dehydration of carrot tissue enhanced by pulsed electric field, salt and centrifugal force. J Food Eng 83:605–613

    Article  CAS  Google Scholar 

  • Amiali M, Ngadi MO, Raghavan VGS, Smith JP (2004) Inactivation of Escherichia coli O157: H7 in liquid dialyzed egg using pulsed electric fields. Food Bioprod Process 82:151–156

    Article  Google Scholar 

  • Amiali M, Ngadi MO, Smith JP, Raghavan GSV (2007) Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk. J Food Eng 79:689–694

    Article  Google Scholar 

  • Amit SK, Uddin MM, Rahman R, Islam SMR, Khan MS (2017) A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur 6:51

    Article  Google Scholar 

  • Asavasanti S, Ersus S, Ristenpart W, Strove P, Barret DM (2010) Critical field strength of onions tissues treated by pulsed electric fields. J Food Sci 75:433–443

    Article  Google Scholar 

  • Bai Y, Li C, Zhao J, Zheng P, Li Y, Pan Y, Wang Y (2013) A high yield method of extracting alkaloid from Aconitum coreanum by pulsed electric field. Chromatographia 76:635–642

    Article  CAS  Google Scholar 

  • Barba FJ, Grimi N, Vorobiev E (2014) New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev 7(1):45–62

    Article  Google Scholar 

  • Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products. Trends Food Sci Technol 49:96–109

    Article  CAS  Google Scholar 

  • Barssoti P, Merle P, Cheftel JC (1999) Food processing by pulsed electric fields. I Phys Aspects Food Rev Int 15:163–220

    Google Scholar 

  • Bazhal M, Vorobiev E (2000) Electrical treatment of apple cossettes for intensifying juice pressing. J Sci Food Agric 80:1668–1674

    Article  CAS  Google Scholar 

  • Bekhit AEDA, van de Ven R, Suwandy V, Fahri F, Hopkins DL (2014) Effect of pulsed electric field treatment on cold-boned muscles of different potential tenderness. Food Bioprocess Technol 7:3136–3146

    Article  Google Scholar 

  • Bhat ZF, Morton JD, Mason SL, Bekhit AEDA (2018) Applied and emerging methods for meat tenderization: a comparative perspective. Compr Rev Food Sci Food Saf 17:841–859

    Article  PubMed  Google Scholar 

  • Buchmann L, Bloch R, Mathys A (2018) Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. Bioresour Technol 265:268–274

    Article  CAS  PubMed  Google Scholar 

  • Buckow R, Ng S, Toepfl S (2013) Pulsed electric field processing of orange juice: a review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr Rev Food Sci Food Saf 12:455–467

    Article  CAS  PubMed  Google Scholar 

  • Cai YZ, Sun M, Corke H (2005) Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Sci Technol 16:370–376

    Article  CAS  Google Scholar 

  • Castro AJ, Barbosa-Canovas GV, Swanson BG (1993) Microbial inactivation of foods by pulsed electric fields. J Food Process Preserv 19:47–73

    Article  Google Scholar 

  • Chalermchat Y, Fincan M, Djmek P (2004) Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment: mathematical modelling of mass transfer. J Food Eng 64:229–236

    Article  Google Scholar 

  • Chotphruethipong L, Aluko RE, Benjakul S (2019) Effect of pulsed electric field assisted process in combination with porcine lipase on defatting of seabass skin. J Food Sci 84:1799–1805

    Article  CAS  PubMed  Google Scholar 

  • Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  • de Haan SWH (2007) Circuitry and pulse shapes in pulsed electric field treatment of food. In: Notermans S, de Haan SWH (eds) Lelieveld HLM. Food Preservation by Pulsed Electric Fields, Elsevier, pp 43–69

    Google Scholar 

  • Deng Q, Zinoviadou KG, Galanakis CM, Orlien V, Grimi N, Vorobiev E, Lebovka N, Barba FJ (2014) The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7(3):357–381

    Article  Google Scholar 

  • Donsì F, Ferrari G, Pataro G (2010) Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng Rev 2(2):109–130

    Article  Google Scholar 

  • Fauster T, Schlossnikl D, Rath F, Ostermeier R, Teufel F, Toepfl S, Jaeger H (2018) Impact of pulsed electric field (PEF) pretreatment on process performance of industrial French fries production. J Food Eng 235:16–22

    Article  Google Scholar 

  • Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55(3):223–230

    Article  Google Scholar 

  • Fincan M, DeVito F, Dejmek P (2004) Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment. J Food Eng 64:381–388

    Article  Google Scholar 

  • Flaumenbaum BL (1949) Electrical treatment of fruits and vegetables before extraction of juice. Trudy OTIKP 3:15–20

    Google Scholar 

  • Gachovska T, Cassada D, Subbiah J, Hanna M, Thippareddi H, Snow D (2010) Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. J Food Sci 75:323–329

    Article  Google Scholar 

  • Gómez B, Munekata PE, Gavahian M, Barba FJ, Martí-Quijal FJ, Bolumar T, Campagnol PCB, Tomasevic I, Lorenzo JM (2019) Application of pulsed electric fields in meat and fish processing industries: an overview. Int Food Res J 123:95–105

    Article  Google Scholar 

  • Grimi N, Praporscic I, Lebovka N, Vorobiev E (2007) Selective extraction from carrot slices by pressing and washing enhanced by pulsed electric fields. Sep Purif Technol 58:267–273

    Article  CAS  Google Scholar 

  • Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259

    Article  CAS  PubMed  Google Scholar 

  • Guderjan M, Elez-Martínez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emerg Technol 8:55–62

    Article  CAS  Google Scholar 

  • Ignat A, Manzocco L, Brunton NP, Nicoli MC, Lyng JG (2015) The effect of pulsed electric field pretreatments prior to deep-fat frying on quality aspects of potato fries. Innov Food Sci Emerg Technol 29:65–69

    Article  Google Scholar 

  • Jaeger H, Janositz A, Knorr D (2010) The Maillard reaction and its control during food processing. The potential of emerging technologies [La reaction de Maillard et son contrôle pendant la fabrication des aliments. Le potentiel des nouvelles technologies]. Pathol Biol 58(3):207–213

    Article  CAS  PubMed  Google Scholar 

  • Jaeger H, Schulz M, Lu P, Knorr D (2012) Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov Food Sci Emerg Technol 14:46–60

    Article  Google Scholar 

  • Jambrak A, Djekić I, Van Impe J (2018) Non-thermal food processing: Modelling of processes towards safety, quality and sustainability. In: 10th international conference on simulation and modelling in the food and bio-industry 2018. FOODSIM, vol 2018, pp 19–21

    Google Scholar 

  • Jemai AB, Vorobiev E (2003) Enhancing leaching from sugar beet cossettes by pulsed electric field. J Food Eng 59:405–412

    Article  Google Scholar 

  • Jemai AB, Vorobiev E (2006) Pulsed electric field assisted pressing of sugar beet slices: towards a novel process of cold juice extraction. Biosyst Eng 93:57–68

    Article  Google Scholar 

  • Kalum L, Hendriksen HV (2014) Process for treating vegetable material with an enzyme. US Patent 20080241315 A1

    Google Scholar 

  • Katiyo W, Yang R, Zhao W (2017) Effects of combined pulsed electric fields and mild temperature pasteurization on microbial inactivation and physicochemical properties of cloudy red apple juice (Malus pumila Niedzwetzkyana (Dieck)). J Food Saf 37(4):12369

    Article  Google Scholar 

  • Kempkes M, Munderville M (2017) Pulsed electric fields (PEF) processing of fruit and vegetables. In: IEEE 21st International Conference on Pulsed Power (PPC) 2017, pp 1–7

    Google Scholar 

  • Koehler E, Toepfl S, Knorr D, Pulz O (2005) Unconventional procedures for the production and stabilization of extracts with active agents. Eur. Work. Microalgal Biotechnol., 6th, Potsdam

    Google Scholar 

  • Koubaa M, Roselló-Soto E, Šic-Žlabur J, Režek-Jambrak A, Brnčic M, Grimi N, Boussetta N, Barba FJ (2015) Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. J Agric Food Chem 63(31):6835–6846

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Vijayalakshmi S, Kathiravan T, Nadanasabapathi S (2019) PEF processing of fruits, vegetables, and their products. In: Chauhan OP (ed) Nonthermal processing of foods. Taylor & Francis Group, Boca Raton, pp 104–124

    Google Scholar 

  • Lebovka NI, Shynkaryk MV, El-Belghiti K, Benjelloun H, Vorobiev E (2007) Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. J Food Eng 80(2):639–644

