Skip to main content

Advances in Experimental and Computational Biomechanics of the Tricuspid Heart Valve

  • Chapter
  • First Online:
Solid (Bio)mechanics: Challenges of the Next Decade

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 24))

  • 605 Accesses

Abstract

The tricuspid valve regulates the blood flow between the right atrium and the right ventricle. Although it has long been deemed the forgotten valve, the interest in the tricuspid valve has significantly increased over the past five years. This is largely due to the emerging clinical awareness of the importance of tricuspid regurgitation, a valvular disease associated with blood back flow into the right atrium during systole. Many recent advancements have expanded the current understanding of tricuspid valve tissue biomechanics. However, many questions remain to be answered before long-term, durable therapeutics for tricuspid regurgitation can be provided to address several clinical challenges. This book chapter summarizes the recent investigations of tissue mechanics, collagen fiber architecture, and morphology for the subvalvular components of the tricuspid valve, and provides recommendation for future developments in this rising area of cardiovascular biomechanics.

We first met at the 8th World Congress of Biomechanics in 2018. During the conference, my postdoctoral fellow, Dr. Anju Babu (who is Dr. Holzapfel’s former advisee), presented our pioneering study on the layer-specific tricuspid valve tissue properties that was later well received by our community. Since then, I have been working closely with Dr. Holzapfel in a series of journal publications, including the developments of novel opto-mechanical instrument for quantifying load-dependent collagen fiber microstructures of collagenous tissues and the first tricuspid valve in silico model under the isogeometric analysis (IGA) framework for modeling healthy and diseased valve functions. I am fortunate to have such a wonderful mentor like Dr. Holzapfel in my early faculty career, and would like to express my gratitude to him for providing continuous support and advices that help my establishment of a strong and unique research program. Congratulations to Dr. Holzapfel on his 60th birthday!

Chung-Hao

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal, A.: An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function. Biomech. Model. Mechanobiol. 16(4), 1309–1327 (2017)

    Article  Google Scholar 

  • Akintunde, A.R., Miller, K.S., Schiavazzi, D.E.: Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons. J. Mech. Behav. Biomed. Mater. 96, 285–300 (2019)

    Article  Google Scholar 

  • Aldea, G.S.: Commentary: tricuspid valve ring characteristics: physiologically important, clinically relevant, or too little too late? J. Thorac. Cardiovasc. Surg. 161, e209–e210 (2021)

    Article  Google Scholar 

  • Alkhouli, M., Berzingi, C., Kowatli, A., Alqahtani, F., Badhwar, V.: Comparative early outcomes of tricuspid valve repair versus replacement for secondary tricuspid regurgitation. Open Heart 5(2), e000878 (2018)

    Google Scholar 

  • Amini, R., Eckert, C.E., Koomalsingh, K., McGarvey, J., Minakawa, M., et al.: On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann. Biomed. Eng. 40(7), 1455–1467 (2012)

    Article  Google Scholar 

  • Antunes, M., Girdwood, R.: Tricuspid annuloplasty: a modified technique. Ann. Thorac. Surg. 35(6), 676–678 (1983)

    Article  Google Scholar 

  • Anwar, A.M., Folkert, J., Soliman, O.I.: Clinical Recognition of Tricuspid Valve Disease, pp. 25–48. Springer (2018)

    Google Scholar 

  • Anyanwu, A.C., Adams, D.H.: Functional tricuspid regurgitation in mitral valve disease: epidemiology and prognostic implications. Semin. Thorac. Cardiovasc. Surg. 22(1), 69–75 (2010)

    Article  Google Scholar 

  • Ayoub, S., Lee, C.H., Driesbaugh, K.H., Anselmo, W., Hughes, C.T., et al.: Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J. R. Soc. Interface. 14(135), 20170580 (2017)

    Article  Google Scholar 

  • Ayoub, S., Howsmon, D.P., Lee, C.H., Sacks, M.S.: On the role of predicted in vivo mitral valve interstitial cell deformation on its biosynthetic behavior. Biomech. Model. Mechanobiol. 20(1), 135–144 (2021)

    Article  Google Scholar 

  • Badano, L.P., Muraru, D., Enriquez-Sarano, M.: Assessment of functional tricuspid regurgitation. Eur. Heart J. 34(25), 1875–1885 (2013)

