Skip to main content

Engineering and Nonthermal Technologies: Process Optimization Through Kinetic Modelling

  • Chapter
  • First Online:
Nonthermal Processing in Agri-Food-Bio Sciences

Part of the book series: Food Engineering Series ((FSES))

  • 491 Accesses

Abstract

Current food research focuses on the application of nonthermal technologies for production of microbiologically safe and of superior quality products. Food engineering, additionally, targets to increased productivity and efficiency of nonthermal technologies application while also taking into account the water and energy savings, and minimization of waste produced.

The objectives of this chapter are to evaluate Nonthermal technologies and practices, to define the process parameters and to describe the involvement of kinetic modelling on the process optimization through selection of appropriate process conditions for technologies such as high pressure, pulsed electric and electromagnetic fields, cold atmospheric plasma and osmotic dehydration. Effect on microbial and endogenous enzymes inactivation, along with effect on quality parameters such as colour, texture, organoleptic, physicochemical and nutritional characteristics may be described by linear and/or nonlinear mathematical equations. This modelling enables the establishment of useful tools for optimal processing variables and process efficacy, avoiding over-processing, thus product degradation as well as energy excessive consumption.

Models are easy to use and allow the food engineer to predict and evaluate for the process applied, its intensity and efficiency, enabling the use of corrective actions if needed, for production of safe, sustainable, and cost-efficient final food product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2008a) Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. Eur Food Res Technol 227:599–606

    Article  Google Scholar 

  • Aguiló-Aguayo I, Odriozola-Serrano I, Quintão-Teixeira LJ et al (2008b) Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chem 107:949–955

    Article  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2009a) Changes in viscosity and pectolytic enzymes of tomato and strawberry juices processed by high-intensity pulsed electric fields. Int J Food Sci Technol 44:2268–2277

    Article  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2009b) Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices. J Food Eng 92:37–43

    Article  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010) Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities of watermelon juice. LWT-Food Sci Technol 43:897–902

    Article  Google Scholar 

  • Ahn J, Balasubramaniam VM, Yousef AE (2007) Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Int J Food Microbiol 113(3):321–329

    Article  CAS  PubMed  Google Scholar 

  • Alexandrakis Z, Kyriakopoulou K, Katsaros G et al (2014a) Process condition optimization of high pressure pasteurized sea buckthorn juice with long shelf-life and antioxidant activity. Food Bioprocess Technol 7:3226–3234

    Article  CAS  Google Scholar 

  • Alexandrakis Z, Katsaros G, Stavros P et al (2014b) Comparative structural changes and inactivation kinetics of pectin methylesterases from different orange cultivars processed by high pressure. Food Bioprocess Technol 7:853–867

    Article  CAS  Google Scholar 

  • Alexandrakis Z, Katsaros G, Stavros P et al (2017) Inactivation kinetics and structural changes of high pressure treated actinidin. Int J Agric Sci Technol 5(1):18–29

    Google Scholar 

  • Amiali M, Ngadi MO, Smith JP et al (2006) Inactivation of Escherichia coli O157: H7 and Salmonella enteritidis in liquid egg white using pulsed electric field. J Food Sci 71:M88–M94

    Article  CAS  Google Scholar 

  • Andreou V, Dimopoulos G, Katsaros G et al (2016) Comparison of the application of high pressure and pulsed electric fields technologies on the selective inactivation of endogenous enzymes in tomato products. Innov Food Sci Emerg Technol 38:349–355

    Article  CAS  Google Scholar 

  • Andreou V, Tsironi T, Dermesonlouoglou E et al (2018) Combinatory effect of osmotic and high pressure processing on shelf life extension of animal origin products–application to chilled chicken breast fillets. Food Packag Shelf Life 15:43–51

    Article  Google Scholar 

  • Andreou V, Dimopoulos G, Dermesonlouoglou E et al (2020a) Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J Food Eng 270:109778

    Article  CAS  Google Scholar 

  • Andreou V, Psarianos M, Dimopoulos G et al (2020b) Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J Food Sci 85:1500–1512

    Article  CAS  PubMed  Google Scholar 

  • Balogh T, Smout C, Ly-Nguyen B et al (2004) Thermal and high pressure inactivation kinetics of carrot pectinmethylesterase (PME): from model systems to real foods. Innov Food Sci Emerg Technol 5:429–436

