Skip to main content

Current Technology Readiness Levels (TRL) of Nonthermal Technologies and Research Gaps for Improved Process Control and Integration into Existing Production Lines

  • Chapter
  • First Online:
Nonthermal Processing in Agri-Food-Bio Sciences

Part of the book series: Food Engineering Series ((FSES))

Abstract

It is within the human being to judge and estimate characteristics observed in nature, and then, often using numerical values, assign them to different scales and rank them to different levels. Technology readiness level (TRL) is a tool for assessing the maturity and the level of development of a technology, as a form of a standard communication tool that can be used across different disciplines and is easily understandable by different organizations and functions. In this chapter, some non-thermal technologies are described in terms of their technological development and readiness, based on the available literature, number of applications and installations in the industry, and supported by the information provided from the industry using questionaries. Although some technologies can be associated with high TRL, there are still certain questions and implementation barriers, where further research is needed and by filling these gaps, future applications might be easier and faster. For technologies with low TRL, further research is mostly related to improving the characterizing the treatment and treatment conditions, required further risk assessment and development of technical scale prototypes for further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aganovic K, Bindrich U, Heinz V (2018) Ultra-high pressure homogenisation process for production of reduced fat mayonnaise with similar rheological characteristics as its full fat counterpart. Innovative Food Sci Emerg Technol 45:208–214

    Article  CAS  Google Scholar 

  • Aganovic K, Bolumar T, Toepfl S, Heinz V (2021a) Fundamentals of shockwave processing for food. In: Knoerzer K, Muthukumarappan K (eds) Innovative food processing technologies: a comprehensive review, Elsevier, pp 395–411. ISBN 9780128157824. https://doi.org/10.1016/B978-0-12-815781-7.00023-8. (https://www.sciencedirect.com/science/article/pii/B9780128157817000238)

  • Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Robert S, Bandick N, Kulling SE, Knorr D, Engel K-H, Heinz V (2021b) Aspects of high hydrostatic pressure food processing: perspectives on technology and food safety. Compr Rev Food Sci Food Saf 20(4):3225–3266

    Article  PubMed  Google Scholar 

  • Ahmed J, & Ramaswamy HS (2007) Microwave pasteurization and sterilization of foods. In Handbook of food preservation (pp. 709–730). CRC Press

    Google Scholar 

  • Alles MC, Smetana S, Parniakov O, Shorstkii I, Toepfl S, Aganovic K, Heinz V (2020) Bio-refinery of insects with pulsed electric field pre-treatment. Innovative Food Sci Emerg Technol 64:102403

    Article  CAS  Google Scholar 

  • Altemimi A, Aziz SN, Al-Hiiphy ARS, Lakhssassi N, Watson DG, Ibrahim SA (2019) Critical review of radio-frequency (RF) heating applications in food processing. Food Qual Saf 3:81–91

    Article  CAS  Google Scholar 

  • Arshad RN, Abdul-Malek Z, Munir A, Buntat Z, Ahmad MH, Jusoh YM, Bekhit AE-D, Roobab U, Manzoor MF, Aadil RM (2020) Electrical systems for pulsed electric field applications in the food industry: an engineering perspective. Trends Food Sci Technol, pp 1–13

    Google Scholar 

  • Awuah GB, Ramaswamy HS, & Tang J (Eds.). (2014) Radio-Frequency heating in food processing: Principles and applications. CRC Press

    Google Scholar 

  • Balatsas-Lekkas A, Arvola A, Kotilainen H, Meneses N, Pennanen K (2020) Effect of labelling fresh cultivated blueberry products with information about irradiation technologies and related benefits on Finnish, German, and Spanish consumers’ product acceptance. Food Control 118:107387

    Article  Google Scholar 

  • Banke J (2019) Technology readiness levels demystified. 2010 [Online]. https://www.nasa.gov/topics/aeronautics/features/trl_demystified.html. [Accessed [Last accessed: 08.04.2021]]

  • Barbosa-Canovas GV, Schaffner DW, Pierson MD, Zhang QH (2000) Oscillating magnetic fields. J Food Sci 65:86–89

    Article  Google Scholar 

  • Bastante CC, Cardoso LC, Serrano CM, de la Ossa EM (2017) Supercritical impregnation of food packaging films to provide antioxidant properties. J Supercrit Fluids 128:200–207