    Article  Google Scholar 

  • Badhwar, V., Rankin, J.S., He, M., Jacobs, J.P., Furnary, A.P., Fazzalari, F.L., et al.: Performing concomitant tricuspid valve repair at the time of mitral valve operations is not associated with increased operative mortality. Ann. Thorac. Surg. 103(2), 587–593 (2017)

    Article  Google Scholar 

  • Balachandran, K., Konduri, S., Sucosky, P., Jo, H., Yoganathan, A.P.: An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34(11), 1655–1665 (2006)

    Article  Google Scholar 

  • Balachandran, K., Sucosky, P., Jo, H., Yoganathan, A.P.: Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296(3), H756–H764 (2009)

    Article  Google Scholar 

  • Basu, A., He, Z.: Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc. Eng. Technol. 7(3), 270–279 (2016)

    Article  Google Scholar 

  • Braunwald, N.S., Ross Jr, J., Morrow, A.G.: Conservative management of tricuspid regurgitation in patients undergoing mitral valve replacement. Circulation 35(4s1), I–63–I–69 (1967)

    Google Scholar 

  • Carpentier, A.: A new reconstructive operation for correction of mitral and tricuspid insufficiency. J. Thorac. Cardiovasc. Surg. 61(1), 1–13 (1971)

    Article  Google Scholar 

  • Chikwe, J., Itagaki, S., Anyanwu, A., Adams, D.H.: Impact of concomitant tricuspid annuloplasty on tricuspid regurgitation, right ventricular function, and pulmonary artery hypertension after repair of mitral valve prolapse. J. Am. Coll. Cardiol. 65(18), 1931–1938 (2015)

    Article  Google Scholar 

  • Cyron, C.J., Aydin, R.C., Humphrey, J.D.: A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech. Model. Mechanobiol. 15(6), 1389–1403 (2016)

    Article  Google Scholar 

  • Dabiri, Y., Yao, J., Sack, K.L., Kassab, G.S., Guccione, J.M.: Tricuspid valve regurgitation decreases after mitraclip implantation: fluid structure interaction simulation. MeReC 97, 96–100 (2019)

    Google Scholar 

  • De Vega, N.G., Orueta, M., Olivar, E.: La anuloplastia selectiva, regulable y permanente una técnica original para el tratamiento de la insuficiencia tricúspide. Rev. Esp. Cardiol. 25, 555–556 (1972)

    Google Scholar 

  • De Vega, N.G., De Rabago, G., Castillon, L., Moreno, T., Azpitarte, J.: A new tricuspid repair short-term clinical results in 23 cases. J. Cardiovasc. Surg. 14, 384–386 (1973)

    Google Scholar 

  • Desai, R.R., Abello, L.M., Klein, A.L., Marwick, T.H., Krasuski, R.A., Ye, Y., et al.: Tricuspid regurgitation and right ventricular function after mitral valve surgery with or without concomitant tricuspid valve procedure. J. Thorac. Cardiovasc. Surg. 146(5), 1126-1132.e10 (2013)

    Article  Google Scholar 

  • Dreyfus, G.D., Corbi, P.J., Chan, K.M.J., Bahrami, T.: Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann. Thorac. Surg. 79(1), 127–132 (2005)

    Article  Google Scholar 

  • Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: Improved prediction of the collagen fiber architecture in the aortic heart valve. J. Biomech. Eng. 127(2), 329–336 (2005)

    Article  Google Scholar 

  • Duginski, G.A., Ross, C.J., Laurence, D.W., Johns, C.H., Lee, C.H.: An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets. J. Mech. Behav. Biomed. Mater. 101, 103438 (2020)

    Google Scholar 

  • Duran, C.M.G., Gunning, A.J.: The vascularization of the heart valves: a comparative study. Cardiovasc. Res. 2(3), 290–296 (1968)

    Article  Google Scholar 

  • Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014)

    Article  Google Scholar 

  • Filsoufi, F., Salzberg, S.P., Coutu, M., Adams, D.H.: A three-dimensional ring annuloplasty for the treatment of tricuspid regurgitation. Ann. Thorac. Surg. 81(6), 2273–2277 (2006)

    Article  Google Scholar 

  • Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer (2013)

    Google Scholar 

  • Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2005)

    Article  Google Scholar 

  • Goth, W., Lesicko, J., Sacks, M.S., Tunnell, J.W.: Optical-based analysis of soft tissue structures. Annu. Rev. Biomed. Eng. 18, 357–385 (2016)

    Article  Google Scholar 

  • Grashow, J.S., Sacks, M.S., Liao, J., Yoganathan, A.P.: Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34(10), 1509–1518 (2006a)