    Article  CAS  Google Scholar 

  • Barbosa-Canovas GV, Pothakamury UR, Gongora-Nieto MM et al (1999) Preservation of foods with pulsed electric fields. Academic Press, Elsevier, London

    Google Scholar 

  • Bayindirli A, Alpas H, Bozoglu F et al (2006) Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry. Food Control 17:52–58

    Article  CAS  Google Scholar 

  • Bendicho S, Barbosa-Cánovas GV, Martı́n O (2002) Milk processing by high intensity pulsed electric fields. Trends Food Sci Technol 13:195–204

    Article  CAS  Google Scholar 

  • Boulekou S, Katsaros G, Taoukis P (2010) Inactivation kinetics of peach pulp pectin methylesterase as a function of high hydrostatic pressure and temperature process conditions. Food Bioprocess Technol 3(5):699–706

    Article  CAS  Google Scholar 

  • Brandenburg R (2018) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Article  Google Scholar 

  • Buckow R, Weiss U, Heinz V et al (2007a) Stability and catalytic activity of α-amylase from barley malt at different pressure–temperature conditions. Biotechnol Bioeng 97:1–11

    Article  CAS  PubMed  Google Scholar 

  • Buckow R, Weiss U, Knorr D (2007b) Combined pressure and temperature effects on the catalytic activity of cellulase from Bacillus subtilis. In: Abe F, Suzuki A (eds) Proceedings of the 4th international conference on high pressure bioscience and biotechnology. J-Stage, Tsukuba

    Google Scholar 

  • Buckow R, Heinz V, Knorr D (2007c) High pressure phase transition kinetics of maize starch. J Food Eng 81:469–475

    Article  Google Scholar 

  • Butz P, Fister H, Losch S et al (1996) Response of immobilized Bacillus subtilis a-amylase to high pressure inactivation. Food Biotechnol 10(2):93–103

    Article  CAS  Google Scholar 

  • Chakraborty S, Rao PS, Mishra HN (2015) Kinetic modeling of polyphenoloxidase and peroxidase inactivation in pineapple (Ananas comosus L.) puree during high-pressure and thermal treatments. Innov Food Sci Emerg Technol 27:57–68

    Article  CAS  Google Scholar 

  • Chutia H, Kalita D, Mahanta C et al (2019) Kinetics of inactivation of peroxidase and polyphenol oxidase intender coconut water by dielectric barrier discharge plasma. LWT-Food Sci Technol 101:625–629

    Article  CAS  Google Scholar 

  • Cook DW (2003) Sensitivity of vibrio species in phosphate-buffered saline and in oysters to high-pressure processing. J Food Prot 66(12):2276–2282

    Article  CAS  PubMed  Google Scholar 

  • Corrales M, Toepfl S, Butz P et al (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  • Crank J, Gupta RS (1975) Isotherm migration method in two dimensions. Int J Heat Mass Transf 18:1101–1107

    Article  Google Scholar 

  • de Mello RE Jr, Corrêa JLG, Lopes FJ et al (2019) Kinetics of the pulsed vacuum osmotic dehydration of green fig (Ficus carica L.). Int J Heat Mass Transf 55:1685–1691

    Article  Google Scholar 

  • Dermesonlouoglou EK, Giannakourou MC (2018) Modelling dehydration of apricot in a non-conventional multi-component osmotic solution: effect on mass transfer kinetics and quality characteristics. J Food Sci Technol 55:4079–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dermesonlouoglou EK, Pourgouri S, Taoukis PS (2008) Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innov Food Sci Emerg Technol 9:542–549

    Article  Google Scholar 

  • Dermesonlouoglou E, Zachariou I, Andreou V et al (2016) Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food Bioprod Process 100:535–544

    Article  CAS  Google Scholar 

  • Dermesonlouoglou EK, Bimpilas A, Andreou V et al (2017a) Process optimization and kinetic modeling of quality of fresh-cut strawberry cubes pretreated by high pressure and osmosis. J Food Process Preserv 41:e13137

    Article  Google Scholar 

  • Dermesonlouoglou EK, Andreou V, Alexandrakis Z et al (2017b) The hurdle effect of osmotic pretreatment and high-pressure cold pasteurisation on the shelf-life extension of fresh-cut tomatoes. Int J Food Sci Technol 52:916–926

    Article  CAS  Google Scholar 

  • Dermesonlouoglou E, Chalkia A, Taoukis P (2018) Application of osmotic dehydration to improve the quality of dried goji berry. J Food Eng 232:36–43