    Article  Google Scholar 

  • Bendicho SL, Barbosa-Cánovas GV, Martín O (2002) Milk processing by high intensity pulsed electric fields. Trends Food Sci Technol 13:195–204

    Article  CAS  Google Scholar 

  • Bhargava N, Mor RS, Kumar K, Sharanagat VS (2020) Advances in application of ultrasound in food processing: a review. Ultrason Sonochem 70:105293

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolumar T, & Toepfl S (2016) Application of shockwaves for meat tenderization. In Innovative food processing technologies (pp. 231–258). Woodhead Publishing

    Google Scholar 

  • Bolumar T, Bindrich U, Toepfl S, Toldrá F, Heinz V (2014) Effect of electrohydraulic shockwave treatment on tenderness, muscle cathepsin and peptidase activities and microstructure of beef loin steaks from Holstein young bulls. Meat Sci 98:759–765

    Article  CAS  PubMed  Google Scholar 

  • Bolumar T, Orlien V, Sikes A, Aganovic K, Bak KH, Guyon C, Stübler AS, De Lamballerie M, Hertel C, Brüggemann DA (2020) High-pressure processing of meat: molecular impacts and industrial applications. Compr Rev Food Sci Food Saf 20(2):332–368. https://doi.org/10.1111/1541-4337.12670

  • Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  • Brunner G (2010) Applications of supercritical fluids. Ann Rev Chem Biomol Eng 1:321–342

    Article  CAS  Google Scholar 

  • Buckow R, Chandry PS, Ng SY, McAuley CM, Swanson BG (2014) Opportunities and challenges in pulsed electric field processing of dairy products. Int Dairy J 34:199–212

    Article  CAS  Google Scholar 

  • Chemat F, Vian MA, Fabiano-Tixier A-S, Nutrizio M, Jambrak AR, Munekata PE, Lorenzo JM, Barba FJ, Binello A, Cravotto G (2020) A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem 22:2325–2353

    Article  CAS  Google Scholar 

  • Chian FM, Kaur L, Astruc T, Vénien A, Stübler A-S, Aganovic K, Loison O, Hodgkinson S, Boland M (2021) Shockwave processing of beef brisket in conjunction with sous vide cooking: effects on protein structural characteristics and muscle microstructure. Food Chem 343:128500

    Article  CAS  PubMed  Google Scholar 

  • Chien S-Y, Sheen S, Sommers C, Sheen L-Y (2017) Modeling the inactivation of Escherichia coli O157: H7 and Uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control 73:672–680

    Article  CAS  Google Scholar 

  • Dong P, Georget E, Aganovic K, Heinz V, Mathys A (2016) Inactivation of Bacillus amyloliquefaciens spores by continuous high-pressure-assisted thermal sterilization in an oil-in-water (o/w) emulsion with 10% soybean oil. Eur Food Res Technol 242:935–942

    Article  CAS  Google Scholar 

  • Dubos GF, Saleh JH, Braun R (2008) Technology readiness level, schedule risk, and slippage in spacecraft design. J Spacecr Rocket 45:836–842

    Article  Google Scholar 

  • EC (2018) Commission Implementing Regulation (EU) 2018/1011 of 17 July 2018 authorising an extension of use levels of UV-treated mushrooms as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Impleme. In: Commission E (ed.) Official Journal of the European Union

    Google Scholar 

  • ESA (2019) Future launchers preparatory programme – Technology Readiness Levels [Online]. https://www.esa.int/ESA_Multimedia/Images/2019/06/Technology_Readiness_Levels: The European Space Agency (ESA) [Accessed [Last accessed: 28.04.2021]]

  • Farkas J, Ehlermann DAE, Mohácsi-Farkas C (2014) Food technologies: Food irradiation. In: Motarjemi Y (ed) Encyclopedia of food safety, Academic Press, pp 178–186, ISBN 9780123786135. https://doi.org/10.1016/B978-0-12-378612-8.00259-6. (https://www.sciencedirect.com/science/article/pii/B9780123786128002596)

  • FDA, FADA (1996) Code of Federal Regulations, 21CFR179.41. In: (FDA), FADA (ed) Title 21, Volume 3

    Google Scholar 

  • Franco P, Incarnato L, De Marco I (2019) Supercritical CO2 impregnation of α-tocopherol into PET/PP films for active packaging applications. J CO2 Utilizat 34:266–273

    Article  CAS  Google Scholar 

  • Gallo M, Ferrara L, Naviglio D (2018) Application of ultrasound in food science and technology: a perspective. Foods 7:164