    Google Scholar 

  • Grashow, J.S., Yoganathan, A.P., Sacks, M.S.: Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2), 315–325 (2006b)

    Google Scholar 

  • Gunnal, S.A., Wabale, R.N., Farooqui, M.S.: Morphological study of chordae tendinae in human cadaveric hearts. Heart Views 16(1), 1–12 (2015)

    Article  Google Scholar 

  • He, Q., Chen, J.S.: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput. Meth. Appl. Mech. Eng. 363, 112791 (2020)

    Google Scholar 

  • Heyden, S., Nagler, A., Bertoglio, C., Biehler, J., Gee, M.W., et al.: Material modeling of cardiac valve tissue: experiments, constitutive analysis and numerical investigation. J. Biomech. 48(16), 4287–4296 (2015)

    Article  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Wiley (2000)

    Google Scholar 

  • Huang, X., Gu, C., Men, X., Zhang, J., You, B., et al.: Repair of functional tricuspid regurgitation: comparison between suture annuloplasty and rings annuloplasty. Ann. Thorac. Surg. 97(4), 1286–1292 (2014)

    Article  Google Scholar 

  • Hudson, L.T., Jett, S.V., Kramer, K.E., Laurence, D.W., Ross, C.J., et al.: A pilot study on linking tissue mechanics with load-dependent collagen microstructures in porcine tricuspid valve leaflets. Bioengineering 7(2), 60 (2020)

    Article  Google Scholar 

  • Humphrey, J., Strumpf, R., Yin, F.: Determination of a constitutive relation for passive myocardium: I A new functional form. J. Biomech. Eng. 112(3), 333–339 (1990)

    Article  Google Scholar 

  • Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Meth. Appl. Sci. 12(03), 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobs, N.T., Cortes, D.H., Vresilovic, E.J., Elliott, D.M.: Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy. J. Biomech. Eng. 135(2), 0210041 (2013)

    Article  Google Scholar 

  • Jang, J.Y., Heo, R., Lee, S., Kim, J.B., Kim, D.H., et al.: Comparison of results of tricuspid valve repair versus replacement for severe functional tricuspid regurgitation. Am. J. Cardiol. 119(6), 905–910 (2017)

    Article  Google Scholar 

  • Jett, S.V., Laurence, D.W., Kunkel, R.P., Babu, A.R., Kramer, K.E., et al.: An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. J. Mech. Behav. Biomed. Mater. 87, 155–171 (2018)

    Article  Google Scholar 

  • Jett, S.V., Hudson, L.T., Baumwart, R., Bohnstedt, B.N., Mir, A., et al.: Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomater. 102, 149–168 (2020)

    Article  Google Scholar 

  • Kamensky, D., Xu, F., Lee, C.H., Yan, J., Bazilevs, Y., et al.: A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput. Meth. Appl. Mech. Eng. 330, 522–546 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Khoiy, K.A., Amini, R.: On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 138(10), 104504 (2016)

    Google Scholar 

  • Khoiy, K.A., Asgarian, K.T., Loth, F., Amini, R.: Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts. PLOS One 13(11), e0206744 (2018a)

    Google Scholar 

  • Khoiy, K.A., Pant, A.D., Amini, R.: Quantification of material constants for a phenomenological constitutive model of porcine tricuspid valve leaflets for simulation applications. J. Biomech. Eng. 140(9), 094503 (2018b)

    Google Scholar 

  • Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Meth. Appl. Mech. Eng. 304, 81–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kong, F., Pham, T., Martin, C., McKay, R., Primiano, C., et al.: Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 46(8), 1112–1127 (2018)

    Article  Google Scholar 

  • Kramer, K.E., Ross, C.J., Laurence, D.W., Babu, A.R., Wu, Y., et al.: An investigation of layer-specific tissue biomechanics of porcine atrioventricular heart valve leaflets. Acta Biomater. 96, 368–384 (2019)

    Article  Google Scholar 

  • Kunzelman, K.S., Cochran, R.P., Murphree, S.S., Ring, W.S., Verrier, E.D., et al.: Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J. Heart. Valve. Dis. 2(2), 236–244 (1993)

    Google Scholar 

  • Lafçi, G., Çiçek, Ö.F., Lafçi, A., EsenboÄŸa, K., Günertem, E., et al.: A comparison of three tricuspid annuloplasty techniques: suture, ring, and band. Turk Gogus Kalp Damar Cerrahisi Derg 27(3), 286–293 (2019)