    Article  CAS  Google Scholar 

  • Dermesonlouoglou EK, Angelikaki F, Giannakourou MC et al (2019a) Minimally processed fresh-cut peach and apricot snacks of extended shelf-life by combined osmotic and high pressure processing. Food Bioprocess Technol 12:371–386

    Article  CAS  Google Scholar 

  • Dermesonlouoglou EK, Pantelaiaki K, Andreou V et al (2019b) Osmotic pretreatment for the production of novel dehydrated tomatoes and cucumbers. J Food Process Preserv 43:e13968

    Article  Google Scholar 

  • Dermesonlouoglou E, Paraskevopoulou E, Andreou V et al (2020) Osmotic dehydration for the production of novel pumpkin cut products of enhanced nutritional value and sustainability. Appl Sci 10:6225

    Article  CAS  Google Scholar 

  • Dhakal S, Balasubramaniam VM, Ayvaz H et al (2018) Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. J Food Eng 224:62–70

    Article  CAS  Google Scholar 

  • Dimitrakellis P, Giannoglou M, Zeniou A et al (2021) Food container employing a cold atmospheric plasma source for prolonged preservation of plant and animal origin food products. MethodsX 8:101177

    Article  CAS  PubMed  Google Scholar 

  • Dogan C, Erkmen O (2004) High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J Food Eng 62(1):47–52

    Article  Google Scholar 

  • Donaghy JA, Linton M, Patterson MF et al (2007) Effect of high pressure on Mycobacterium avium ssp. paratuberculosis in milk. Lett Appl Microbiol 45:154–159

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Fan L, Ma Y et al (2021) Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: kinetics and mechanisms. LWT-Food Sci Technol 145:111322

    Article  CAS  Google Scholar 

  • Doona CJ, Feeherry FE (2007) High pressure processing of foods. IFT Press & Blackwell Publishing: London, 2007

    Google Scholar 

  • Doona CJ, Feeherry FE, Ross EW et al (2007) The quasi-chemical and Weibull distribution models of nonlinear inactivation kinetics of Escherichia coli ATCC 11229 by high pressure processing. In: Doona CJ, Feeherry FE (eds) High pressure processing of foods. IFT Press Blackwell Publishing, Ames, pp 115–114

    Chapter  Google Scholar 

  • Elez-Martinez P, Suarez-Recio M, Martin-Belloso O (2007) Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. J Food Eng 78:184–193

    Article  CAS  Google Scholar 

  • Eylen DV, Bellostas N, Strobel BW et al (2008) Influence of pressure/temperature treatments on glucosinolate∙ conversion in broccoli (Brassica oleraceae L. cv Italica) heads. Food Chem 112(3):646–653

    Article  Google Scholar 

  • Fernandes FA, Rodrigues S, Gaspareto OC et al (2006) Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng 77:188–193

    Article  Google Scholar 

  • Frontuto D, Carullo D, Harrison SM et al (2019) Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food Bioprocess Technol 12:1708–1720

    Article  CAS  Google Scholar 

  • Garcia CC, Mauro MA, Kimura M (2007) Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita moschata). J Food Eng 82:284–291

    Article  Google Scholar 

  • Giannoglou M, Karra Z, Platakou E et al (2016) Effect of high pressure treatment applied on starter culture or on semi-ripened cheese in the quality and ripening of cheese in brine. Innov Food Sci Emerg Technol 38:312–320

    Article  CAS  Google Scholar 

  • Giannoglou M, Alexandrakis Z, Stavrou P et al (2018) Effect of high pressure on structural modifications and enzymatic activity of a purified X-prolyl dipeptidyl aminopeptidase from Streptococcus thermophilus. Food Chem 248:304–311

    Article  CAS  PubMed  Google Scholar 

  • Giannoglou M, Katsaros G, Moatsou G et al (2019) Effect of high hydrostatic pressure treatment on the viability and acidification ability of lactic acid bacteria. Int Dairy J 96:50–57

    Article  CAS  Google Scholar 

  • Giannoglou M, Dimitrakellis P, Efthimiadou A et al (2020a) Comparative study on the effect of cold atmospheric plasma, ozonation, pulsed electromagnetic fields and high pressure technologies on sea-bream fillets quality indices and shelf-life. Food Eng Rev 13:175–184

    Article  Google Scholar 

  • Giannoglou M, Stergiou P, Dimitrakellis P et al (2020b) Effect of cold atmospheric plasma processing on quality and shelf life of ready-to-eat leafy salads. Innov Food Sci Emerg Technol 66:102502

