Skip to main content
Log in

A Novel Left Heart Simulator for the Multi-modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adams, D. H., and A. C. Anyanwu. The cardiologist’s role in increasing the rate of mitral valve repair in degenerative disease. Curr. Opin. Cardiol. 23:105–110, 2008.

    Article  PubMed  Google Scholar 

  2. Adams, D., A. Anyanwu, L. Sugeng, and R. Lang. Degenerative mitral valve regurgitation: surgical echocardiography. Curr. Cardiol. Rep. 10:226–232, 2008.

    Article  PubMed  Google Scholar 

  3. Arnoldi, A., A. Invernizzi, R. Ponzini, E. Votta, E. G. Caiani, and A. Redaelli. Mitral valve models reconstructor: a Python based GUI software in a HPC environment for patient-specific FEM structural analysis. In: Innovations and Advances in Computer Sciences and Engineering, edited by T. Sobh. Netherlands: Springer, 2010, pp. 215–219.

    Chapter  Google Scholar 

  4. Bargiggia, G., C. Bertucci, F. Recusani, et al. A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation 80:1287–1292, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bolling, S. F., S. Li, S. M. O’Brien, J. M. Brennan, R. L. Prager, and J. S. Gammie. Predictors of mitral valve repair: clinical and surgeon factors. Ann. Thorac. Surg. 90:1904–1912, 2010.

    Article  PubMed  Google Scholar 

  6. Bonow, R. O., B. A. Carabello, K. Chatterjee, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:e84–e231, 2006.

    Article  PubMed  Google Scholar 

  7. Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Müller. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25:1468–1486, 2010.

    Article  PubMed  Google Scholar 

  8. Chikwe, J., D. H. Adams, K. N. Su, et al. Can three-dimensional echocardiography accurately predict complexity of mitral valve repair? Eur. J. Cardiothorac. Surg. 41:518–524, 2012.

    Article  PubMed  Google Scholar 

  9. Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.

    Article  Google Scholar 

  10. Dyn, N., D. Levin, and J. Gregory. Butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9:160–169, 1990.

    Article  Google Scholar 

  11. Einstein, D. R., F. Del Pin, X. Jiao, et al. Fluid–structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Biomed. Eng. 26:348–380, 2010.

    Article  Google Scholar 

  12. Fischer, G. W., A. C. Anyanwu, and D. H. Adams. Change in surgical management as a consequence of real-time 3D TEE: assessment of left ventricular function. Semin. Cardiothorac. Vasc. Anesthesia 13:238–240, 2009.

    Article  Google Scholar 

  13. Hammer, P., P. del Nido, and R. Howe. Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. In: Functional Imaging and Modeling of the Heart, edited by D. Metaxas, and L. Axel. Berlin: Springer, 2011, pp. 233–240.

    Chapter  Google Scholar 

  14. He, S., J. H. Jimenez, Z. He, and A. P. Yoganathan. Mitral leaflet geometry perturbations with papillary muscle displacement and annular dilation: an in vitro study of ischemic mitral regurgitation. J. Heart Valve Disease 12:300–307, 2003.

    Google Scholar 

  15. Hong, G.-R., G. Pedrizzetti, G. Tonti, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1:705–717, 2008.

    Article  PubMed  Google Scholar 

  16. Ionasec, R. I., I. Voigt, B. Georgescu, et al. Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans. Med. Imaging 29:1636–1651, 2010.

    Article  PubMed  Google Scholar 

  17. Jimenez, J. H., S. W. Liou, M. Padala, et al. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134:1562–1568, 2007.

    Article  PubMed  Google Scholar 

  18. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  PubMed  Google Scholar 

  19. Jimenez, J., D. D. Soerensen, Z. He, J. Ritchie, and A. P. Yoganathan. Effects of papillary muscle position on chordal force distribution: an in vitro study. J. Heart Valve Disease 14:295–302, 2005.

    Google Scholar 

  20. Kheradvar, A., H. Houle, G. Pedrizzetti, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.

    Article  PubMed  Google Scholar 

  21. Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, W. Y., P. G. Walker, E. M. Pedersen, et al. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–238, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Kunzelman, K. S., R. P. Cochran, C. Chuong, W. Ring, E. Verrier, and R. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Disease 2:326–340, 1993.

    CAS  Google Scholar 

  24. Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. B Biol. Sci. 362:1393–1406, 2007.

    Article  CAS  Google Scholar 

  25. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5:427–434, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Lau, K. D., V. Díaz-Zuccarini, P. Scambler, and G. Burriesci. Fluid–structure interaction study of the edge-to-edge repair technique on the mitral valve. J. Biomech. 44:2409–2417, 2011.

    Article  PubMed  CAS  Google Scholar 

  27. Mansi, T., I. Voigt, E. Mengue, et al. Towards patient-specific finite-element simulation of MitralClip procedure. In: Medical Image Computing and Computer-Assisted Intervention, edited by G. Fichtinger, A. Martel, and T. Peters. Berlin: Springer, 2011, pp. 452–459.