    Article  CAS  PubMed Central  Google Scholar 

  • Garner AL (2019) Pulsed electric field inactivation of microorganisms: from fundamental biophysics to synergistic treatments. Appl Microbiol Biotechnol 103:7917–7929

    Article  CAS  PubMed  Google Scholar 

  • Georget E, Miller B, Aganovic K, Callanan M, Heinz V, Mathys A (2014) Bacterial spore inactivation by ultra-high pressure homogenization. Innovative Food Sci Emerg Technol 26:116–123

    Article  Google Scholar 

  • Geveke DJ, Brunkhorst C (2008) Radio frequency electric fields inactivation of Escherichia coli in apple cider. J Food Eng 85:215–221

    Article  Google Scholar 

  • Godfrey CS (1970) Apparatus for tenderizing food. Google Patents

    Google Scholar 

  • Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F (2007) Pulsed light for food decontamination: a review. Trends Food Sci Technol 18:464–473

    Article  CAS  Google Scholar 

  • González-Angulo M, Serment-Moreno V, Queirós RP, Tonello-Samson C (2021) 1.03 – food and beverage commercial applications of high pressure processing. In: Muthukumarappan KKK (ed) Innovative food processing technologies. Elsevier, Oxford

    Google Scholar 

  • Grigelmo-Miguel N, Soliva-Fortuny R, Barbosa-Cánovas GV, Martín-Belloso O (2011) Use of oscillating magnetic fields in food preservation. Nonthermal processing technologies for food, 45:222–243

    Google Scholar 

  • Harvey G, Gachagan A, Mutasa T (2014) Review of high-power ultrasound-industrial applications and measurement methods. IEEE Trans Ultrason Ferroelectr Freq Control 61:481–495

    Article  PubMed  Google Scholar 

  • Heinrich V, Zunabovic M, Bergmair J, Kneifel W, Jäger H (2015) Post-packaging application of pulsed light for microbial decontamination of solid foods: a review. Innovative Food Sci Emerg Technol 30:145–156

    Article  CAS  Google Scholar 

  • Hernández-Carranza P, Peralta-Pérez A, Avila-Sosa R, Ruiz-López II, Benitez-Rojas AC, Ochoa-Velasco CE (2021) Effect of ultraviolet-C light and mild thermal treatment on the storage life of orange juice. Czech J Food Sci 39:106

    Article  Google Scholar 

  • Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O (2015) Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–229

    Article  CAS  Google Scholar 

  • Hirasawa K, Shu R, Goto H, Okamoto M (2001) Method for freezing and freezer using variance of magnetic field or electric field. Japan Patent, 86967

    Google Scholar 

  • Jha PK, Chevallier S, Xanthakis E, Jury V, Le-Bail A (2020) Effect of innovative microwave assisted freezing (MAF) on the quality attributes of apples and potatoes. Food Chem 309:1–12

    Article  Google Scholar 

  • Jiang Q, Zhang M, Xu B (2020) Application of ultrasonic technology in postharvested fruits and vegetables storage: a review. Ultrason Sonochem 69:105261

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Tang J, Wang Y, Koral TL (2018) Radio-frequency applications for food processing and safety. Annu Rev Food Sci Technol 9:105–127

    Article  PubMed  Google Scholar 

  • Kalaras MD, Beelman RB, Elias RJ (2012) Effects of postharvest pulsed UV light treatment of white button mushrooms (Agaricus bisporus) on vitamin D2 content and quality attributes. J Agric Food Chem 60:220–225

    Article  CAS  PubMed  Google Scholar 

  • Keklik NM, Krishnamurthy K, & Demirci A (2012) Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In Microbial decontamination in the food industry (pp. 344–369). Woodhead Publishing

    Google Scholar 

  • Khaneghah AM, Moosavi MH, Oliveira CA, Vanin F, Sant’Ana AS (2020) Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: an overview. Food Chem Toxicol 143:111557

    Article  Google Scholar 

  • Komora N, Bruschi C, Ferreira V, Maciel C, Brandão TRS, Fernandes R, Saraiva JA, Castro SM, Teixeira P (2018) The protective effect of food matrices on listeria lytic bacteriophage P100 application towards high pressure processing. Food Microbiol 76:416–425

