Skip to main content

Advertisement

Log in

Inactivation of Bacillus amyloliquefaciens spores by continuous high-pressure-assisted thermal sterilization in an oil-in-water (o/w) emulsion with 10 % soybean oil

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Ultra-high-pressure homogenization (UHPH) offers new opportunities for continuous high-pressure-assisted thermal sterilization of liquids and production of stable emulsions. As relevant indicator, Bacillus amyloliquefaciens spores were suspended in a coarse oil-in-water (o/w) emulsion (pH 7.6) with 10 % soybean oil and 4 % soy protein isolate at the initial concentration of ~106 CFU/mL. The o/w emulsion was subjected to UHPH treatments at 200, 300 and 350 MPa with the inlet temperature at ~80 °C to inactivate the respective bacterial spores and produce fine emulsion simultaneously. After treatment at 350 MPa with the valve temperature higher than 150 °C, a reduction up to 4 log10 CFU/mL of bacterial spores was obtained, and the emulsion was characterized by smaller particle size and narrow particle size distributions, with the D[3, 4] of 0.210 μm and the span of 0.746. No spore germination was found after any of these UHPH treatments. The microstructure of the emulsion was observed under confocal laser scanning microscopy with fluorescein isothiocyanate and Nile red to stain proteins and fats, respectively. UHPH showed potential to combine sterilization and emulsification into one single process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McClements DJ (2004) Food emulsions: principles, practices, and techniques. Taylor & Francis, New York

    Book  Google Scholar 

  2. Perrechil FA, Cunha RL (2010) Oil-in-water emulsions stabilized by sodium caseinate: influence of pH, high-pressure homogenization and locust bean gum addition. J Food Eng 97(4):441–448

    Article  CAS  Google Scholar 

  3. Schultz S, Wagner G, Urban K, Ulrich J (2004) High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 27(4):361–368

    Article  CAS  Google Scholar 

  4. Desrumaux A, Marcand J (2002) Formation of sunflower oil emulsions stabilized by whey proteins with high-pressure homogenization (up to 350 MPa): effect of pressure on emulsion characteristics. Int J Food Sci Technol 37(3):263–269

    Article  CAS  Google Scholar 

  5. Floury J, Desrumaux A, Lardières J (2000) Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol 1(2):127–134

    Article  CAS  Google Scholar 

  6. Gaulin A (1899) System for intimately mixing milk. US Patent 756,953, 12 Apr 1904

  7. Georget E, Miller B, Callanan M, Heinz V, Mathys A (2014) (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods-a review. Front Nutr 1(15):1–6

    Google Scholar 

  8. Diels AM, Michiels CW (2006) High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 32(4):201–216

    Article  CAS  Google Scholar 

  9. Dumay E, Chevalier-Lucia D, Picart-Palmade L, Benzaria A, Gràcia-Julià A, Blayo C (2013) Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci Technol 31(1):13–26

    Article  CAS  Google Scholar 

  10. Fernández-Ávila C, Escriu R, Trujillo AJ (2015) Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Res Int 75:357–366

    Article  Google Scholar 

  11. López-Pedemonte T, Brinẽz WJ, Roig-Sagués AX, Guamis B (2006) Fate of Staphylococcus aureus in cheese treated by ultrahigh pressure homogenization and high hydrostatic pressure. J Dairy Sci 89(12):4536–4544

    Article  Google Scholar 

  12. Pereda J, Ferragut V, Quevedo JM, Guamis B, Trujillo AJ (2007) Effects of ultra-high pressure homogenization on microbial and physicochemical shelf life of milk. J Dairy Sci 90(3):1081–1093

    Article  CAS  Google Scholar 

  13. Roig-Sagues AX, Velazquez RM, Montealegre-Agramont P, Lopez-Pedemonte TJ, Brinez-Zambrano WJ, Guamis-Lopez B, Hernandez-Herrero MM (2009) Fat content increases the lethality of ultra-high-pressure homogenization on Listeria monocytogenes in milk. J Dairy Sci 92(11):5396–5402

    Article  CAS  Google Scholar 

  14. Addo CNA, Ferraguta V (2015) Evaluating the ultra-high pressure homogenization (UHPH) and pasteurization effects on the quality and shelf life of donkey milk. Int J Food Stud 4:104–115