    Google Scholar 

  28. McQueen, D. M., C. S. Peskin, and E. L. Yellin. Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. Am. J. Physiol. Heart Circ. Physiol. 242:H1095–H1110, 1982.

    CAS  Google Scholar 

  29. Nguyen, T. C., A. Itoh, C. J. Carlhäll, et al. The effect of pure mitral regurgitation on mitral annular geometry and three-dimensional saddle shape. J. Thorac. Cardiovasc. Surg. 136:557–565, 2008.

    Article  PubMed  Google Scholar 

  30. Padala, M., R. A. Hutchison, L. R. Croft, et al. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.

    Article  PubMed  Google Scholar 

  31. Padala, M., S. N. Powell, L. R. Croft, V. H. Thourani, A. P. Yoganathan, and D. H. Adams. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. J. Thorac. Cardiovasc. Surg. 138:309–315, 2009.

    Article  PubMed  Google Scholar 

  32. Padala, M., M. S. Sacks, S. W. Liou, K. Balachandran, Z. He, and A. P. Yoganathan. Mechanics of the mitral valve strut chordae insertion region. J. Biomech. Eng. 132:081004, 2010.

    Article  PubMed  Google Scholar 

  33. Pouch, A. M., C. Xu, P. A. Yushkevich, et al. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45:903–907, 2012.

    Article  PubMed  Google Scholar 

  34. Rausch, M., W. Bothe, J.-P. Kvitting, et al. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 90:1–13, 2011.

    Google Scholar 

  35. Reul, H., N. Talukder, and E. W. Müller. Fluid mechanics of the natural mitral valve. J. Biomech. 14:361–372, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Ritchie, J., J. Jimenez, Z. He, M. S. Sacks, and A. P. Yoganathan. The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. J. Biomech. 39:1129–1135, 2006.

    Article  PubMed  Google Scholar 

  37. Ryan, L., B. Jackson, L. Parish, et al. Quantification and localization of mitral valve tenting in ischemic mitral regurgitation using real-time three-dimensional echocardiography. Eur. J. Cardiothorac. Surg. 31:839–844, 2007.

    Article  PubMed  Google Scholar 

  38. Sacks, M. S., Y. Enomoto, J. R. Graybill, et al. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369–1377, 2006.

    Article  PubMed  Google Scholar 

  39. Shuhaiber, J., and R. J. Anderson. Meta-analysis of clinical outcomes following surgical mitral valve repair or replacement. Eur. J. Cardiothorac. Surg. 31:267–275, 2007.

    Article  PubMed  Google Scholar 

  40. Soloff, S. M., R. J. Adrian, and Z.-C. Liu. Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Tech. 8:1441–1454, 1997.

    Google Scholar 

  41. Stevanella, M., F. Maffessanti, C. Conti, et al. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76, 2011.

    Article  Google Scholar 

  42. Stewart, S., E. Paterson, G. Burgreen, et al. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 1–22:2012, 2012.

    Google Scholar 

  43. Tenenholtz, N. A., P. E. Hammer, R. J. Schneider, N. V. Vasilyev, and R. D. Howe. On the Design of an Interactive. California, USA: Patient-Specific Surgical Simulator for Mitral Valve Repair. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011.

    Google Scholar 

  44. Veronesi, F., C. Corsi, L. Sugeng, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography/clinical perspective. Circ. Cardiovasc. Imaging 2:24–31, 2009.

    Article  PubMed  Google Scholar 

  45. Votta, E., E. G. Caiani, F. Veronesi, M. Sonicini, F. Montevecchi, and A. Redaelli. Mitral valve finite element modelling from ultrasound data: pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. A Math. Phys. Eng. Sci. 366:3411–3424, 2008.

    Article  Google Scholar 

  46. Wong, V. M., J. F. Wenk, Z. Zhang, et al. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93:776–782, 2012.

    Article  PubMed  Google Scholar 

  47. Yoganathan, A. P., W. H. Corcoran, and E. C. Harrison. Pressure drops across prosthetic aortic heart valves under steady and pulsatile flow—in vitro measurements. J. Biomech. 12:153–164, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the National Heart Lung and Blood Institute (R01HL092926). The authors would also like to thank Angela Lin for assisting with microCT imaging and reconstruction, JM Machining and Mark McJunkin for manufacturing of flow loop components, and Roy Tweedy’s for specimen donation.

Conflict of interest

There were no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbah, JP., Saikrishnan, N. & Yoganathan, A.P. A Novel Left Heart Simulator for the Multi-modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics. Ann Biomed Eng 41, 305–315 (2013). https://doi.org/10.1007/s10439-012-0651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0651-z

Keywords

Navigation