    Article  Google Scholar 

  • Li X, Farid M (2016) A review on recent development in non-conventional food sterilization technologies. J Food Eng 182:33–45

    Article  Google Scholar 

  • Loginov M, Loginova K, Lebovka N, Vorobiev E (2011) Comparison of dead-end ultrafiltration behavior and filtrate quality of sugar beet juices obtained by conventional and “cold” PEF-assisted diffusion. J Membr Sci 377(1–2):273–283

    Article  CAS  Google Scholar 

  • Loginova K, Loginov M, Vorobiev E, Lebovka NI (2011) Quality and filtration characteristics of sugar beet juice obtained by “cold” extraction assisted by pulsed electric field. J Food Eng 106(2):144–151

    Article  CAS  Google Scholar 

  • Loginova K, Loginov M, Vorobiev E, Lebovka NI (2012) Better lime purification of sugar beet juice obtained by low temperature aqueous extraction assisted by pulsed electric field. LWT – Food Sci Technol 46(1):371–374

    Article  CAS  Google Scholar 

  • Lopéz N, Puértolas E, Condóon S, Raso J, Álvarez I (2009) Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Eng 90:60–66

    Article  Google Scholar 

  • Mahnič-Kalamiza S, Vorobiev E, Miklavčič D (2014) Electroporation in food processing and biorefinery. J Membr Biol 247:1279–1304

    Article  PubMed  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov Food Sci Emerg Technol 9(3):328–340

    Article  CAS  Google Scholar 

  • Palaniappan S, Sastry SK (1990) Effects of electricity on microorganisms. J Food Process Preserv 14:393–414

    Article  Google Scholar 

  • Parliament E (2011) European Parliament resolution of 19 January 2012 on how to avoid food wastage: Strategies for a more efficient food chain in the EU (2011/2175(INI)

    Google Scholar 

  • Parniakov O, Bals O, Lebovka N, Vorobiev E (2016) Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innov Food Sci Emerg Technol 35:52–57

    Article  Google Scholar 

  • Pourzaki A, Mirzaee H, Hemmati Kakhki A (2013) Using pulsed electric field for improvement of components extraction of saffron (Crocus sativus) stigma and its pomace. J Food Process Preserv 37(5):1008–1013

    Article  CAS  Google Scholar 

  • Praporscic I (2005) Influence du traitement combiné par champ électrique pulsé et chauffage modéré sur les propriétés physiques et sur le comportement au pressage de produits végétaux. (PhD Thesis). Université de Technologie de Compiègne, France

    Google Scholar 

  • Priyadarshini A, Rajauria G, O’Donnell CP, Tiwari BK (2019) Emerging food processing technologies and factors impacting their industrial adoption. Crit Rev Food Sci Nutr 59(19):3082–3101

    Article  PubMed  Google Scholar 

  • Puértolas E, Hernández-Orte P, Sladaña G, Álvarez I, Raso J (2010a) Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Res Int 43:761–766

    Article  Google Scholar 

  • Puértolas E, López N, Condón C, Álvarez I, Raso J (2010b) Potential applications of PEF to improve red wine quality. Trends Food Sci Technol 21:247–255

    Article  Google Scholar 

  • Redondo LM (2017) Basic concepts of high-voltage pulse generation. In: Miklavčič D (ed) Handbook of electroporation. Springer, Cham (CH). pp 859–879

    Google Scholar 

  • Redondo D, Venturini ME, Luengo E, Raso J, Arias E (2018) Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov Food Sci Emerg Technol 45:335–343

    Article  CAS  Google Scholar 

  • Roselló-Soto E, Galanakis CM, Brnčić M, Orlien V, Trujillo FJ, Mawson R, Knoerzer K, Tiwari BK, Barba FJ (2015a) Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci Technol 42(2):134–149

    Article  Google Scholar 

  • Roselló-Soto E, Koubaa M, Moubarik A, Lopes RP, Saraiva JA, Boussetta N, Grimi N, Barba FJ (2015b) Emerging opportunities for the effective valorization of wastes and byproducts generated during olive oil production process: non-conventional methods for the recovery of high-added value compounds. Trends Food Sci Technol 45(2):296–310

    Article  Google Scholar 

  • Sack M, Mueller G (2017) Design considerations for electroporation reactors. IEEE Trans Dielectr Electr Insul 24:1992–2000

    Article  Google Scholar 

  • Sale AJH, Hamilton WA (1968) Effects of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta 163:37–43

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2014) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innov Food Sci Emerg Technol 29:70–77

    Article  Google Scholar 

  • Sharma P, Oey I, Bremer P, Everett DW (2014) Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. Int Dairy J 39(1):146–156

    Article  CAS  Google Scholar 

  • Taiwo KA, Angersbach A, Knorr D (2002) Influence of high intensity electric field pulses and osmotic dehydration on the rehydration characteristics of apple slices at different temperatures. J Food Eng 52:185–192

    Article  Google Scholar 

  • Taiwo KA, Angersbach A, Knorr D (2003) Effects of pulsed electric field on quality factors and mass transfer during osmotic dehydration of apples. J Food Process Eng 26:31–48

    Article  Google Scholar 

  • Teissie J, Prats M, Soucaille P, Tocanne JF (1985) Evidence for conduction of protons along the interface between water and a polar lipid monolayer. Proc Natl Acad Sci U S A 82:3217–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermans RAH, Nierop Groot MN, Nederhoff AL, van Boekel MAJS, Matser AM, Mastwijk HC (2014) Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. Int J Food Microbiol 173:105–111

    Article  CAS  PubMed  Google Scholar 

  • Timmermans R, Mastwijk H, Berendsen L, Nederhoff A, Matser A, Van Boekel M, Nierop Groot MN (2019) Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. Int J Food Microbiol 298:63–73

    Article  CAS  PubMed  Google Scholar 

  • Toepfl S, Heinz V, Knorr D (2006a) Application of pulsed electric field technology for the food industry. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry, Food engineering series. Springer, Boston, pp 197–221

    Chapter  Google Scholar 

  • Toepfl S, Mathys A, Heinz V, Knorr D (2006b) Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22:405–423

    Article  CAS  Google Scholar 

  • Toepfl S, Siemer C, Saldaña-Navarro G, Heinz V (2014) Overview of pulsed electric fields processing for food. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Elsevier/Academic Press, Amsterdam/Boston, pp 93–114

    Chapter  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walkling-Ribeiro M, Noci F, Cronin DA, Lyng JG, Morgan DJ (2010) Shelf life and sensory attributes of a fruit smoothie-type beverage processed with moderate heat and pulsed electric fields. LWT – Food Sci Technol 43:1067–1073

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro M, Rodrıguez-Gonzalez O, Jayaram SH, Griffiths MW et al (2011) Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Int Food Res J 44:2524–2533

    Article  CAS  Google Scholar 

  • Wang LH, Pyatkovskyy T, Yousef A, Zeng XA, Sastry SK (2020) Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. Innov Food Sci Emerg Technol 62:102349

    Article  CAS  Google Scholar 

  • Weaver JC (2000a) Electroporation of cells and tissues. IEEE Trans Plasma Sci 28(1):24–33

    Article  CAS  Google Scholar 

  • Zhang TH, Wang SJ, Liu DR, Yuan Y, Yu YL, Yin YG (2011) Optimization of exopolysaccharide extraction process from Tibetan spiritual mushroom by pulsed electric fields. J Jilin Uni 41(3):882–886

    CAS  Google Scholar 

  • Zimmermann U (1986a) Electric breakdown, electro permeabilization and electrofusion. Rev Phys Biochem Pharmacol 105:196–256

    Google Scholar 

Cold Plasma

  • Baggio A, Marino M, Innocente N, Celotto M, Maifreni M (2020) Antimicrobial effect of oxidative technologies in food processing: an overview. Eur Food Res Technol Springer. https://doi.org/10.1007/s00217-020-03447-6

  • Bao T, Hao X, Shishir MRI, Karim N, Chen W (2021) Cold plasma: an emerging pretreatment technology for the drying of jujube slices. Food Chem 337:127783

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov T, Tsonev I, Marinova P, Benova E, Rusanov K, Rusanova M, Atanassov I, Kozáková Z, Krčma F (2018) Microwave plasma torch generated in argon for small berries surface treatment. Appl Sci 8:1870

    Article  Google Scholar 

  • Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Lj Petrovic Z, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25(5):053002