    Article  CAS  Google Scholar 

  • Giannoglou M, Koumandraki H, Andreou V et al (2020c) Combined osmotic and air dehydration for the production of shelf-stable white cheese. Food Bioprocess Technol 13:1435–1446

    Article  CAS  Google Scholar 

  • Giannoglou M, Xanthou ZM, Chanioti S et al (2021) Effect of cold atmospheric plasma and pulsed electromagnetic fields on strawberry quality and shelf-life. Innov Food Sci Emerg Technol 68:102631

    Article  CAS  Google Scholar 

  • Giner J, Gimeno V, Espachs A et al (2000) Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innov Food Sci Emerg Technol 1:57–67

    Article  CAS  Google Scholar 

  • Giner J, Gimeno V, Barbosa-Cánovas GV et al (2001) Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Sci Technol Int 7:339–345

    Article  CAS  Google Scholar 

  • Giner J, Ortega M, Mesegué M et al (2002) Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields. J Food Sci 67:1467–1472

    Article  CAS  Google Scholar 

  • Giner J, Gimeno V, Palomes M et al (2003) Lessening polygalacturonase activity in a commercial enzyme preparation by exposure to pulsed electric fields. Eur Food Res Technol 217:43–48

    Article  CAS  Google Scholar 

  • Giner-Seguí J, Elez-Martínez P, Martín-Belloso O (2009) Modeling within the Bayesian framework, the inactivation of pectinesterase in gazpacho by pulsed electric fields. J Food Eng 95:446–452

    Article  Google Scholar 

  • Hammerick KE, Longake MT, Prinz FB (2010) In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun 397:12–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz V, Buckow R, Knorr D (2005) Catalytic activity of b-amylase from barley in different pressure/temperature domains. Biotechnol Prog 21:1632–1638

    Article  CAS  PubMed  Google Scholar 

  • Hoover DG, Metrick C, Papineau AM et al (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43:99–107

    Google Scholar 

  • Hülsheger H, Potel J, Niemann EG (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65

    Article  PubMed  Google Scholar 

  • Indrawati I, Van Loey AM, Ludikhuyze LR et al (2000) Kinetics of pressure inactivation at subzero and elevated temperatures of lipoxygenase in crude green beans (Phaseolous vulgaris) extract. Biotechnol Prog 16(1):109–115

    Article  CAS  PubMed  Google Scholar 

  • Indrawati I, Van Loey AM, Ludikhuyze LR et al (2001) Pressure–temperature inactivation of lipoxygenase in green peas (Pisum sativum): a kinetic study. J Food Sci 66:686–693

    Article  CAS  Google Scholar 

  • Indrawati A, Van Loey A, Hendrickx M (2005) Pressure and temperature stability of 5-methyltetrahydrofolic acid: a kinetic study. J Agric Food Chem 53(8):3081–3087

    Article  CAS  PubMed  Google Scholar 

  • Irwe S, Olsson I (1994) Reduction of pectinesterase activity in orange juice by high pressure treatment. In: Singh RP, Oliveira FAR (eds) Minimal processing of foods and process optimisation: an interface. CRC Press, Boca Raton, pp 35–42

    Google Scholar 

  • Jofré A, Garriga M, Aymerich T (2008) Inhibition of Salmonella sp. Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Sci 78:53–59

    Article  PubMed  Google Scholar 

  • Kang KS, Hong JM, Kang JA et al (2013) Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions. Exp Mol Med 45(1):e6

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsaros GI, Apseridis I, Taoukis PS (2006) Modelling of high hydrostatic pressure inactivation of pectinmethylesterase from persimmon (Diospyros virginiana). IUFoST Edpsciences:1227–1238. https://doi.org/10.1051/IUFoST:20060753

  • Katsaros G, Giannoglou M, Taoukis P (2009a) Kinetic study of the combined effect of high hydrostatic pressure and temperature on the activity of Lactobacillus delbrueckii ssp. bulgaricus aminopeptidases. J Food Sci 74:219–225

    Article  Google Scholar 

  • Katsaros G, Katapodis P, Taoukis PS (2009b) Modeling the effect of temperature and high hydrostatic pressure on the proteolytic activity of kiwi fruit juice. J Food Eng 94(1):40–45