    Article  CAS  PubMed  Google Scholar 

  • Koutchma T (2008) UV light for processing foods. Ozone Sci Eng 30:93–98

    Article  CAS  Google Scholar 

  • Koutchma T, Popović V, Ros-Polski V, Popielarz A (2016) Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr Rev Food Sci Food Saf 15:844–867

    Article  CAS  PubMed  Google Scholar 

  • Koutchma T, Popović V, & Green A (2019) Overview of Ultraviolet (UV) LEDs technology for applications in food production. In Ultraviolet LED technology for food applications (pp. 1–23). Academic Press

    Google Scholar 

  • Kuntz F, Strasser A (2016) The specifics of dosimetry for food irradiation applications. Radiat Phys Chem 129:46–49

    Article  CAS  Google Scholar 

  • Kuraya E, Touyama A, Nakada S, Higa O, Itoh S (2017) Underwater shockwave pretreatment process to improve the scent of extracted citrus junos Tanaka (Yuzu) juice. Int J Food Sci 2017:2375181

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J, Boyd G, Chen H (2015) Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479–484

    Article  CAS  PubMed  Google Scholar 

  • Lebovka NI, Shynkaryk NV, Vorobiev E (2007) Pulsed electric field enhanced drying of potato tissue. J Food Eng 78:606–613

    Article  Google Scholar 

  • Levy R, Okun Z, Shpigelman A (2020) High-pressure homogenization: principles and applications beyond microbial inactivation. Food Eng Rev 13(3):1–19

    Google Scholar 

  • Levy R, Okun Z, Davidovich-Pinhas M, Shpigelman A (2021) Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product. Food Hydrocoll 113:106442

    Article  CAS  Google Scholar 

  • Lipiec J, Janas P, Barabasz W (2004) Effect of oscillating magnetic field pulses on the survival of selected microorganisms. International Agrophysics, 18(4)

    Google Scholar 

  • Lipiec J, Janas P, Barabasz W, Pysz M, Pisulewski P (2005) Effects of oscillating magnetic field pulses on selected oat sprouts used for food purposes. Acta Agrophysica 5:357–365

    Google Scholar 

  • Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK (2014) Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents 43:508–517

    Article  CAS  PubMed  Google Scholar 

  • Maki S, Hirota N (2014) Magnetic separation technique on binary mixtures of sorbitol and sucrose. J Food Eng 120:31–36

    Article  CAS  Google Scholar 

  • Mandal R, Singh A, Singh AP (2018) Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci Technol 80:93–103

    Article  CAS  Google Scholar 

  • Mandal R, Mohammadi X, Wiktor A, Singh A, Pratap Singh A (2020) Applications of pulsed light decontamination technology in food processing: an overview. Appl Sci 10:3606

    Article  CAS  Google Scholar 

  • Mankins JC (2009) Technology readiness assessments: A retrospective. Acta Astronaut 65:1216–1223

    Article  Google Scholar 

  • Martínez-Monteagudo SI, Yan B, Balasubramaniam VM (2017) Engineering process characterization of high-pressure homogenization—from laboratory to industrial scale. Food Eng Rev 9(3):143–169

    Google Scholar 

  • Masood H, Razaeimotlagh A, Cullen PJ, Trujillo FJ (2017) Numerical and experimental studies on a novel Steinmetz treatment chamber for inactivation of Escherichia coli by radio frequency electric fields. Innovative Food Sci Emerg Technol 41:337–347

    Article  Google Scholar 

  • Mastromatteo M, Lecce L, De Vietro N, Favia P, Del Nobile MA (2011) Plasma deposition processes from acrylic/methane on natural fibres to control the kinetic release of lysozyme from PVOH monolayer film. J Food Eng 104:373–379

    Article  CAS  Google Scholar 

  • McDonnell CK, Fitzgerald AG, Burt P, Hughes J, Mellor GE, Barlow RS, Sikes AL, Li Y, Tobin AB (2021) The effect of electro-hydrodynamic shockwaves on the quality of striploin and brisket beef muscles during long-term storage. Innovative Food Sci Emerg Technol 68:102627

    Article  CAS  Google Scholar 

  • McHugh T (2016) Radio frequency processing of food. INST Food Technologists 525 West Van Buren, STE 1000, Chicago, IL 60607-3814 USA

    Google Scholar 

  • Meier SR (2008) Best project management and systems engineering practices in the preacquisition phase for federal intelligence and defense agencies. Proj Manag J 39:59–71