    Article  Google Scholar 

  15. Cruz N, Capellas M, Hernández M, Trujillo AJ, Guamis B, Ferragut V (2007) Ultra high pressure homogenization of soymilk: microbiological, physicochemical and microstructural characteristics. Food Res Int 40(6):725–732

    Article  CAS  Google Scholar 

  16. Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V (2012) Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT-Food Sci Technol 46(1):42–48

    Article  CAS  Google Scholar 

  17. Ferragut V, Hernandez-Herrero M, Veciana-Nogues MT, Borras-Suarez M, Gonzalez-Linares J, Vidal-Carou MC, Guamis B (2015) Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: physicochemical, microbiological, nutritional and toxicological characteristics. J Sci Food Agric 95(5):953–961

    Article  CAS  Google Scholar 

  18. Valencia-Flores DC, Hernandez-Herrero M, Guamis B, Ferragut V (2013) Comparing the effects of ultra-high-pressure homogenization and conventional thermal treatments on the microbiological, physical, and chemical quality of almond beverages. J Food Sci 78(2):E199–205

    Article  CAS  Google Scholar 

  19. Floury J, Desrumaux A, Legrand J (2002) Effect of Ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. J Food Sci 67(9):3388–3395

    Article  CAS  Google Scholar 

  20. Cortés-Muñoz M, Chevalier-Lucia D, Dumay E (2009) Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: effect of chilled or frozen storage. Food Hydrocoll 23(3):640–654

    Article  Google Scholar 

  21. Hebishy E, Buffa M, Guamis B, Trujillo A-J (2013) Stability of sub-micron oil-in-water emulsions produced by ultra high-pressure homogenization and sodium caseinate as emulsifier. Chem Eng Trans 32:1813–1818

    Google Scholar 

  22. Floury J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena. Chem Eng Sci 59(6):1285–1294

    Article  CAS  Google Scholar 

  23. Georget E, Reineke K, Heinz V, Knorr D, Ananta E, Mathys A (2013) Spore inactivation mechanisms during industrial food and equipment sterilization. In: Heldman DR, Hoover DG, Wheeler MB (eds) Encyclopedia of biotechnology in agriculture and food. Taylor & Francis, New York

    Google Scholar 

  24. Georget E, Miller B, Aganovic K, Callanan M, Heinz V, Mathys A (2014) Bacterial spore inactivation by ultra-high pressure homogenization. Innov Food Sci Emerg Technol 26:116–123

    Article  Google Scholar 

  25. Dong P, Georget ES, Aganovic K, Heinz V, Mathys A (2015) Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk. Front Microbiol 6(712):1–11

    Google Scholar 

  26. Guamis B, Trujillo A, Ferragut V, Quevedo J, López T, Buffa M (2012) Continuous system and procedure of sterilization and physical stabilization of pumpable fluids by means of ultra-high pressure homogenization. US Patent Application 13/811,199, 18 July 2011

  27. Aganovic K, Buxmann W (2014) Process for production of low fat oil-in-water emulsions. Germany Pat Appl 12199222:6

    Google Scholar 

  28. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Ganzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    Article  CAS  Google Scholar 

  29. Sevenich R, Bark F, Crews C, Anderson W, Pye C, Riddellova K, Hradecky J, Moravcova E, Reineke K, Knorr D (2013) Effect of high pressure thermal sterilization on the formation of food processing contaminants. Innov Food Sci Emerg Technol 20:42–50

    Article  CAS  Google Scholar 

  30. Rosenberg M (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22(3):289–295

    Article  CAS  Google Scholar 

  31. Wiencek KM, Klapes NA, Foegeding PM (1990) Hydrophobicity of Bacillus and Clostridium spores. Appl Environ Microbiol 56(9):2600–2605

    CAS  Google Scholar 

  32. Zamora A, Guamis B (2015) Opportunities for ultra-high-pressure homogenisation (UHPH) for the food industry. Food Eng Rev 7(2):130–142

    Article  CAS  Google Scholar 

  33. Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC (2003) High-pressure homogenisation of raw bovine milk effects on fat globule size distribution and microbial inactivation. Int Dairy J 13(6):427–439

    Article  CAS  Google Scholar 

  34. Floury J, Bellettre J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chem Eng Sci 59(4):843–853

    Article  CAS  Google Scholar 

  35. Pathanibul P, Taylor TM, Davidson PM, Harte F (2009) Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. Int J Food Microbiol 129(3):316–320