    Article  CAS  Google Scholar 

  • Katsaros G, Katapodis P, Taoukis P (2009c) High hydrostatic pressure inactivation kinetics of the plant proteases ficin and papain. J Food Eng 91(1):42–48

    Article  CAS  Google Scholar 

  • Katsaros GI, Tsevdou M, Panagiotou T et al (2010) Kinetic study of high pressure microbial and enzyme inactivation and selection of pasteurisation conditions for Valencia Orange Juice. Int J Food Sci Technol 45(6):1119–1129

    Article  CAS  Google Scholar 

  • Katsaros G, Alexandrakis Z, Taoukis P (2017) Kinetic assessment of high pressure inactivation of different plant origin pectinmethylesterase enzymes. Food Eng Rev 9:170–189

    Article  CAS  Google Scholar 

  • Kelly-Wintenberg K, Hodge A, Montie TC (1999) Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms. J Vac Sci Technol A17:1539

    Article  Google Scholar 

  • Kilonzo-Nthenge A, Liu S, Yannam S et al (2018) Atmospheric cold plasma inactivation of salmonella and Escherichia coli on the surface of golden delicious apples. Front Nutr 5:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Labuza TP (1984) Application of chemical kinetics to deterioration of foods. J Chem Educ 61:4–348

    Article  Google Scholar 

  • Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2(5):391–400

    Article  CAS  Google Scholar 

  • Levenspiel O (1972) Interpretation of batch reactor data. Chemical reaction engineering. Wiley, New York, pp 41–47

    Google Scholar 

  • Li YQ, Chen Q, Liu XH et al (2008) Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem 109:408–414

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Zheng S, Ye S (2012) Inactivation of Penicillium aerosols by atmospheric positive corona discharge processing. J Aerosol Sci 54:103–112

    Article  CAS  Google Scholar 

  • Ludikhuyze L, De Cordt S, Weemaes C et al (1996) Kinetics for heat and pressure-temperature inactivation of Bacillus subtilis α-amylase. Food Biotechnol 10(2):105–129

    Article  CAS  Google Scholar 

  • Ludikhuyze L, Indrawati I, Van den Broeck I et al (1998) Effect of combined pressure and temperature on soybean lipoxygenase. 2. Modeling inactivation kinetics under static and dynamic conditions. J Agric Food Chem 46(10):4081–4086

    Article  CAS  Google Scholar 

  • Ludikhuyze L, Claeys W, Hendrickx M (2000) Combined pressure-temperature inactivation of alkaline phosphatase in bovine milk: a kinetic study. Food Eng Phys Prop 65(1):155–159

    CAS  Google Scholar 

  • Luengo E, Álvarez I, Raso J (2013) Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov Food Sci Emerg Technol 17:79–84

    Article  CAS  Google Scholar 

  • Luengo E, Álvarez I, Raso J (2014) Improving carotenoid extraction from tomato waste by pulsed electric fields. Front Nutr 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo F, Hou T, Zhang Z et al (2012) Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics 35:e526–e531

    Article  PubMed  Google Scholar 

  • Ly-Nguyen B, Van Loey AM, Smout C et al (2003a) Mild heat and high-pressure inactivation of carrot pectinmethylesterase: a kinetic study. J Food Sci 68:1377–1383

    Article  CAS  Google Scholar 

  • Ly-Nguyen B, Loey AMV, Smout C et al (2003b) Effect of mild-heat and high-pressure processing on banana pectin methylesterase: a kinetic study. J Agric Food Chem 51:7974–7979

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Wang G, Tian Y et al (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  • Mandala IG, Anagnostaras EF, Oikonomou CK (2005) Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J Food Eng 69:307–316

    Article  Google Scholar 

  • Marsellés-Fontanet ÁR, Martin-Belloso O (2007) Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. J Food Eng 83:452–462

    Article  Google Scholar 

  • Marsellés-Fontanet ÀR, Puig A, Olmos P et al (2009) Optimising the inactivation of grape juice spoilage organisms by pulse electric fields. Int J Food Microbiol 130:159–165

    Article  PubMed  Google Scholar 

  • Mendes-Oliveira G, Jensen JL, Keener KM et al (2019) Modeling the inactivation of Bacillus subtilis spores during cold plasma sterilization. Innov Food Sci Emerg Technol 52:334–342

    Article  CAS  Google Scholar 

  • Mercali GD, Tessaro IC, Noreña CP et al (2010) Mass transfer kinetics during osmotic dehydration of bananas (Musa sapientum, shum.). Int J Food Sci Technol 45:2281–2289