    Article  Google Scholar 

  • Misra N, Tiwari B, Raghavarao K, Cullen P (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3:159–170

    Article  Google Scholar 

  • Moorhouse DJ (2002) Detailed definitions and guidance for application of technology readiness levels. J Aircr 39:190–192

    Article  Google Scholar 

  • Müller A, Stahl MR, Graef V, Franz CMAP, Huch M (2011) UV-C treatment of juices to inactivate microorganisms using dean vortex technology. J Food Eng 107:268–275

    Article  Google Scholar 

  • Naidu MM, Vedashree M, Satapathy P, Khanum H, Ramsamy R, Hebbar HU (2016) Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chem 192:849–856

    Article  Google Scholar 

  • Ng SW, Lu P, Rulikowska A, Boehm D, O’Neill G, Bourke P (2021) The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chem 342:128283

    Article  CAS  PubMed  Google Scholar 

  • Niemira BA (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142

    Article  CAS  PubMed  Google Scholar 

  • Olechowski A, Eppinger SD, Joglekar N (2015) Technology readiness levels at 40: a study of state-of-the-art use, challenges, and opportunities. 2015 Portland international conference on management of engineering and technology (PICMET), 2015. IEEE, pp 2084–2094

    Google Scholar 

  • Olechowski AL, Eppinger SD, Joglekar N, Tomaschek K (2020) Technology readiness levels: shortcomings and improvement opportunities. Syst Eng 23:395–408

    Article  Google Scholar 

  • Olsen K, & Orlien V (2016) High-pressure processing for modification of food biopolymers. In Innovative food processing technologies (pp. 291–313). Woodhead Publishing

    Google Scholar 

  • Ostermeier R, Giersemehl P, Siemer C, Töpfl S, Jäger H (2018) Influence of pulsed electric field (PEF) pre-treatment on the convective drying kinetics of onions. J Food Eng 237:110–117

    Article  CAS  Google Scholar 

  • Otero L, Rodríguez AC, Pérez-Mateos M, Sanz PD (2016) Effects of magnetic fields on freezing: application to biological products. Compr Rev Food Sci Food Saf 15:646–667

    Article  PubMed  Google Scholar 

  • Owada N, Saito S (2010) Quick freezing apparatus and quick freezing method. Google Patents

    Google Scholar 

  • Pataro G, & Ferrari G (2020) Limitations of pulsed electric field utilization in food industry. In Pulsed electric fields to obtain healthier and sustainable food for tomorrow (pp. 283–310). Academic Press

    Google Scholar 

  • Perrier DL, Rems L, Boukany PE (2017) Lipid vesicles in pulsed electric fields: fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interf Sci 249:248–271

    Article  CAS  Google Scholar 

  • Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V (2013) Characteristics of soymilk pasteurized by ultra high pressure homogenization (UHPH). Innovative Food Sci Emerg Technol 20:73–80

    Article  CAS  Google Scholar 

  • Popelka A, Novák I, Lehocký M, Chodák I, Sedliačik J, Gajtanska M, Sedliačiková M, Vesel A, Junkar I, Kleinová A (2012) Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules 17:762–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindran R, Jaiswal AK (2019) Wholesomeness and safety aspects of irradiated foods. Food Chem 285:363–368

    Article  CAS  PubMed  Google Scholar 

  • Rocha CMR, Genisheva Z, Ferreira-Santos P, Rodrigues R, Vicente AA, Teixeira JA, Pereira RN (2018) Electric field-based technologies for valorization of bioresources. Bioresour Technol 254:325–339

    Article  CAS  PubMed  Google Scholar 

  • Sadot M, Curet S, Rouaud O, Le-Bail A, Havet M (2017) Modélisation numérique d’un processus innovant de congélation assistée par micro-ondes. Int J Refrig 80:66–76

    Article  Google Scholar 

  • Sadot M, Curet S, Chevallier S, Le-Bail A, Ruaud O, Havet M (2020) Microwave assisted freezing part 2: impact of microwave energy and duty cycle on ice crystal size distribution. Innov Food Sci Emerg Technol 62:102359

    Article  CAS  Google Scholar 

  • Saqib NU, Sharma HB, Baroutian S, Dubey B, Sarmah AK (2019) Valorisation of food waste via hydrothermal carbonisation and techno-economic feasibility assessment. Sci Total Environ 690:261–276

    Article  CAS  PubMed  Google Scholar 

  • Saulis G (2010) Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng Rev 2:52–73