    Article  Google Scholar 

  • Laurence, D.W., Ross, C.J., Jett, S.V., Johns, C.H., Echols, A.L., et al.: An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets. J. Biomech. 83, 16–27 (2019)

    Article  Google Scholar 

  • Laurence, D.W., Johnson, E.L., Hsu, M., Baumwart, R., Mir, A., et al.: A pilot in-silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. Int. J. Numer. Method Biomed. Eng. 36(7), e3346 (2020)

    Google Scholar 

  • Lee, C.H., Oomen, P.J.A., Rabbah, J.P., Yoganathan, A., Gorman, R.C., et al.: A high-fidelity and micro-anatomically accurate 3D finite element model for simulations of functional mitral valve. In: FIMH Proceedings, pp. 416–424. Springer (2013)

    Google Scholar 

  • Lee, C.H., Zhang, W., Liao, J., Carruthers, C.A., Sacks, J.I., et al.: On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys. J. 108(8), 2074–2087 (2015)

    Article  Google Scholar 

  • Lee, C.H., Laurence, D.W., Ross, C.J., Kramer, K.E., Babu, A.R., et al.: Mechanics of the tricuspid valve-From clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modeling. Bioengineering 6(2), 47 (2019)

    Article  Google Scholar 

  • Liao, J., Yang, L., Grashow, J., Sacks, M.S.: The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129(1), 78–87 (2007)

    Article  Google Scholar 

  • Lim, K.O.: Mechanical properties and ultrastructure of normal human tricuspid valve chordae tendineae. Japanese J. Physiol. 30(3), 455–464 (1980)

    Article  Google Scholar 

  • Lim, K.O., Boughner, D.R., Perkins, D.G.: Ultrastructure and mechanical properties of chordae tendineae from a myxomatous tricuspid valve. Japanese Heart J. 24(4), 539–548 (1983)

    Article  Google Scholar 

  • Madhurapantula, R.S., Krell, G., Morfin, B., Roy, R., Lister, K., et al.: Advanced methodology and preliminary measurements of molecular and mechanical properties of heart valves under dynamic strain. Int. J. Mol. Sci. 21(3), 763 (2020)

    Article  Google Scholar 

  • Mathur, M., Jazwiec, T., Meador, W.D., Malinowski, M., Goehler, M., et al.: Tricuspid valve leaflet strains in the beating ovine heart. Biomech. Model. Mechanobiol. 18(5), 1351–1361 (2019)

    Article  Google Scholar 

  • Mathur, M., Meador, W.D., Jazwiec, T., Malinowski, M., Timek, T.A., et al.: Tricuspid valve annuloplasty alters leaflet mechanics. Ann. Biomed. Eng. 48(12), 2911–2923 (2020)

    Article  Google Scholar 

  • May-Newman, K., Yin, F.C.: Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. Heart Circ. Physiol. 269(4), H1319–H1327 (1995)

    Article  Google Scholar 

  • May-Newman, K., Yin, F.C.: A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1), 38–47 (1998)

    Article  Google Scholar 

  • Meador, W.D., Mathur, M., Sugerman, G.P., Jazwiec, T., Malinowski, M., et al.: A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets. Acta Biomater. 102, 100–113 (2020)

    Article  Google Scholar 

  • Merryman, W.D., Lukoff, H.D., Long, R.A., Engelmayr, G.C., Jr., et al.: Synergistic effects of cyclic tension and transforming growth factor-\(\beta \)1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16(5), 268–276 (2007)

    Article  Google Scholar 

  • Nishimura, R.A., Otto, C.M., Bonow, R.O., Carabello, B.A., Erwin, J.P., et al.: 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 63(22), e57–e185 (2014)

    Google Scholar 

  • Pant, A.D., Thomas, V.S., Black, A.L., Verba, T., Lesicko, J.G., et al.: Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater. 67, 248–258 (2018)

    Article  Google Scholar 

  • Pham, T., Sun, W.: Material properties of aged human mitral valve leaflets. J. Biomed. Mater. Res. A 102(8), 2692–2703 (2014)

    Article  Google Scholar 

  • Pham, T., Sulejmani, F., Shin, E., Wang, D., Sun, W.: Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater. 54, 345–355 (2017)

    Article  Google Scholar 

  • Pierlot, C.M., Lee, J.M., Amini, R., Sacks, M.S., Wells, S.M.: Pregnancy-induced remodeling of collagen architecture and content in the mitral valve. Ann. Biomed. Eng. 42(10), 2058–2071 (2014)