    Article  CAS  Google Scholar 

  • Min S, Min SK, Zhang QH (2003) Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. J Food Sci 68:1995–2001

    Article  CAS  Google Scholar 

  • Misra NN, Keener KM, Mosnier JP et al (2014) Effect of in-package atmospheric pressure cold plasma treatment on quality of cherry tomatoes. J Biosci Bioeng 118(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Moatsou G, Bakopanos C, Katharios D et al (2008a) Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk. J Dairy Res 75:262–269

    Article  CAS  PubMed  Google Scholar 

  • Moatsou G, Katsaros G, Bakopanos C et al (2008b) Effect of high-pressure treatment at various temperatures on activity of indigenous proteolytic enzymes and denaturation of whey proteins in ovine milk. Int Dairy J 18:1119–1125

    Article  CAS  Google Scholar 

  • Moisan M, Barbeau J, Crevier MC et al (2002) Plasma sterilization, methods and mechanisms. Pure Appl Chem 74:349–358

    Article  CAS  Google Scholar 

  • Mokhtarian M, Majd MH, Koushki F et al (2014) Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Qual Assur Saf Crops Foods 6:201–214

    Article  CAS  Google Scholar 

  • Monfort S, Gayán E, Saldaña G et al (2010) Inactivation of Salmonella Typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innov Food Sci Emerg Technol 11:306–313

    Article  CAS  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2007) Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. Int J Food Microbiol 117:192–200

    Article  CAS  PubMed  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov Food Sci Emerg Technol 9:328–340

    Article  CAS  Google Scholar 

  • Müller-Merbach M, Hinrichs J (2006) Thermal and hydrostatic inactivation of bacteriophages. Chem Ing Tech 78(11):1723–1730

    Article  Google Scholar 

  • Niemira BA (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142

    Article  CAS  PubMed  Google Scholar 

  • Nienaber U, Shellhammer TH (2001) High-pressure processing of orange juice: kinetics of pectinmethylesterase inactivation. J Food Sci 66(2):328–331

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R et al (2007) Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-intensity pulsed electric fields critical parameters. J Agric Food Chem 55:9036–9042

    Article  CAS  PubMed  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008a) Effect of minimal processing on bioactive compounds and color attributes of fresh-cut tomatoes. LWT-Food Sci Technol 41:217–226

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008b) Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innov Food Sci Emerg Technol 9:272–279

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008c) Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur Food Res Technol 228:239–248

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Gimeno-Añó V et al (2008d) Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. J Food Eng 89:210–216

    Article  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Hernández-Jover T et al (2009a) Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem 112:258–266

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2009b) Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT-Food Sci Technol 42:93–100

    Article  CAS  Google Scholar 

  • Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R et al (2009) Use of Weibull distribution for describing kinetics of antioxidant potential changes in fresh-cut watermelon. J Food Eng 95:99–105

    Article  CAS  Google Scholar 

  • Paixão LMN, Fonteles TV, Oliveira VS et al (2019) Cold plasma effects on functional compounds of siriguela juice. Food Bioprocess Technol 12:110–121

    Article  Google Scholar 

  • Pankaj SK, Misra NN, Cullen PJ (2013) Kinetics of tomato peroxidase inactivation byatmospheric pressure cold plasma based on dielectric barrier discharge. Innov Food Sci Emerg Technol 19:153–157

    Article  CAS  Google Scholar 

  • Pankaj SK, Wan Z, Colonna W et al (2017) Effect of high voltage atmospheric cold plasma on white grape juice quality. J Sci Food Agric 97(12):4016–4021

    Article  CAS  PubMed  Google Scholar 

  • Pappas D (2011) Status and potential of atmospheric plasma processing of materials. J Vac Sci Technol A29(2):020801

    Article  Google Scholar 

  • Parish ME (1998) High pressure inactivation of Saccharomyces cerevisiae, endogenous microflora and pectinmethylesterase in orange juice. J Food Saf 18:57–65

    Article  CAS  Google Scholar 

  • Pataro G, Carullo D, Falcone M et al (2020) Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov Food Sci Emerg Technol 63:102369

    Article  CAS  Google Scholar 

  • Patterson MF, Margey DM, Mills G et al (1997) The effect of high hydrostatic pressure treatment on microorganisms in foods. In: Heremans K (ed) High pressure research in the biosciences and biotechnology, Proceedings of the XXXIVth meeting of the European High Pressure Research Group. Leuven University Press, Leuven, pp 269–272