    Article  Google Scholar 

  • Sauser B, Verma D, Ramirez-Marquez J, Gove R (2006) From TRL to SRL: the concept of systems readiness levels. Conference on Systems Engineering Research, Los Angeles, CA, pp 1–10

    Google Scholar 

  • Schlüter O, Ehlbeck J, Hertel C, Habermeyer M, Roth A, Engel KH, Holzhauser T, Knorr D, Eisenbrand G (2013) Opinion on the use of plasma processes for treatment of foods. Mol Nutr Food Res 57:920–927

    Article  PubMed  Google Scholar 

  • Schneider J, Baumgärtner KM, Feichtinger J, Krüger J, Muranyi P, Schulz A, Walker M, Wunderlich J, Schumacher U (2005) Investigation of the practicability of low-pressure microwave plasmas in the sterilisation of food packaging materials at industrial level. Surf Coat Technol 200:962–966

    Article  CAS  Google Scholar 

  • Sharma P, Oey I, Everett DW (2014) Effect of pulsed electric field processing on the functional properties of bovine milk. Trends Food Sci Technol 35:87–101

    Article  CAS  Google Scholar 

  • ShockMeat (2016) Development of shock wave technology for packed meat. Grant agreement ID: 287034. https://cordis.europa.eu/project/id/287034/reporting. Last accessed 11.05.2020: Coordinated by: DIL DEUTSCHES INSTITUT FUR LEBENSMITTELTECHNIK EV

  • Shorstkii I, Comiotto Alles M, Parniakov O, Smetana S, Aganovic K, Sosnin M, Toepfl S, Heinz V (2020) Optimization of pulsed electric field assisted drying process of black soldier fly (Hermetia illucens) larvae. Dry Technol:1–9

    Google Scholar 

  • Simjian LG (1958) Method of tenderizing food. Google Patents

    Google Scholar 

  • Singla M, Sit N (2021) Application of ultrasound in combination with other technologies in food processing: a review. Ultrason Sonochem 73:105506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smetana S, Mhemdi H, Mezdour S, & Heinz V (2020) Pulsed electric field–treated insects and algae as future food ingredients. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow (pp. 247–266). Academic Press

    Google Scholar 

  • Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331

    Article  CAS  Google Scholar 

  • Steiner J, Franke K, Kießling M, Fischer S, Töpfl S, Heinz V, Becker T (2018) Influence of hydrothermal treatment on the structural modification of spent grain specific carbohydrates and the formation of degradation products using model compounds. Carbohydr Polym 184:315–322

    Article  CAS  PubMed  Google Scholar 

  • Taha A, Ahmed E, Ismaiel A, Ashokkumar M, Xu X, Pan S, Hu H (2020) Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol 105. https://doi.org/10.1016/j.tifs.2020.09.024

  • Telfser A, Galindo FG (2019) Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT 99:148–155

    Article  CAS  Google Scholar 

  • Tonello-Samson C, Queirós RP, & González-Angulo M (2020) Advances in high-pressure processing in-pack and in-bulk commercial equipment. In Present and future of high pressure processing (pp. 297–316). Elsevier

    Google Scholar 

  • Trujillo FJ, Geveke DJ (2014) Chapter 14 – nonthermal processing by radio frequency electric fields. In: Sun D-W (ed) Emerging technologies for food processing, 2nd edn. Academic, San Diego

    Google Scholar 

  • Urbain P, Valverde J, Jakobsen J (2016) Impact on vitamin D 2, vitamin D 4 and agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Foods Hum Nutr 71:314–321

    Article  CAS  PubMed  Google Scholar 

  • Venkataratnam H, Sarangapani C, Cahill O, Ryan CB (2019) Effect of cold plasma treatment on the antigenicity of peanut allergen Ara h 1. Innovative Food Sci Emerg Technol 52:368–375

    Article  CAS  Google Scholar 

  • Venkataratnam H, Cahill O, Sarangapani C, Cullen PJ, Barry-Ryan C (2020) Impact of cold plasma processing on major peanut allergens. Sci Rep 10:17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li Y, Wang S, Zhang L, Gao M, Tang J (2011) Review of dielectric drying of foods and agricultural products. Int J Agric Biol Eng 4:1–19

    Google Scholar 

  • Wang Y, Zhang L, Johnson J, Gao M, Tang J, Powers JR, Wang S (2014) Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food Bioprocess Technol 7:278–288