    Article  Google Scholar 

  • Chaple S, Sarangapani C, Jones J, Carey E, Causeret L, Genson A, Duffy B, Bourke P (2020) Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov Food Sci Emerg Technol 66:102529

    Article  CAS  Google Scholar 

  • Chen TP, Liang JF, Su TL (2018) Plasma-activated water: antibacterial activity and artifacts? Environ Sci Pollut Res Int 25(27):26699–26706

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Gao A, Xu H, Chen Y (2017) Effects of dielectric barrier discharges (DBD) cold plasma treatment on physico-chemical and structural properties of zein powders. Food Bioprocess Technol 10:434–444

    Article  CAS  Google Scholar 

  • Gorbanev Y, Privat-Maldonado A, Bogaerts A (2018) Analysis of short-lived reactive species in plasma-air-water systems: the do’s and the don’ts. Anal Chem 90(22):13151–13158

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Tang F, Chen J, Wang X, Zhang S, Zhang X (2014) Development of dielectric-barrier-discharge ionization. Anal Bioanal Chem 407(9):2345–2364

    Article  PubMed  Google Scholar 

  • H€ansch MAC, Mann M, Weltmann KD, Woedtke T (2015) Analysis of antibacterial efficacy of plasma-treated sodium chloride solutions. J Phys D Appl Phys 48(45):454001

    Article  Google Scholar 

  • Janić Hajnal E, Vukić M, Pezo L, Orčić D, Puač N, Škoro N, Mi-lidrag A, Šoronja Simović D (2019) Effect of atmospheric cold plasma treatments on reduction of Alternaria toxins content in wheat flour. Toxins 11:704

    Article  PubMed Central  Google Scholar 

  • Joshi I, Salvi D, Schaffner DW, Karwe MV (2018) Characterization of microbial inactivation using plasma-activated water and plasma-activated acidified buffer. J Food Prot 81(9):1472–1480

    Article  CAS  PubMed  Google Scholar 

  • Kamgang-Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL, Doubla A, Naïtali M (2007) Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Appl Environ Microb 73(15):4791–4796

    Article  CAS  Google Scholar 

  • Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naïtali M (2009) Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett Appl Microbiol 48(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Katsigiannis AS, Bayliss DL, Walsh JL (2021) Cold plasma decontamination of stainless steel food processing surfaces assessed using an industrial disinfection protocol. Food Control 121:107543

    Article  CAS  Google Scholar 

  • Khlyustova A, Labay C, Machala Z, Ginebra M-P, Canal C (2019) Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review. Front Chem Sci Eng 13(2):238–252

    Article  CAS  Google Scholar 

  • Kim H-J, Yong HI, Park S, Kim K, Bae Y, Choe W, Oh M, Jo C (2013) Effect of inactivating salmonella typhimurium in raw chicken breast and pork loin using an atmospheric pressure plasma jet. J Anim Sci Technol 55(6):545–549

    Article  Google Scholar 

  • Kojtari A, Ercan UK, Smith J, Friedman G, Sensenig RB, Tyagi S, Joshi SG, Ji HF, Brooks AD (2013) Chemistry for antimicrobial properties of water treated with nonequilibrium plasma. J Nanomed Biother Discov 4(1):1000120

    Google Scholar 

  • Krčma F, Tsonev I, Smejkalová K, Truchlá D, Kozáková Z, Zhekova M, Marinova P, Bogdanov T, Benova E (2018) Microwave micro torch generated in argon based mixtures for biomedical applications. J Phys D Appl Phys 51:414001

    Article  Google Scholar 

  • Lipovan I, Bostanaru AC, Nastasa V, Hnatiuc E, Vuple V, Mares M (2015) Assessment of the antimicrobial effect of nonthermal plasma activated water against coagulase positive Staphylococci. Bull Univ Agric Sci Vet Med Cluj Napoca 72(2):363–367

    CAS  Google Scholar 

  • Ma R, Wang G, Tian Y, Wang K, Zhang J, Fang J (2015) Nonthermal plasma activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  • McFerson L (1993) Understanding ORP’s role in the disinfection process. Water Eng Manag 140:29–31

    Google Scholar 

  • Misra NN, Moiseev T, Patil S, Pankaj SK, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol 7:3045–3054

    Article  CAS  Google Scholar 

  • Moisan M, Nowakowska H (2018) Surface-wave (SW) sustained plasma columns: their contribution to the modeling of RF and microwave discharges with new insight into some of their features. A survey of other types of SW discharges. Plasma Sources Sci Technol 27(7):073001

    Article  Google Scholar 

  • Moisan M, Zakrzewski Z (1991) Plasma sources based on the propagation of electromagnetic surface waves. J Phys D Appl Phys 24:1025–1048

    Article  Google Scholar 

  • Moisan M, Sauvé G, Zakrzewski Z, Hubert J (1994) An atmospheric pressure waveguide-fed microwave plasma torch: the TIA design. Plasma Sources Sci Technol 3(4):584–592

    Article  Google Scholar 

  • Moritz M, Wiacek C, Weihe T, Ehlbeck J, Weltmann K-D, Braun PG (2020) Effect of cold atmospheric pressure plasma treatment of eggshells on the total bacterial count inoculated salmonella Enteritidis and selected quality parameters. Plasma Process Polym:e2000061

    Google Scholar 

  • Naïtali M, Kamgang-Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL (2010) Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microb 76(22):7662–7664

    Article  Google Scholar 

  • Niquet R, Boehm D, Schnabel U, Cullen P, Bourke P, Ehlbeck J (2018) Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Process Polym 15(3):1700127

    Article  Google Scholar 

  • Oh J-S, Szili EJ, Hatta A, Ito M, Shirafuji T (2019) Tailoring the chemistry of plasma-activated water using a DC-pulse-driven nonthermal atmospheric-pressure helium plasma jet. Plasma 2(2):127–137

    Article  CAS  Google Scholar 

  • Qi ZH, Tian EQ, Song Y, Sosnin EA, Skakun VS, Li TT, Xia Y, Zhao Y, Lin XS, Liu DP (2018) Inactivation of Shewanella putrefaciens by plasma activated water. Plasma Chem Plasma Process 38(5):1035–1050

    Article  CAS  Google Scholar 

  • Royintarat T, Seesuriyachan P, Boonyawan D, Choi EH, Wattanutchariya W (2019) Mechanism and optimization of nonthermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma. Curr Appl Phys 19(9):1006–1014

    Article  Google Scholar 

  • Royintarat T, Choi EH, Boonyawan D, Seesuriyachan P, Wattanutchariya W (2020) Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Sci Rep 10(1):1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabel U, Handorf O, Stachowiak J, Boehm D, Weit C, Weihe T, Schafer J, Below H, Bouke P, Ehlbeck J (2020) Plasma-functionalized water: from bench to prototype for fresh-cut lettuce. Food Eng Rev 13:115–135

    Article  Google Scholar 

  • Schnabel U, Handorf O, Winter H, Weihe T, Weit C, Schäfer J, Stachowiak J, Boehm D, Be-low H, Bourke P, Ehlbeck J (2021) The efffect of plasma treated water unit processes on the food quality characteristics of fresh-cut endive. Front Nutr 7:627483

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Tian Y, Li YL, Ma RN, Zhang Q, Zhang J, Fang J (2016) Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep 6:28505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganuma R, Yasuoka K (2018) Air-supplied pinhole discharge in aqueous solution for the inactivation of Escherichia coli. Jpn J Appl Phys 57(4):046202

    Article  Google Scholar 

  • Suslow T (2004) Oxidation-reduction potential (ORP) for water disinfection monitoring. Control and Documentation, University of California, Division of Agriculture and Natural Resources. https://doi.org/10.3733/ucanr.8149

  • Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis VP (2018) Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Tech 77:21–31

    Article  CAS  Google Scholar 

  • Tian Y, Ma RN, Zhang Q, Feng HQ, Liang YD, Zhang J, Fang J (2015) Assessment of the physicochemical properties and biological effects of water activated by nonthermal plasma above and beneath the water surface. Plasma Process Polym 12(5):439–449

    Article  CAS  Google Scholar 

  • Vanraes P, Bogaerts A (2018) Plasma physics of liquids—a focused review. Appl Phys Rev 5(3):031103

    Article  Google Scholar 

  • Vlad IE, Anghel SD (2017) Time stability of water activated by different on-liquid atmospheric pressure plasmas. J Electrost 87:284–292

    Article  CAS  Google Scholar 

  • Vukić M, Vujadinović D, Ivanović M, Gojković V, Grujić R (2017) Color change of orange and carrot juice blend treated by nonthermal atmospheric plasma. J Food Process Preserv 42(2):e13525

    Article  Google Scholar 

  • Wende K, von Woedtke T, Weltmann K-D, Bekeschus S (2018) Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem 400(1):19–38

    Article  PubMed  Google Scholar 

  • Wu SJ, Zhang Q, Ma RN, Yu S, Wang KL, Zhang J, Fang J (2017) Reactive radical-driven bacterial inactivation by hydrogen- peroxide-enhanced plasma-activated-water. Eur Phys J Spec Top 226(13):2887–2899

    Article  CAS  Google Scholar 

  • Xiang QS, Kang CD, Niu LY, Zhao DB, Li K, Bai YH (2018) Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT – Food Sci Technol 96:395–401

    Article  CAS  Google Scholar 

  • Xiang Q, Fan L, Li Y, Dong S, Li K, Bai Y (2020) A review on recent advances in plasma-activated water for food safety: current applications and future trends. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1852173

  • Xu Y, Tian Y, Ma R, Liu Q, Zhang J (2016) Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem 197(Part A):436-444

    Google Scholar 

  • Ye GP, Zhang Q, Pan H, Sun K, Pan J, Zhang J, Wang J (2013) Efficiency of pathogenic bacteria inactivation by nonthermal plasma activated water. Scientia Sinica Vitae 43(8):679–684

    Google Scholar 

  • Zhang Q, Liang YD, Feng HQ, Ma RN, Tian Y, Zhang J, Fang J (2013) A study of oxidative stress induced by nonthermal plasma-activated water for bacterial damage. Appl Phys Lett 102(20):203701

    Article  Google Scholar 

  • Zhang Q, Ma RN, Tian Y, Su B, Wang KL, Yu S, Zhang J, Fang J (2016) Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ Sci Technol 50(6):3184–3192

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ma YF, Wu D, Fan LM, Bai YH, Xiang QS (2020) Synergistic inactivation mechanism of combined plasma-activated water and mild heat against Saccharomyces cerevisiae. J Food Prot 83(8):1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Zhou RW, Zhou RS, Prasad K, Fang Z, Speight R, Bazaka K, Ostrikov K (2018) Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chem 20(23):5276–5284

    Article  CAS  Google Scholar 

Radio-Frequency

  • Alfaifi B, Tang J, Jiao Y, Wang S, Rasco B, Jiao S, Sablani S (2014) Radio frequency disinfestation treatments for dried fruit: model development and validation. J Food Eng 120:268–276

    Article  Google Scholar 

  • Altemimi A, Aziz SN, Al-HiIphy ARS, Lakhssassi N, Watson DW, Ibrahim SA (2019) Critical review of radio-frequency (RF) heating applications in food processing. Food Qual Saf 3(2):81–91

    Article  CAS  Google Scholar 

  • Anderson AK, Finkelsein R (1919) A study of the Electropure process of treating milk. J Dairy Sci 2:374–406

    Article  CAS  Google Scholar 

  • Beatie JM (1914) Electrical treatment of milk. Brit Med J 1(2791):1433

    Article  Google Scholar 

  • Beattie JM, Lewis FC (1913) Utilization of electricity in the continuous sterilization of milk. J Pathol Bacteriol 18:120

    Google Scholar 

  • Brunkhorst C, Ciotti D, Fredd E, Wilson JR, Geveke DJ, Kozempel M (2000) Development of process equipment to separate nonthermal and thermal effects of RF energy on microorganisms. J Microw Power Electromagn Energy 35(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Carroll DE, Lopez A (1969) Lethality of radio-frequency energy upon microorganisms in liquid, buffered, and alcoholic food systems. J Food Sci 34(4):320–324

    Article  Google Scholar 

  • Chang DC, Gao PQ, Maxwell BL (1991) High efficiency gene transfection by electroporation using a radio-frequency electric field. Biochim Biophys Acta 1092(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Coster HG, Zimmermann U (1975a) The mechanism of electrical breakdown in the membranes of Valonia utricularis. J Membr Biol 22(1):73–90

    Article  CAS  PubMed  Google Scholar 

  • Coster HG, Zimmermann U (1975b) Dielectric breakdown in the membranes of Valonia utricularis. The role of energy dissipation. Biochim Biophys Acta Biomembr 382(3):410–418

    Article  CAS  Google Scholar 

  • FCC (1988) Federal Communications Commission Online table of frequency allocations. 47 C.F.R. § 2.106, revised on February 1, 2021, https://www.fcc.gov/engineering-technology/policy-and-rules-division/general/radio-spectrum-allocation. Accessed 11 March 2021

  • Fleming H (1944) Effect of high frequency fields on micro-organisms. Electr Eng 63(1):18–21

    Article  Google Scholar 

  • Gao M, Tang J, Villa-Rojas R, Wang Y, Wang S (2011) Pasteurization process development for controlling Salmonella in in-shell almonds using radio frequency energy. J Food Eng 104(2):299–306

    Article  Google Scholar 

  • Geveke DJ (2005) Non-thermal processing by radio frequency electric field. In: Sun D-W (ed) Emerging technologies for food processing. Elsevier, Academic Press, London/San Diego, pp 307–322

    Chapter  Google Scholar 

  • Geveke DJ (2011) Radio frequency electric field as a nonthermal processing. In: Zhang HQ, Barbosa-Canovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (eds) Nonthermal processing technologies for food. Wiley-Blackwell IFT Press, Ames, pp 213–221

    Chapter  Google Scholar 

  • Geveke DJ (2020) Inactivation of yeast and bacteria using combinations of radio frequency electric fields and ultraviolet light. J Food Process Preserv 44:e14385

    Article  CAS  Google Scholar 

  • Geveke DJ, Brunkhorst C (2003) Inactivation of Saccharomyces cerevisiae using radio frequency electric fields. J Food Prot 66(9):1712–1715

    Article  PubMed  Google Scholar 

  • Geveke DJ, Brunkhorst C (2004) Inactivation of Escherichia coli in apple juice by radio frequency electric fields. J Food Sci 69(3):134–138

    Google Scholar 

  • Geveke DJ, Brunkhorst C, Fan X (2007) Radio frequency electric fields processing of orange juice. Innov Food Sci Emerg Technol 8(4):549–554

    Google Scholar 

  • Geveke DJ, Brunkhorst C (2008) Radio frequency electric fields inactivation of Escherichia coli in apple cider. J Food Eng 85(2):215–221

    Article  Google Scholar 

  • Geveke DJ, Kozempel M, Scullen OJ, Brunkhorst C (2002) Radio frequency energy effects on microorganisms in foods. Innov Food Sci Emerg 3(2):133–138

    Article  Google Scholar 

  • Geveke DJ, Brunkhorst C, Cooke P, Fan X (2006) Nonthermal inactivation of E. coli in fruit juices using radio frequency electric fields. In: Juneja VK, Cherry JP, Tunick MH (eds) Advances in microbial food safety. American Chemical Society, Washington, DC, pp 121–139

    Chapter  Google Scholar 

  • Geveke DJ, Gurtler J, Zhang HQ (2009) Inactivation of Lactobacillus plantarum in apple cider, using radio frequency electric fields. J Food Prot 72(3):656–661

    Article  PubMed  Google Scholar 

  • Geveke DJ, Bigley ABW, Brunkhorst CD (2017) Pasteurization of shell eggs using radio frequency heating. J Food Eng 193:53–57

    Article  Google Scholar 

  • Huang Z, Marra F, Wang S (2016) A novel strategy for improving radio frequency heating uniformity of dry food products using computational modeling. Innov Food Sci Emerg 34:100–111

    Article  Google Scholar 

  • IEEE 521-2019 (2021) IEEE Standard Letter Designations for Radar-Frequency Bands. Revision of IEEE Std 521-2002, https://standards.ieee.org/standard/521-2019.html. Accessed 11 March 2021

  • Ingram M, Page LJ (1953) The survival of microbes in modulated high-frequency voltage fields. Proc Soc Appl Bacteriol 16:69–87

    Article  Google Scholar 

  • ITU (2012) Radio regulations articles. Article 1. Terms and definitions, Section I – General terms, Article 1.15, definition: ISM application, http://search.itu.int/history/HistoryDigitalCollectionDocLibrary/1.41.48.en.101.pdf. Accessed 11 March 2021

  • Jiang H, Ling B, Zhou X, Wang S (2020) Effects of combined radio frequency with hot water blanching on enzyme inactivation, color and texture of sweet potato. Innov Food Sci Emerg 66:102513

    Article  CAS  Google Scholar 

  • Jiao S, Johnson JA, Tang J, Tiwari G, Wang S (2011) Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosyst Eng 108(3):280–291

    Article  Google Scholar 

  • Komarov VV (2021) A review of radio frequency and microwave sustainability-oriented technologies. Sustain Mater Technol 28:e00234

    Google Scholar 

  • Kotnik T, Miklavčič D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90(2):480–491

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields e a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45(1):3–16

    Article  CAS  Google Scholar 

  • Kou X, Li R, Wang S (2018) Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms. Int J Food Microbiol 269:89–97

    Article  PubMed  Google Scholar 

  • Liu S, Ozturk S, Xu J, Kong F, Gray P, Zhu M-J, Sablani SS, Tang J (2018) Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. J Food Eng 217:68–74

    Article  Google Scholar 

  • Llave Y, Liu S, Fukuoka M, Sakai N (2015) Computer simulation of radiofrequency defrosting of frozen foods. J Food Eng 152:32–42

    Article  Google Scholar 

  • Marra F, Zhang L, Lyng JG (2009) Radio frequency treatment of foods: review of recent advances. J Food Eng 91(4):497–508

    Article  Google Scholar 

  • Masood H, Razaeimotlagh A, Cullen PJ, Trujilo FJ (2017) Numerical and experimental studies on a novel Steinmetz treatment chamber for inactivation of Escherichia coli by radio frequency electric fields. Innov Food Sci Emerg 41:337–347

    Article  Google Scholar 

  • McKenna BM, Lyng J, Brunton N, Shirsat N (2005) Advances in radio frequency and ohmic heating of meats. J Food Eng 77(2):215–229

    Article  Google Scholar 

  • Miyakoshi J (2013) Cellular and molecular responses to radio-frequency electromagnetic field. Proc IEEE 101(6):1494–1502

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (NASEM) (2015) Handbook of frequency allocations and spectrum protection for scientific uses, 2nd edn. The National Academies Press, Washington, DC. https://www.nap.edu/catalog/21774/handbook-of-frequency-allocations-and-spectrum-protection-for-scientific-uses. Accessed 11 March 2021

  • Nyrop JE (1946) A specific effect of high-frequency electric currents on biological objects. Nature 157(3976):51

    Article  CAS  PubMed  Google Scholar 

  • Ozturk S, Kong F, Trabelsi S, Singh RK (2016) Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. J Food Eng 169:91–100

    Article  Google Scholar 

  • Piyasena P, Dussault C, Koutchma T, Ramaswamy H, Awuah G (2003) Radio frequency heating of foods: principles, applications and related properties—a review. Crit Rev Food Sci 43(6):587–606

    Article  Google Scholar 

  • Rincon AM, Singh RK, Stelzleni AM (2015) Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a radio frequency oven. LWT-Food Sci Technol 64(2):1323–1328

    Article  CAS  Google Scholar 

  • Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788

    Article  Google Scholar 

  • Saulis G (2010) Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng Rev 2:52–73

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Stark RH, Dobbs FC, Beebe SJ (2000) Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans Dielectr Electr Insul 7(5):637–645

    Article  CAS  Google Scholar 

  • Stabler SH (1931) The electrical process of milk pasteurization. Am J Epidemiol 14(2):433–452

    Article  Google Scholar 

  • Trujillo FJ, Geveke DJ (2014) Nonthermal processing by radio frequency electric fields. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Elsevier Academic Press, Oxford, UK, pp 259–269

    Chapter  Google Scholar 

  • Uemura K, Isobe S (2002) Developing a new apparatus for inactivating Escherichia coli in saline water with high electric field AC. J Food Eng 53(3):203–207

    Article  Google Scholar 

  • Uemura K, Kobayashi I, Inoue T (2009) Inactivation of Alicyclobacillus acidoterrestris in orange juice by high electric field alternating current. Food Sci Technol Res 15:211–216

    Article  Google Scholar 

  • Uemura K, Kobayashi I, Inoue T (2010a) Inactivation of Bacillus subtilis spores in orange juice and the quality change by high electric field alternating current. Jap Agr Res Q 44(1):61–66

    Article  Google Scholar 

  • Uemura K, Takahashi C, Kobayashi I (2010b) Inactivation of Bacillus subtilis spores in soybean milk by radio-frequency flash heating. J Food Eng 100(4):622–626

    Article  Google Scholar 

  • Uemura K, Takahashi C, Kobayashi I (2012) Inactivation of lactobacillus brevis in liquid egg white by radio-frequency flash heating. Food Sci Technol Res 18:357–362

    Article  CAS  Google Scholar 

  • Ukuku DO, Geveke DJ (2010) A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice. Int J Food Microbiol 138(1–2):50–55

    Google Scholar 

  • Ukuku DO, Geveke DJ, Cooke P, Zhang HQ (2008) Membrane damage and viability loss of Escherichia coli K-12 in apple juice treated with radio frequency electric field. J Food Prot 71(4):684–690

    Article  PubMed  Google Scholar 

  • Ukuku DO, Geveke DJ, Cooke PH (2012) Effect of thermal and radio frequency electric fields treatments on Escherichia coli bacteria in apple juice. J Microb Biochem Technol 4(3):76–81

    Article  Google Scholar 

  • Uyar R, Bedane TF, Erdogdu F, Palazoglu TK, Farag KW, Marra F (2015) Radio-frequency thawing of food products – a computational study. J Food Eng 146:163–171

    Article  Google Scholar 

  • Wang Y, Wig T, Tang J, Hallberg L (2003) Sterilization of foodstuffs using radio frequency heating. J Food Sci 68(2):539–544

    Article  CAS  Google Scholar 

  • Weaver JC (2000b) Electroporation of cells and tissues. IEEE T Plasma Sci 28:24–33

    Article  CAS  Google Scholar 

  • Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10(5):754–768

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160

    Article  CAS  Google Scholar 

  • Webb SJ, Booth AD (1969) Absorption of microwaves by microorganisms. Nature 222:1199–1120

    Article  CAS  PubMed  Google Scholar 

  • Webb SJ, Dodds DD (1968) Inhibition of bacterial cell growth by 136 gc microwaves. Nature 218:374–375

    Article  CAS  PubMed  Google Scholar 

  • Wust P, Kortüm B, Strauss U, Nadobny J, Zschaeck S, Beck M, Stein U, Ghadjar P (2020) Non-thermal effects of radiofrequency electromagnetic fields. Sci Rep 10:e13488

    Article  Google Scholar 

  • Xu J, Yang R, Jin Y, Barnett G, Tang J (2020) Modeling the temperature-dependent microbial reduction of Enterococcus faecium NRRL B-2354 in radio-frequency pasteurized wheat flour. Food Control 107:106778

    Article  CAS  Google Scholar 

  • Zhang L, Lyng JG, Xu R, Zhang S, Zhou X, Wang S (2019) Influence of radio frequency treatment on in-shell walnut quality and Staphylococcus aureus ATCC 25923 survival. Food Control 102:197–205

    Article  CAS  Google Scholar 

  • Zimmermann U (1986b) Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Bioch Pharmacol 105:176–256

    CAS  Google Scholar 

  • Zimmermann U, Schulz J, Pilwat G (1973) Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias. Biophys J 13(10):1005–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14(11):881–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1975) Preparation of erythrocye ghosts by dielectric breakdown of the cell membrane. Biochim Biophys Acta Biomembr 375(2):209–219

    Article  CAS  Google Scholar 

Oscillating Magnetic Fields

  • Abdelhameed AE (2014) Growth rate inhibition of some spoilage fungi of food by magnetic field. Misr J Agric Eng 31(1):299–308

    Article  Google Scholar 

  • Ahmad AM, Yahya AGI, Jabir AWS (2013) Effect of magnetic field energy on growth of Aspergillus flavus and aflatoxins production. Al-Nahrain J Sci 16(2):180–187

    Google Scholar 

  • Al-Hawash AB, Li S, Zhang X, Zhang X, Ma F (2018) Productivity of γ-linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food Biosci 21:1–7

    Article  CAS  Google Scholar 

  • Ali HI, Al-Hilphy AR, Al-Darwash AK (2015) The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese. IOSR J Agric Vet Sci 8(9):63–69

    Google Scholar 

  • Barbosa-Canovas GV, Schaffner DW, Pierson MD, Zhang QH (2000) Oscillating magnetic fields. J Food Sci 65:86–89

    Article  Google Scholar 

  • Butz P, Tauscher B (2002) Emerging technologies: chemical aspects. Food Res Int 35(2–3):279–284