    Article  CAS  Google Scholar 

  36. Gupta R, Balasubramaniam VM (2012) Chapter 5—high-pressure processing of fluid foods. In: Cullen PJ, Tiwari BK, Valdramidis VP (eds) Novel thermal and non-thermal technologies for fluid foods, 1st edn. Academic Press, San Diego

    Google Scholar 

  37. Block SS (2001) Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  38. MacDonald F, Sutherland AD (1993) Effect of heat treatment on Listeria monocytogenes and Gram-negative bacteria in sheep, cow and goat milks. J Appl Bacteriol 75(4):336–343

    Article  CAS  Google Scholar 

  39. Georget E, Sevenich R, Reineke K, Mathys A, Heinz V, Callanan M, Rauh C, Knorr D (2015) Inactivation of microorganisms by high isostatic pressure processing in complex matrices: a review. Innov Food Sci Emerg Technol 27:1–14

    Article  CAS  Google Scholar 

  40. Georget E, Kapoor S, Winter R, Reineke K, Song Y, Callanan M, Ananta E, Heinz V, Mathys A (2014) In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiol 41:8–18

    Article  Google Scholar 

  41. Georget E, Kushman A, Callanan M, Ananta E, Heinz V, Mathys A (2015) Geobacillus stearothermophilus ATCC 7953 spore chemical germination mechanisms in model systems. Food Control 50:141–149

    Article  CAS  Google Scholar 

  42. Reineke K, Doehner I, Schlumbach K, Baier D, Mathys A, Knorr D (2012) The different pathways of spore germination and inactivation in dependence of pressure and temperature. Innov Food Sci Emerg Technol 13:31–41

    Article  CAS  Google Scholar 

  43. Reineke K, Mathys A, Heinz V, Knorr D (2013) Mechanisms of endospore inactivation under high pressure. Trends Microbiol 21(6):296–304

    Article  CAS  Google Scholar 

  44. Pinho CRG, Franchi MA, Tribst AAL, Cristianinia M (2011) Effect of high pressure homogenization process on Bacillus stearothermophilus and Clostridium sporogenes spores in skim milk. Proced Food Sci 1:869–873

    Article  CAS  Google Scholar 

  45. Kong L, Doona CJ, Setlow P, Y-q Li (2014) Monitoring rates and heterogeneity of high-pressure germination of Bacillus spores by phase-contrast microscopy of individual spores. Appl Environ Microbiol 80(1):345–353

    Article  CAS  Google Scholar 

  46. Stang M, Schuchmann H, Schubert H (2001) Emulsification in high-pressure homogenizers. Eng Life Sci 1(4):151–157

    Article  CAS  Google Scholar 

  47. Zamora A, Ferragut V, Jaramillo PD, Guamis B, Trujillo AJ (2007) Effects of ultra-high pressure homogenization on the cheese-making properties of milk. J Dairy Sci 90(1):13–23

    Article  CAS  Google Scholar 

  48. Gallier S, Gragson D, Jiménez-Flores R, Everett D (2010) Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J Agric Food Chem 58(7):4250–4257

    Article  CAS  Google Scholar 

  49. Bernat N, Cháfer M, Rodríguez-García J, Chiralt A, González-Martínez C (2015) Effect of high pressure homogenisation and heat treatment on physical properties and stability of almond and hazelnut milks. LWT-Food Sci Technol 62(1, Part 2):488–496

    Article  CAS  Google Scholar 

  50. Hebishy E (2013) Application of ultra high-pressure homogenization (UHPH) in the production of submicron/nano-oil-in-water emulsions using vegetable oils and milk proteins as emulsifiers. Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona

Download references

Acknowledgments

The work was supported by China Scholarship Council (CSC No. 201406350127). We appreciate the technical assistance of Dr. Ute Bindrich, Mrs. Susanne Wilmering and Maren Bergmann for the particle size distribution and CLSM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

The study does not contain any experiments involving human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Georget, E., Aganovic, K. et al. Inactivation of Bacillus amyloliquefaciens spores by continuous high-pressure-assisted thermal sterilization in an oil-in-water (o/w) emulsion with 10 % soybean oil. Eur Food Res Technol 242, 935–942 (2016). https://doi.org/10.1007/s00217-015-2600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2600-1

Keywords

Navigation