    Google Scholar 

  • Pawluk W (2015) Magnetic fields for pain control. In: Markov M (ed) Electromagnetic fields in biology and medicine. CRC Press

    Google Scholar 

  • Pękosławska A, Lenart A (2009) Osmotic dehydration of pumpkin in starch syrup. J Fruit Ornam Plant Res 2(17):107–113

    Google Scholar 

  • Peleg M (1988) An empirical model for the description of moisture sorption curves. J Food Sci 53:1216–1217

    Article  Google Scholar 

  • Peleg M (1995) A model of microbial survival after exposure to pulsed electric fields. J Sci Food Agric 67:93–99

    Article  CAS  Google Scholar 

  • Peleg M (2006) Advanced quantitative microbiology for foods and biosystems. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pérez MP, Aliaga DR, Bernat CF et al (2007) Inactivation of Enterobacter sakazakii by pulsed electric field in buffered peptone water and infant formula milk. Int Dairy J 17:1441–1449

    Article  Google Scholar 

  • Polydera A, Galanou E, Stoforos N et al (2004) Inactivation kinetics of pectin methylesterase of greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. J Food Eng 62:291–298

    Article  Google Scholar 

  • Puač N, Škoro N, Spasić K et al (2017) Activity of catalase enzyme in Paulownia tomentosa seeds during the process of germination after treatments with low pressure plasma and plasma activated water. Plasma Process Polym 15(2):1700082

    Article  Google Scholar 

  • Rajan S, Pandrangi S, Balasubramaniam VM et al (2006) Inactivation of Bacillus stearothermophilus spores in egg patties by pressure assisted thermal processing. LWT-Food Sci Technol 39(8):844–851

    Article  CAS  Google Scholar 

  • Ramazzina I, Tappi S, Rocculi P et al (2016) Effect of cold plasma treatment on the functional properties of fresh-cut apples. J Agric Food Chem 64:8010–8018

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Mehta D, Bansal V et al (2020) Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. J Food Sci Technol 57:102–112

    Article  CAS  PubMed  Google Scholar 

  • Riener J, Noci F, Cronin DA et al (2008) Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chem 109:402–407

    Article  CAS  PubMed  Google Scholar 

  • Riener J, Noci F, Cronin DA et al (2009) Combined effect of temperature and pulsed electric fields on pectin methyl esterase inactivation in red grapefruit juice (Citrus paradisi). Eur Food Res Technol 228:373–379

    Article  CAS  Google Scholar 

  • Rivas A, Rodrigo D, Martinez A et al (2006) Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. LWT-Food Sci Technol 39:1163–1170

    Article  CAS  Google Scholar 

  • Rodrigo D, Barbosa-Cánovas GV, Martinez A et al (2003) Pectin methyl esterase and natural microflora of fresh mixed orange and carrot juice treated with pulsed electric fields. J Food Prot 66:2336–2342

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo D, Jolie R, Van Loey A et al (2006) Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase. Eur Food Res Technol 222:636–642

    Article  CAS  Google Scholar 

  • Saguy I, Karel M (1980) Modeling of quality deterioration during food processing and storage. Food Technol 37(2):78–85

    Google Scholar 

  • Santillana Farakos SM, Zwietering MH (2011) Data analysis of the inactivation of foodborne microorganisms under high hydrostatic pressure to establish global kinetic parameters and influencing factors. J Food Prot 74(12):2097–2106

    Article  PubMed  Google Scholar 

  • Sarangapani C, O’Toole G, Cullen PJ et al (2017) Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov Food Sci Emerg Technol 44:235–241

    Article  CAS  Google Scholar 

  • Sarkis JR, Boussetta N, Blouet C et al (2015) Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innov Food Sci Emerg Technol 29:170–177

    Article  CAS  Google Scholar 

  • Schlüter O, Ehlbeck J, Hertel C et al (2013) Opinion on the use of plasma processes for treatment of foods. Mol Nutr Food Res 57:920–927

    Article  PubMed  Google Scholar 

  • Segat A, Misra NN, Cullen PJ et al (2016) Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process 98:181–188

    Article  CAS  Google Scholar 

  • Sensoy I, Zhang QH, Sastry SK (1997) Inactivation kinetics of Salmonella dublin by pulsed electric field. J Food Process Eng 20:367–381

    Article  Google Scholar 

  • Sereno AM, Moreira R, Martinez E (2001) Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous solutions of sugar and salt. J Food Eng 47:43–49

    Article  Google Scholar 

  • Seyderhelm I, Boguslawski S, Michaelis G et al (1996) Pressure induced inactivation of selected food enzymes. J Food Sci 61(2):308–310

    Article  CAS  Google Scholar 

  • Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158

    Article  CAS  Google Scholar 

  • Surowsky B, Schlüter O, Knorr D (2014) Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev 7(2):82–108

    Article  Google Scholar 

  • Tadevosian A, Kalantarian V, Trchounian A (2006) The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of bacteria Escherichia coli and the role of medium pH. Biofizika 52(5):893–898

    Google Scholar 

  • Tappi S, Berardinelli A, Ragni L et al (2014) Atmospheric gas plasma treatment of fresh-cut apples. Innov Food Sci Emerg Technol 21:114–122

    Article  CAS  Google Scholar 

  • Tappi S, Gozzi G, Vannini L et al (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol 33:225–233

    Article  CAS  Google Scholar 

  • Teles UM, Fernandes FA, Rodrigues S et al (2006) Optimization of osmotic dehydration of melons followed by air-drying. Int J Food Sci Technol 41:674–680

    Article  CAS  Google Scholar 

  • Torgomyan H, Kalantaryan V, Trchounian Α (2011) Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys 60:275–281

    Article  CAS  PubMed  Google Scholar 

  • Torreggiani D (1993) Osmotic dehydration in fruit and vegetable processing. Food Res Int 26:59–68

    Article  Google Scholar 

  • Tsai MT, Li WJ, Tuan RS et al (2009) Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 27:1169–1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsironi T, Maltezou I, Tsevdou M, Katsaros G, Taoukis PS (2015) High pressure cold pasteurization of gilthead sea bream fillets: selection of process conditions and validation of shelf-life extension. Food Bioprocess Technol 8:681–690

    Article  CAS  Google Scholar 

  • Van den Broeck I, Ludikhuyze LR, Van Loey AM et al (2000) Inactivation of orange pectinesterase by combined high-pressure and temperature treatments: a kinetic study. J Agric Food Chem 48(5):1960–1970

    Article  PubMed  Google Scholar 

  • Van Loey A, Ooms V, Weemaes C et al (1998) Thermal and pressure-temperature degradation of chlorophyll in broccoli (Brassica oleracea L. italica) juice: a kinetic study. J Agric Food Chem 46(12):5289–5294

    Article  Google Scholar 

  • Van Opstal I, Vanmuysen SCM, Wuytack EY et al (2005) Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int J Food Microbiol 98(2):179–191

    Article  PubMed  Google Scholar 

  • Verbeyst L, Crombruggen, KV, Plancken, IV et al (2011) Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. J Food Eng 105(3):513–521

    Google Scholar 

  • Weemaes C, Rubens P, De Cordt S et al (1997) Temperature sensitivity and pressure resistance of mushroom polyphenoloxidase. J Food Sci 62(2):261–266

    Article  CAS  Google Scholar 

  • Weemaes CA, Ludikhuyze LR, Van den Broeck I et al (1998) Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase. Biotechnol Bioeng 60(3):292–300

    Article  CAS  PubMed  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Article  Google Scholar 

  • Won MY, Lee SJ, Min SC (2017) Mandarin preservation by microwave-powered cold plasma treatment. Innov Food Sci Emerg Technol 39:25–32

    Article  CAS  Google Scholar 

  • Wouters PC, Alvarez I, Raso J (2001) Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Technol 12:112–121

    Article  CAS  Google Scholar 

  • Xu L, Garner AL, Tao B et al (2017) Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Technol 10:1778–1791

    Article  CAS  Google Scholar 

  • Yeom HW, Zhang QH, Chism GW (2002) Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. J Food Sci 67:2154–2159

    Article  CAS  Google Scholar 

  • Zhong KUI, Chen F, Wu J et al (2005) Kinetics of inactivation of Escherichia coli in carrot juice by pulsed electric field. J Food Process Eng 28:595–609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Katsaros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katsaros, G., Andreou, V., Giannoglou, M. (2022). Engineering and Nonthermal Technologies: Process Optimization Through Kinetic Modelling. In: ­Režek ­Jambrak, A. (eds) Nonthermal Processing in Agri-Food-Bio Sciences. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92415-7_3

Download citation

Publish with us

Policies and ethics