    Article  CAS  Google Scholar 

  • Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Molec Struct 938(1–3):15–19

    Article  CAS  Google Scholar 

  • Chang KT, Weng CI (2006) The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J Appl Phys 100(4):043917

    Article  Google Scholar 

  • Colic M, Morse D (1999) The elusive mechanism of the magnetic ‘memory’ of water. Colloids Surf A Physicochem Eng Asp 154(1–2):167–174

    Article  CAS  Google Scholar 

  • Fernández-Martín F, Pérez-Mateos M, Dadashi S, Gómez-Guillén CM, Sanz PD (2017) Impact of magnetic assisted freezing in the physicochemical and functional properties of egg components. Part 1: egg white. Innov Food Sci Emerg Technol 44:131–138

    Article  Google Scholar 

  • Grigelmo-Miguel N, Soliva-Fortuny R, Barbosa-Cánovas GV, Martín-Belloso O (2011) Use of oscillating magnetic fields in food preservation. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (eds) Nonthermal processing technologies for food. Wiley Blackwell, Oxford, pp 222–243

    Chapter  Google Scholar 

  • Haile M, Pan Z, Gao M, Luo L (2008) Efficacy in microbial sterilisation of pulsed magnetic field treatment. Int J Food Eng 4(4):Article 15

    Article  Google Scholar 

  • Higashitani K, Kage A, Katamura S, Imai K, Hatade S (1993) Effects of a magnetic field on the formation of CaCO3 particles. J Colloid Interface Sci 156(1):90–95

    Article  CAS  Google Scholar 

  • Hofmann GA (1985) Deactivation of microorganisms by an oscillating magnetic field. U.S. Patent No. 4,524,079. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Kobayashi M, Soda N, Miyo T, Ueda Y (2004) Effects of combined DC and AC magnetic fields on germination of hornwort seeds. Bioelectromagnetics 25:552–559

    Article  PubMed  Google Scholar 

  • Lipiec J, Janas P, Barabasz W, Pysz M, Pisulewski P (2005) Effects of oscillating magnetic field pulses on selected oat sprouts used for food purposes. Acta Agrophysica 5(2):357–365

    Google Scholar 

  • Masood S, Saleem I, Smith D, Chu WK (2020) Growth pattern of magnetic field-treated bacteria. Curr Microbiol 77(2):194–203

    Article  CAS  PubMed  Google Scholar 

  • Mok JH, Her JY, Kang T, Hoptowit R, Jun S (2017) Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts. J Food Eng 196:27–35

    Article  Google Scholar 

  • Okuda K, Kawauchi A, Yomogida K (2020a) Quality improvements to mackerel (Scomber japonicus) muscle tissue frozen using a rapid freezer with the weak oscillating magnetic fields. Cryobiology 95:130–137

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Kawauchi A, Yomogida K (2020b) Data of the freezing curves of tuna blocks with or without the weak oscillating magnetic fields. Data Brief 105852

    Google Scholar 

  • Otero L, Pérez-Mateos M, Rodríguez AC, Sanz PD (2017) Electromagnetic freezing: effects of weak oscillating magnetic fields on crab sticks. J Food Eng 200:87–94

    Article  CAS  Google Scholar 

  • Pazur A, Schimek C, Galland P (2007) Magnetoreception in microorganisms and fungi. Open Life Sci 2(4):597–659

    Article  CAS  Google Scholar 

  • Pothakamury UR, Barbosa-Canovas GV, Swanson BG (1993) Magnetic-field inactivation of microorganisms and generation of biological changes. Food Technol 47(12):85–93

    CAS  Google Scholar 

  • Qian J, Zhang M, Dai C, Huo S, Ma H (2020) Transcriptomic analysis of Listeria monocytogenes under pulsed magnetic field treatment. Food Res Int 109195

    Google Scholar 

  • Rodríguez AC, James C, James SJ (2017a) Effects of weak oscillating magnetic fields on the freezing of pork loin. Food Bioprocess Technol 10(9):1615–1621

    Article  Google Scholar 

  • Rodríguez AC, Sánchez-Benítez J, Sanz PD (2017b) Simulation of the magnetic freezing process applied to foods. Food Eng Rev 9(4):271–294

    Article  Google Scholar 

  • Takao K, Ikehata M, Nakagawa M (1995) Estimation of genetic effects of a static magnetic field by a somatic cell test using mutagen-sensitive mutants of Drosophila melanogaster. Bioelectrochem Bioenerg 36(2):95–100

    Article  Google Scholar 

  • Tang J, Shao S, Tian C (2019) Effects of the magnetic field on the freezing parameters of the pork. Int J Refrig 107:31–38

    Article  Google Scholar 

  • Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D (2005) Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 22(3):334–340

    Article  PubMed  Google Scholar 

  • Yadollahpour A, Jalilifar M, Rashidi S (2014) Antimicrobial effects of electromagnetic fields: a review of current techniques and mechanisms of action. J Pure Appl Microbiol 8(5):4031–4043

    Google Scholar 

  • Zhang L, Yang Z, Deng Q (2021) Effects of pulsed magnetic field on freezing kinetics and physical properties of water and cucumber tissue fluid. J Food Eng 288:110149

    Article  CAS  Google Scholar 

Electrohydrodynamic Processing

  • Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N (2020) Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 111:107065

    Article  CAS  Google Scholar 

  • Alehosseini A, Gómez-Mascaraque LG, Ghorani B, López-Rubio A (2019) Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures. LWT – Food Sci Technol 113:108280

    Article  CAS  Google Scholar 

  • Altan A, Aytac Z, Uyar T (2018) Carvacrol loaded electrospun fibrous films from zein and poly (lactic acid) for active food packaging. Food Hydrocoll 81:48–59

    Article  CAS  Google Scholar 

  • Aman Mohammadi M, Ramazani S, Rostami M, Raeisi M, Tabibiazar M, Ghorbani M (2019) Fabrication of food-grade nanofibers of whey protein isolate–guar gum using the electrospinning method. Food Hydrocoll 90:99–104

    Article  CAS  Google Scholar 

  • Baştürk E, Demir S, Danış Ö, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127(1):349–355

    Article  Google Scholar 

  • Bhushani AJ, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38(1):21–33

    Article  Google Scholar 

  • Castro Coelho S, Nogueiro Estevinho B, Rocha F (2021) Encapsulation in food industry with emerging electrohydrodynamic techniques: electrospinning and electrospraying – a review. Food Chem 339:127850

    Article  CAS  PubMed  Google Scholar 

  • Castro-Mayorga JL, Fabra MJ, Pourrahimi AM, Olsson RT, Lagaron JM (2017) The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly (3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food Bioprod Process 101:32–44

    Article  CAS  Google Scholar 

  • Cooley JF (1902) Apparatus for electrically dispersing fluids. US Patent 692631

    Google Scholar 

  • Duft D, Achtzehn T, Müller R, Huber BA, Leisner T (2003) Rayleigh jets from levitated microdroplets. Nature 421(6919):128–128

    Article  CAS  PubMed  Google Scholar 

  • Echegoyen Y, Fabra MJ, Castro-Mayorga JL, Cherpinski A, Lagaron JM (2017) High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications. Trends Food Sci Technol 60:71–79

    Article  CAS  Google Scholar 

  • Elias AL, Nearingburg B, Zahorodny-Burke M (2011) Microfluidic cell culture devices. In: Mitra SK, Chakraborty S (eds) Microfluidics and nanofluidics handbook: chemistry, physics, and life science principles. CRC Press, Boca Raton, pp 951–1016

    Google Scholar 

  • Estevez-Areco S, Guz L, Candal R, Goyanes S (2018) Release kinetics of rosemary (Rosmarinus officinalis) polyphenols from polyvinyl alcohol (PVA) electrospun nanofibers in several food simulants. Food Packag Shelf Life 18:42–50

    Article  Google Scholar 

  • Fabra MJ, Lopez-Rubio A, Lagaron JM (2013) High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocoll 32(1):106–114

    Article  CAS  Google Scholar 

  • Fabra MJ, López-Rubio A, Lagaron JM (2014) On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocoll 39:77–84

    Article  CAS  Google Scholar 

  • Faridi-Esfanjani A, Jafari SM (2016) Biopolymer nano-particles and natural nanocarriers for nano-encapsulation of phenolic compounds. Colloid Surface B 146:532–543

    Article  CAS  Google Scholar 

  • Ghorani B, Emadzadeh B, Rezaeinia H, Russell SJ (2020) Improvements in gelatin cold water solubility after electrospinning and associated physicochemical, functional and rheological properties. Food Hydrocoll 104:105740

    Article  CAS  Google Scholar 

  • Göksen G, Fabra MJ, Ekiz HI, López-Rubio A (2020) Phytochemical-loaded electrospun nanofibers as novel active edible films: characterization and antibacterial efficiency in cheese slices. Food Control 112:107133

    Article  Google Scholar 

  • Gómez-Mascaraque LG, Lagarón JM, López-Rubio A (2015) Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll 49:42–52

    Article  Google Scholar 

  • Gómez-Mascaraque LG, Hernández-Rojas M, Tarancón P, Tenon M, Feuillère N, Ruiz JFV, Fiszman S, López-Rubio A (2017) Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT – Food Sci Technol 81:77–86

    Article  Google Scholar 

  • Haider S, Haider A, Alghyamah AA, Khan R, Almasry WA, Khan N (2019) Electrohydrodynamic processes and their affecting parameters. In: Daider S (ed) Electrospinning and electrospraying-techniques and applications. IntechOpen, London/Rijeka, pp 1–25

    Chapter  Google Scholar 

  • He JH, Wu Y, Zuo WW (2005) Critical length of straight jet in electrospinning. Polymers 46(26):12637–12640

    Article  CAS  Google Scholar 

  • Işik C, Arabaci G, Ispirli Doğac Y, Deveci İ, Teke M (2019) Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Mat Sci Eng 99:1226–1235

    Article  Google Scholar 

  • Khan MKI, Maan AA, Schutyser M, Schroën K, Boom R (2013) Electrospraying of water in oil emulsions for thin film coating. J Food Eng 119(4):776–780

    Article  CAS  Google Scholar 

  • Leidy R, Ximena QCM (2019) Use of electrospinning technique to produce nanofibres for food industries: a perspective from regulations to characterisations. Trends Food Sci Technol 85:92–106

    Article  CAS  Google Scholar 

  • Luo CJ, Stride E, Edirisinghe M (2012) Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 45(11):4669–4680

    Article  CAS  Google Scholar 

  • Mascheroni E, Fuenmayor CA, Cosio MS, Di Silvestro G, Piergiovanni L, Mannino S, Schiraldi A (2013) Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydr Polym 98(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Megelski S, Stephens JS, Bruce Chase D, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466

    Article  CAS  Google Scholar 

  • Mendes AC, Stephansen K, Chronakis IS (2017) Electrospinning of food proteins and polysaccharides. Food Hydrocoll 68:53–68

    Article  CAS  Google Scholar 

  • Moreira JB, Lim LT, da Rosa Zavareze E, Dias ARG, Costa JAV, de Morais MG (2019) Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocoll 93:131–136

    Article  CAS  Google Scholar 

  • Morton WJ (1902) Method of dispersing fluids. US Patent 705691

    Google Scholar 

  • Nagam Hanumantharao S, Rao S (2019) Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fiber 7(7):66

    Article  Google Scholar 

  • Nazari M, Majdi H, Milani M, Abbaspour-Ravasjani S, Hamishehkar H, Lim LT (2019) Cinnamon nanophytosomes embedded electrospun nanofiber: its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag Shelf Life 21:100349

    Article  Google Scholar 

  • Neo YP, Swift S, Ray S, Gizdavic-Nikolaidis M, Jin J, Perera CO (2013) Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem 141(3):3192–3200

    Article  CAS  PubMed  Google Scholar 

  • Nieuwland M, Geerdink P, Brier P, van den Eijnden P, Henket JTMM, Langelaan MLP, Stroeks N, van Deventer HC, Martin AH (2013) Food-grade electrospinning of proteins. Innov Food Sci Emerg Techn 20:269–275

    Article  CAS  Google Scholar 

  • Pareta R, Edirisinghe MJ (2006) A novel method for the preparation of starch films and coatings. Carbohydr Polym 63(3):425–431

    Article  CAS  Google Scholar 

  • Ratanavaraporn J, Rangkupan R, Jeeratawatchai H, Kanokpanont S, Damrongsakkul S (2010) Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol 47(4):431–438

    Article  CAS  PubMed  Google Scholar 

  • Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymers 49:2387–2425

    Article  CAS  Google Scholar 

  • Rostami M, Yousefi M, Khezerlou A, Mohammadi MA, Jafari SM (2019) Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocoll 97:105170

    Article  CAS  Google Scholar 

  • Schmatz DA, Costa JAV, de Morais MG (2019) A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packag Shelf Life 20:100314

    Article  Google Scholar 

  • Singh A, Orsat V, Raghavan V (2012) A comprehensive review on electrohydrodynamic drying and high-voltage electric field in the context of food and bioprocessing. Dry Technol 30(16):1812–1820

    Article  Google Scholar 

  • Soleimanifar M, Jafari SM, Assadpour E (2020) Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocoll 101:105572

    Article  CAS  Google Scholar 

  • Terada D, Kobayashi H, Zhang K, Tiwari A, Yoshikawa C, Hanagata N (2012) Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions. Sci Technol Adv Mat 13(1):015003

    Article  Google Scholar 

  • Torres-Giner S, Martinez-Abad A, Ocio MJ, Lagaron JM (2010) Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci 75(6):N69–N79

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao ZC, Chang MW, Ahmad Z, Li JS (2016) Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. J Food Eng 191:115–123

    Article  CAS  Google Scholar 

  • Zhang Y, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymers 47(8):2911–2917

    Article  CAS  Google Scholar 

Electron Beam Processing

  • Balayan MH, Pepoyan AZ, Manvelyan AM, Tsaturyan VV, Grigoryan B, Abrahamyan A, Chikindas ML (2019) Combined use of eBeam irradiation and the potential probiotic Lactobacillus rhamnosus Vahe for control of foodborne pathogen Klebsiella pneumoniae. Ann Microbiol 69:1579–1582

    Article  CAS  Google Scholar 

  • Brown D (2015) Integrating electron beam equipment into food processing facilities: strategies and design consideration. In: Pillai SD, Shayanfar S (eds) Electron beam pasteurization and complimentary food processing technologies chapter 3. Woodhead Publishing, Oxford

    Google Scholar 

  • Carocho MR, Barreira JOC, Antonio AL, Bento A, Kaluska I, Ferreira IC (2012) Effects of electron-beam radiation on nutritional parameters of Portuguese chestnuts (Castanea sativa Mill.). J Agric Food Chem 60:7754–7760

    Article  CAS  PubMed  Google Scholar 

  • Han J, Castell-Perez ME, Moreira RG (2007) The influence of electron beam irradiation of antimicrobial-coated LDPE/ polyamide films on antimicrobial activity and film properties. LWT- Food Sci Technol 40:1545–1554

    Article  CAS  Google Scholar 

  • Jaczynski J, Park JW (2003) Microbial inactivation and electron penetration in surimi seafood during electron beam processing. J Food Sci 68(5):1788–1792

    Article  CAS  Google Scholar 

  • Jeyakumari A, Narasimha Murthy L, Visnuvinayagam S, Rawat K, Khader SA (2019) Electron beam irradiated Tilapia fish chunk: quality and shelf life under chilled storage. FishTech Rep 5(1):8–9

    Google Scholar 

  • Lung HM, Cheng YC, Chang YH, Huang HW, Yang BB, Wang CY (2015) Microbial decontamination of food by electron beam irradiation. Trends Food Sci Technol 44:66–78

    Article  CAS  Google Scholar 

  • Miller RB (2005) Electronic irradiation of foods: an introduction to the technology. Springer, New York, p 350

    Google Scholar 

  • Moosekian SR, Jeong S, Marks BP, Ryser ET (2012) X-Ray irradiation as a microbial intervention strategy for food. Annu Rev Food Sci Technol 3:493–510

    Article  CAS  PubMed  Google Scholar 

  • Pavlov Yu S (2015) VI Russian conference (with participation of CIS specialists) “Actual problems of high energy chemistry” Industrial electronic-beam technologies realized by accelerator UELV-10-20-S-70-2 Moscow, pp 268–278

    Google Scholar 

  • Pavlov Yu S, Dobrohotov ВВ, Pavlov ВА, Nepomnyaschy ON, Danilichev VA (2014) Magnetic buncher accelerator UELV-10-10-T-1 for studying fluorescence and radiation physical researches Proceedings of XXIV Russian Particle Accelerators Conference (RuPAC’2014) Obninsk, Russia, pp 259–261

    Google Scholar 

  • Pikaev AK, Glazunov PY, Pavlov Yu S (1993) Radiation Center of Institute-of-Physical Chemistry in Moscow. Radiat Phys Chem 42:887–890

    Article  CAS  Google Scholar 

  • Revina AA (1998) Patent № 2104927, The method for producing a modified activated carbon

    Google Scholar 

  • Revina AA (2003) Patent RF № 2212268, System of modification of objects with nanoparticles Bull. № 26

    Google Scholar 

  • Revina AA (2009) Adsorbtion and oxidation processes in modern nanotechnology. Prot Met Phys Chem Surf 45(1):58–63

    Article  Google Scholar 

  • Revina AA, Magomedbekov EP (2010) V All-Russian conference “Physicochemical processes in condensed media and intermediate boundaries FAGRAN-2010” Role of radiation chemistry in creation of functional nanomaterials based on metallic and bimetallic nanoparticles Voronezh, Russia, p 145

    Google Scholar 

  • Ruban IN, Voropaeva NL, Figovsky OL, Sharipov MD, Dadajanov TK (2012) Biologically active multifunctional nanochips and method of application for production of high-quality seed. U.S. Patent № 8209902

    Google Scholar 

  • Schmidt M, Zannini E, Arendt EK (2018) Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops. Foods 7:45

    Article  PubMed Central  Google Scholar 

  • Schoeller NP, Ingham SC, Ingham BH (2002) Assessment of the potential for Listeria monocytogenes survival and growth during alfalfa sprout production and use of ionizing radiation as a potential intervention treatment. J Food Prot 65(8):1259–1266

    Article  PubMed  Google Scholar 

  • Urbain WM (1996) Food irradiation. Academic Press, Orlando, p 351

    Google Scholar 

  • Yang K, Li K, Pan L, Luo X, Xing J, Wang J, Wang L, Wang R, Zhai Y, Chen Z (2020) Effect of ozone and electron beam irradiation on degradation of zearalenone and ochratoxin A. Toxins 12:138

    Article  PubMed Central  Google Scholar 

Ionizing Radiation

  • Bhat R, Sridhar KR (2008) Nutritional quality evaluation of electron beam irradiated (Nelumbo nucifera) seeds. Food Chem 107:174–184

    Article  CAS  Google Scholar 

  • Bhat R, Sridhar KR, Bhushan B (2007a) Free radicals in velvet bean seeds (Mucuna pruriens L. DC.) and their status after gamma irradiation and conventional processing. LWT-Food Sci Technol 40:1570–1577

    Article  CAS  Google Scholar 

  • Bhat R, Sridhar KR, Yokotani KT (2007b) Effect of ionizing radiation on antinutritional features of velvet bean seeds (Mucuna pruriens). Food Chem 103:860–866

    Article  CAS  Google Scholar 

  • Bhat R, Alias AK, Paliyath G (2012) Use of electron beams in food preservation. In: Bhat R, Alias AK, Paliyath G (eds) Progress in food preservation. Wiley, Blackwell, UK, pp 343–372

    Chapter  Google Scholar 

  • Breitfellner F, Solar S, Sontag G (2002) Effect of g-irradiation on phenolic acids in strawberries. J Food Sci 67:517–521

    Article  CAS  Google Scholar 

  • Chmielewski AG, Kang CM, Kang CS, Vujic JL (2006) Radiation technology. Introduction to industrial and environmental applications. Seoul National University Press, Seoul, p 274

    Google Scholar 

  • Fan X, Sommers CH, Marshall RC (2012) Advances in electron beam and X-ray technologies for food irradiation. In: Fan X, Sommers CH (eds) Food irradiation research and technology, 2nd edn. Wiley, Hoboken, pp 9–28

    Chapter  Google Scholar 

  • Farkas J (1990) Combination of irradiation with mild heat treatment. Food Control 1:223–229

    Article  Google Scholar 

  • GAO (2000) US General Accountability Office, Report to Congressional Requesters 24 August 2000, RCED-00-217. Food Irradiation: Available Research Indicates That Benefits Outweigh Risks, GAO, and Washington, DC, USA, p 3 and 14

    Google Scholar 

  • González-Aguilar GA, Villegas-Ochoa MA, Martínez-Téllez MA, Gardea AA, Ayala-Zavala JF (2007a) Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. J Food Sci 72:197–202

    Article  Google Scholar 

  • González-Aguilar GA, Zavaleta-Gatica R, Tiznado-Hernández ME (2007b) Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biol Tech 45:108–116

    Article  Google Scholar 

  • Hong YH, Park JY, Park JH, Chung MS, Kwon KS, Chung K, Won M, Song KB (2008) Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation. Rad Phys Chem 77:1097–1100

    Article  CAS  Google Scholar 

  • Huang SJ, Mau JL (2006) Antioxidant properties of methanolic extracts from Agaricus blazei with various doses of g-irradiation. LWT- Food Sci Technol 39:707–716

    Article  CAS  Google Scholar 

  • Lacroix M, Ouattara B (2000) Combined industrial processes with irradiation to assure innocuity and preservation of food products. Int Food Res J 33:719–724

    Article  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12 Suppl):3479S–3485S

    Article  CAS  PubMed  Google Scholar 

  • Mexis SF, Badeka AV, Chouliara E, Riganakos KA, Kontominas MG (2009) Effect of g-irradiation on the physicochemical and sensory properties of raw unpeeled almond kernels (Prunus dulcis). Innov Food Sci Emerg Technol 10:87–92

    Article  CAS  Google Scholar 

  • Pan J, Vicente AR, Martínez GA, Chaves AR, Civello PM (2004) Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J Sci Food Agric 84:1831–1838

    Article  CAS  Google Scholar 

  • Pérez MB, Calderón NL, Croci CA (2007) Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem 104:585–592

    Article  Google Scholar 

  • Pillai SD, Shayanfar S (2017) Electron beam technology and other irradiation technology applications in the food industry. In: Applications of radiation chemistry in the fields of industry, biotechnology and environment. Springer, Cambridge, pp 249–268

    Chapter  Google Scholar 

  • Sajilata MG, Singhal RS (2006) Effect of irradiation and storage on the antioxidative activity of cashew nuts. Radiat Phys Chem 75:297–300

    Article  CAS  Google Scholar 

  • Selma MV, Allende A, López-Gálvez F, Conesa MA, Gil MI (2008) Disinfection potential of ozone, ultraviolet C, and their combination in wash waster for the fresh-cut vegetable industry. Food Microbiol 25:809–814

    Article  CAS  PubMed  Google Scholar 

  • Shayanfar S, Mena K, Pillai SD (2016) Quantifying the reduction in potential infection risks from non-O157 Shiga toxin producing E. coli in strawberries by low dose electron beam processing. Food Control 72(B):324–327

    Google Scholar 

  • Simas MM, Albuquerque R, Oliveira CA, Rottinghaus GE, Correa B (2010) Influence of gamma radiation on productivity parameters of chicken fed mycotoxin contaminated corn. Appl Radiat Isot 68:1903–1908

    Article  CAS  PubMed  Google Scholar 

  • Teets AS, Sundararaman M, Were LM (2008) Electron beam irradiated almond skin powder inhibition of lipid oxidation in coked salted ground chicken breast. Food Chem 111:934–941

    Article  CAS  Google Scholar 

  • Tomas-Barberan FA, Espin JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruit and vegetables. J Sci Food Agric 81:853–876

    Article  CAS  Google Scholar 

  • Tsai SY, Tsai HL, Mau JL (2007) Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWT – Food Sci Technol 40:1392–1402

    Article  CAS  Google Scholar 

  • Variyar PS, Limaye A, Sharma A (2004) Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). J Agric Food Chem 52:3385–3388

    Article  CAS  PubMed  Google Scholar 

  • Walkling-Ribeiro M, Noci F, Cronin DA, Riener J, Lyng JG, Morgan DJ (2008) Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. J Food Eng 89:267–273

    Article  Google Scholar 

  • Wong PYY, Kitts DD (2001) Factors influencing ultraviolet and electron beam irradiation-induced free radical damage of ascorbic acid. Food Chem 74:75–84

    Article  CAS  Google Scholar 

  • Zobel AM (1997) Coumarins in fruit and vegetables. In: Tomás Barberán FA, Robbins RJ (eds) Photochemistry of fruit and vegetables. Clanderon Press, Oxford, pp 173–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Turtoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ucak, I. et al. (2022). Electro – Technologies. In: ­Režek ­Jambrak, A. (eds) Nonthermal Processing in Agri-Food-Bio Sciences. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92415-7_4

Download citation

Publish with us

Policies and ethics