    Article  Google Scholar 

  • Plotnikov, S., Juneja, V., Isaacson, A.B., Mohler, W.A., Campagnola, P.J.: Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys. J. 90(1), 328–339 (2006)

    Article  Google Scholar 

  • Pokutta-Paskaleva, A., Sulejmani, F., DelRocini, M., Sun, W.: Comparative mechanical, morphological, and microstructural characterization of porcine mitral and tricuspid leaflets and chordae tendineae. Acta Biomater. 85, 241–252 (2019)

    Article  Google Scholar 

  • Pozzoli, A., Lapenna, E., Vicentini, L., Alfieri, O., De Bonis, M.: Surgical indication for functional tricuspid regurgitation at initial operation: judging from long term outcomes. Gen. Thorac. Cardiovasc. Surg. 64(9), 509–516 (2016)

    Article  Google Scholar 

  • Prot, V., Skallerud, B.: Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput. Mech. 43(3), 353–368 (2009)

    Article  MATH  Google Scholar 

  • Prot, V., Skallerud, B., Sommer, G., Holzapfel, G.A.: On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3(2), 167–177 (2010)

    Article  Google Scholar 

  • Rabbah, J.P., Saikrishnan, N., Yoganathan, A.P.: A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41(2), 305–315 (2013)

    Article  Google Scholar 

  • Rausch, M.K., Kuhl, E.: On the effect of prestrain and residual stress in thin biological membranes. J. Mech. Phys. Solids 61(9), 1955–1969 (2013)

    Article  MathSciNet  Google Scholar 

  • Rego, B.V., Sacks, M.S.: A functionally graded material model for the transmural stress distribution of the aortic valve leaflet. J. Biomech. 54, 88–95 (2017)

    Article  Google Scholar 

  • Rego, B.V., Wells, S.M., Lee, C.H., Sacks, M.S.: Mitral valve leaflet remodelling during pregnancy: insights into cell-mediated recovery of tissue homeostasis. J. R. Soc. Interface 13(125), 20160709 (2016)

    Article  Google Scholar 

  • Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  • Ross, C.J., Laurence, D.W., Richardson, J., Babu, A.R., Evans, L.E., et al.: An investigation of the glycosaminoglycan contribution to biaxial mechanical behaviors of porcine atrioventricular heart valve leaflets. J. R. Soc. Interface. 16(156), 20190069 (2019a)

    Google Scholar 

  • Ross, C.J., Laurence, D.W., Wu, Y., Lee, C.H.: Biaxial mechanical characterizations of atrioventricular heart valves. J. Vis. Exp. 146, e59170 (2019b)

    Google Scholar 

  • Ross, C.J., Hsu, M.C., Baumwart, R., Mir, A., Burkhart, H.M., et al.: Quantification of load-dependent changes in the collagen fiber architecture for the strut chordae tendineae-leaflet insertion of porcine atrioventricular heart valves. Biomech. Model. Mechanobiol. 20(1), 223–241 (2020a)

    Article  Google Scholar 

  • Ross, C.J., Laurence, D.W., Hsu, M.C., Baumwart, R., Zhao, Y.D., et al.: Mechanics of porcine heart valves’ strut chordae tendineae investigated as a leaflet-chordae-papillary muscle entity. Ann. Biomed. Eng. 48(5), 1463–1474 (2020b)

    Article  Google Scholar 

  • Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. Phys. Sci. Solids 61, 199–246 (2000)

    MATH  Google Scholar 

  • Sacks, M.S., Yoganathan, A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362(1484), 1369–1391 (2007)

    Article  Google Scholar 

  • Sacks, M.S., Enomoto, Y., Graybill, J.R., Merryman, W.D., Zeeshan, A., et al.: In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82(4), 1369–1377 (2006)

    Article  Google Scholar 

  • Salinas, S.D., Clark, M.M., Amini, R.: The effects of \(-80^\circ \)C short-term storage on the mechanical response of tricuspid valve leaflets. J. Biomech. 98, 109462 (2020)

    Google Scholar 

  • Silver, M.D., Lam, J.H.C., Ranganathan, N., Wigle, E.D.: Morphology of the human tricuspid valve. Circulation 43(3), 333–348 (1971)

    Article  Google Scholar 

  • Singh-Gryzbon, S., Sadri, V., Toma, M., Pierce, E.L., Wei, Z.A., et al.: Development of a computational method for simulating tricuspid valve dynamics. Ann. Biomed. Eng. 47(6), 1422–1434 (2019)