    Article  CAS  Google Scholar 

  • Whitehead JC (2016) Chapter 3 – the chemistry of cold plasma. In: Misra NN, Schlüter O, Cullen PJ (eds) Cold plasma in food and agriculture. Academic, San Diego

    Google Scholar 

  • Wiktor A, Nowacka M, Dadan M, Rybak K, Lojkowski W, Chudoba T, Witrowa-Rajchert D (2016) The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Dry Technol 34:1286–1296

    Article  Google Scholar 

  • Woldemariam HW, Kießling M, Emire SA, Teshome PG, Töpfl S, Aganovic K (2021) Influence of electron beam treatment on naturally contaminated red pepper (Capsicum annuum L.) powder: kinetics of microbial inactivation and physicochemical quality changes. Innovative Food Sci Emerg Technol 67:102588

    Article  CAS  Google Scholar 

  • Wu Y, Liang Y, Wei K, Li W, Yao M, Zhang J (2014) Rapid allergen inactivation using atmospheric pressure cold plasma. Environ Sci Technol 48:2901–2909

    Article  CAS  PubMed  Google Scholar 

  • Xanthakis E, Le-Bail A, Ramaswamy H (2014) Development of an innovative microwave assisted food freezing process. Innov Food Sci Emerg Technol 26:176–181

    Article  Google Scholar 

  • Xie Y, Zhang Y, Xie Y, Li X, Liu Y, Gao Z (2020) Radio frequency treatment accelerates drying rates and improves vigor of corn seeds. Food Chem 319:126597

    Article  CAS  PubMed  Google Scholar 

  • Yasuda A, Kuraya E, Touyama A, Higa O, Hokamoto K, Itoh S (2017) Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot (Daucus carota L.) juice. J Food Eng 211:15–21

    Article  CAS  Google Scholar 

  • Yin J, Wang K, Yang Y, Shen D, Wang M, Mo H (2014) Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresour Technol 171:323–329

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Chen H, Mujumdar AS, Tang J, Miao S, Wang Y (2017) Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit Rev Food Sci Nutr 57:1239–1255

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Xu R, Zhang B, Pei S, Liu Q, Ramaswamy HS, Wang S (2018) Radio frequency-vacuum drying of kiwifruits: kinetics, uniformity, and product quality. Food Bioprocess Technol 11:2094–2109

    Article  Google Scholar 

  • Zhou J, Gullón B, Wang M, Gullón P, Lorenzo JM, Barba FJ (2021) The application of supercritical fluids technology to recover healthy valuable compounds from marine and agricultural food processing by-products: a review. PRO 9:357

    CAS  Google Scholar 

  • Zhu Y, Koutchma T, Warriner K, Zhou T (2014) Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. J Food Prot 77:963–971

    Article  CAS  PubMed  Google Scholar 

  • Ziero HDD, Buller LS, Mudhoo A, Ampese LC, Mussatto SI, Carneiro TF (2020) An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. J Environ Chem Eng 8:104406

    Article  Google Scholar 

  • Ziuzina D, Patil S, Cullen P, Keener K, Bourke P (2013) Atmospheric cold plasma inactivation of E scherichia coli in liquid media inside a sealed package. J Appl Microbiol 114:778–787

    Article  CAS  PubMed  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ, Keener K, Bourke P (2014) Atmospheric cold plasma inactivation of Escherichia coli, salmonella enterica serovar typhimurium and listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the following persons and companies for their support in gathering the information and assessing the TRL of different technologies: Jasna Ivanovic and Boris Brockhaus, Uhde High Pressure Technologies (Germany), Mario González-Angulo and Carole Tonello, Hiperbaric (Spain), Stefan Toepfl, Claudia Siemer and Oleksii Parniakov, Elea (Germany), Ciara McDonnell und Aarti Tobin CSIRO (Australia); Mark Freeman Homogenising Systems Ltd. (United Kingdom); Heidi-Maria Kotilainen Bühler (Switzerland). We appreciate your help very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Aganovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebert, E., Aganovic, K. (2022). Current Technology Readiness Levels (TRL) of Nonthermal Technologies and Research Gaps for Improved Process Control and Integration into Existing Production Lines. In: ­Režek ­Jambrak, A. (eds) Nonthermal Processing in Agri-Food-Bio Sciences. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92415-7_15

Download citation

Publish with us

Policies and ethics