    Article  Google Scholar 

  • Smith, K.J., Mathur, M., Meador, W.D., Phillips-Garcia, B., Sugerman, G.P., et al.: Tricuspid chordae tendineae mechanics: insertion site, leaflet, and size-specific analysis and constitutive modelling. Exp. Mech. 61, 19–29 (2021)

    Article  Google Scholar 

  • Staber, B., Guilleminot, J., Soize, C., Michopoulos, J., Iliopoulos, A.: Stochastic modeling and identification of a hyperelastic constitutive model for laminated composites. Comput. Meth. Appl. Mech. Eng. 347, 425–444 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Stankovic, I., Daraban, A.M., Jasaityte, R., Neskovic, A.N., Claus, P., et al.: Incremental value of the en face view of the tricuspid valve by two-dimensional and three-dimensional echocardiography for accurate identification of tricuspid valve leaflets. J. Am. Soc. Echocardiogr. 27(4), 376–384 (2014)

    Article  Google Scholar 

  • Stella, J.A., Sacks, M.S.: On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129(5), 757–766 (2007)

    Article  Google Scholar 

  • Stevanella, M., Votta, E., Lemma, M., Antona, C., Redaelli, A.: Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32(10), 1213–1223 (2010)

    Article  Google Scholar 

  • Sun, W., Sacks, M.S., Scott, M.J.: Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues. J. Biomech. Eng. 127(4), 709–715 (2005)

    Article  Google Scholar 

  • Sun, Y.P., O’Gara, P.T.: Epidemiology, anatomy, pathophysiology and clinical evaluation of functional tricuspid regurgitation. Minerva Cardioangiol. 65(5), 469–479 (2017)

    Google Scholar 

  • Tchantchaleishvili, V., Rajab, T.K., Cohn, L.H.: Posterior suture annuloplasty for functional tricuspid regurgitation. Ann. Cardiothorac. Surg. 6(3), 262–265 (2017)

    Article  Google Scholar 

  • Teferra, K., Brewick, P.T.: A Bayesian model calibration framework to evaluate brain tissue characterization experiments. Comput. Meth. Appl. Mech. Eng. 357, 112604 (2019)

    Google Scholar 

  • Thomas, V.S., Lai, V., Amini, R.: A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure. Acta Biomater. 94, 524–535 (2019)

    Article  Google Scholar 

  • Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9(10), 649–657 (1976)

    Article  Google Scholar 

  • Vesely, I., Lozon, A.: Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics. J. Biomech. 26(2), 121–131 (1993)

    Article  Google Scholar 

  • Vesely, I., Noseworthy, R.: Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25(1), 101–113 (1992)

    Article  Google Scholar 

  • Zhang, W., Ayoub, S., Liao, J., Sacks, M.S.: A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets. Acta Biomater. 32, 238–255 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our well wishes to Dr. Gerhard A. Holzapfel for his 60th birthday, and congratulate him on his phenomenal accomplishments and prominent contributions to the soft tissue biomechanics community. Many current research advancements would remain elusive without his groundbreaking experimental, theoretical, and computational investigations. These beautifully-crafted studies from Dr. Holzapfel have provided endless inspirations, which, in addition to his invaluable perspective, have significantly impacted our research community and our laboratory.

We would also like to extend our sincere gratitude to the editors for providing this wonderful opportunity to share our contributions to the heart valve biomechanics community.

We also acknowledge the funding supports from the American Heart Association (AHA) Scientist Development Grant (SDG) Award (16SDG27760143) and the Presbyterian Health Foundation (PHF) Team Science Grant (C5122401) are greatly acknowledged. CHL was in part supported by the institutional start-up fund from the School of Aerospace and Mechanical Engineering, the IBEST-OUHSC Funding for Interdisciplinary Research, and the research funding from the Research Council at the University of Oklahoma. DWL and CJR were supported by the National Science Foundation Graduate Research Fellowship (GRF 2019254233 and 2020307284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hao Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, CH., Laurence, D.W., Ross, C.J., Hudson, L.T. (2022). Advances in Experimental and Computational Biomechanics of the Tricuspid Heart Valve. In: Sommer, G., Li, K., Haspinger, D.C., Ogden, R.W. (eds) Solid (Bio)mechanics: Challenges of the Next Decade. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-92339-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92339-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92338-9

  • Online ISBN: 978-3-030-92339-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics