Skip to main content

Wastewater Cultivated Macroalgae as a Bio-resource in Agriculture

  • Chapter
  • First Online:
Sustainable Global Resources Of Seaweeds Volume 1

Abstract

Algae cultivation in the wastewater as bioremediation technique and production of the biomass for various products is an innovative industrial ecology model. On one hand, algae recover from the wastewater nutrients, organic carbon and minerals that would otherwise be lost. On the other hand, wastewater enables the large-scale production without using large volumes of quality water and commercial growth media. Macroalgae provide an interesting opportunity for multiple industries due to their ability to grow in a range of waste substrates and the suitability of resultant biomass for a variety of applications. In comparison to microalgae, they have an advantage of lower separation and dry mass preparation costs. This chapter will review the wastewater treatment by macroalgae and their high effectiveness in recovering nutrients, their cultivation in the wastewater for various products, focusing on the agricultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DW:

Dry Weight

IMTA:

Integrated-Multi-Trophic-Aquaculture

TN:

Total Nitrogen

References

  • Abreu MH, Pereira R, Buschmann A, Sousa-Pinto I, Yarish C (2011) Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J Exp Mar Biol Ecol 407:190–199

    Article  CAS  Google Scholar 

  • Arumugam N, Chelliapan S, Kamyab H, Thirugnana S, Othman N, Nasri NS (2018) Treatment of wastewater using seaweed: a review. Int J Environ Res Public Health 15:2851

    Article  CAS  Google Scholar 

  • Atkinson M, Smith S (1983) C: N: P ratios of benthic marine plants. Limnol Oceanogr 28:568–574

    Article  CAS  Google Scholar 

  • Badescu IS, Bulgariu D, Bulgariu L (2017) Alternative utilization of algal biomass (Ulva sp.) loaded with Zn(II) ions for improving of soil quality. J Appl Phycol 29:1069–1079

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) Species and strain selection. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Developments in applied phycology, vol 5, pp 77–89. Springer Dordrecht Heidelberg New York London

    Google Scholar 

  • Casagli F, Zuccaro G, Bernard O, Steyer JP, Ficara E (2021) ALBA: a comprehensive growth model to optimize algae-bacteria wastewater treatment in raceway ponds. Water Res 190:116734

    Article  CAS  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Cole AJ, Mata L, Paul NA, de Nys R (2014) Using CO2 to enhance carbon capture and biomass applications of freshwater macroalgae. GCB Bioenergy 6:637–645

    Article  CAS  Google Scholar 

  • Cole AJ, de Nys R, Paul NA (2015) Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Res 7:58–65

    Article  Google Scholar 

  • Cole AJ, Neveux N, Whelan A, Morton J, Vis M, de Nys R, Paul NA (2016a) Adding value to the treatment of municipal wastewater through the intensive production of freshwater macroalgae. Algal Res 20:100–109

    Article  Google Scholar 

  • Cole AJ, Paul NA, de Nys R, Roberts DA (2016b) Good for sewage treatment and good for agriculture: algal based compost and biochar. J Environ Manag 200:105–113

    Article  Google Scholar 

  • Craggs RJ (2001) Wastewater treatment by algal turf scrubbing. Water Sci Technol 44(11–12):427–433

    Article  CAS  Google Scholar 

  • Dunbar MB, Malta E-J, Agraso MM, Brunner L, Hughes A, Ratcliff J, Johnson M, Jacquemin B, Michel R, Cunha ME, Oliveira G, Ferreira H, Lesueur M, Lebris H, Luthringer R, Soler A, Edwards M, Pereira R, Abreu H (2020) Defining integrated multi-trophic aquaculture: a consensus. Aquac Europe 45(1):22–27

    Google Scholar 

  • Edwards P (2009) Traditional Asian aquaculture. In: Burnell G, Allan G (eds) New technologies in aquaculture. Woodhead Publishing Series in Food Science, Technology and Nutrition, Woodhead Publishing, pp 1029–1063

    Chapter  Google Scholar 

  • EU Regulation 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC), No1069/2009 and (EC) No1107/2009 and repealing Regulation (EC) No 2003/2003

    Google Scholar 

  • Fan X, Xu D, Wang Y, Zhang X, Cao S, Mou S, Ye N (2014) The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera: implications for the explosion in green tides. J Appl Phycol 26:537–544

    Article  CAS  Google Scholar 

  • Favot G, Cunha ME, Quental-Ferreira H, Álvares Serrão ME (2019) Production of Ulva sp. in multitrophic aquaculture in earth ponds. Aquac Fish Stud 1(1):1–8

    Google Scholar 

  • Fort A, Lebrault M, Allaire M, Esteves-Ferreira A, McHale M, Lopez F, Fariñas-Franco JM, Alseekh S, Fernie A, Sulpice R (2019) Extensive variations in diurnal growth patterns and metabolism amongst Ulva spp strains. Plant Physiol 180:109–123

    Article  CAS  Google Scholar 

  • Ge S, Champagne P (2017) Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production. Environ Sci Technol 51(6):3558–3566

    Article  CAS  Google Scholar 

  • Ge S, Madill M, Champagne P (2018) Use of freshwater macroalgae Spirogyra sp. for the treatment of municipal wastewaters and biomass production for biofuel applications. Biomass Bioenergy 111:213–223

    Article  CAS  Google Scholar 

  • Hamed SM, Abd El-Rhman AA, Abdel-Raouf N, Ibraheem IBM (2018) Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ J Basic Appl Sci 7:104–110

    Google Scholar 

  • Kidgell JT, de Nys R, Hu Y, Paul NA, Roberts DA (2014) Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae. PLoS One 9(6):e94706

    Article  Google Scholar 

  • Lawton RJ, de Nys R, Paul NA (2013) Selecting reliable and robust freshwater macroalgae for biomass applications. PLoS One 8(5):e64168

    Article  Google Scholar 

  • Lawton RJ, Cole AJ, Roberts DA, Paul NA, de Nys R (2017) The industrial ecology of freshwater macroalgae for biomass applications. Algal Res 24(Part B):486–491

    Article  Google Scholar 

  • Liu J, Vyverman W (2015) Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresour Technol 179:234–242

    Article  CAS  Google Scholar 

  • Luo MB, Liu F, Xu ZL (2012) Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquat Bot 100:18–24

    Article  CAS  Google Scholar 

  • Michalak I (2020) The application of seaweeds in environmental biotechnology. In: Bourgougnon N (ed) Seaweeds around the world: state of art and perspectives. Advances in botanical research, vol 95. Elsevier Academic Press, Elsevier Ltd., 85–111

    Google Scholar 

  • Michalak I, Chojnacka K (2016) The potential usefulness of a new generation of agro-products based on raw materials of biological origin. Acta Sci Pol Hortorum Cultus 15:97–120

    Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  Google Scholar 

  • Nabti E, Jha B, Hartmann A (2016) Impact of seaweeds on agricultural crop production as biofertilizer. Int J Environ Sci Technol 14:1119–1134

    Article  Google Scholar 

  • Neori A, Cohen I, Gordin H (1991) Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Bot Mar 34:483–490

    Article  Google Scholar 

  • Neori A, Troell M, Chopin T, Yarish C, Critchley A, Buschmann AH (2007) The need for a balanced ecosystem approach to blue revolution aquaculture. Environment 49:37–43

    Google Scholar 

  • Neveux N, Bolton JJ, Bruhn A, Roberts DA, Ras M (2018) The bioremediation potential of seaweeds: recycling nitrogen, phosphorus, and other waste products. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 1. Wiley Online Library 217–239

    Google Scholar 

  • Oswald WJ, Gotass HG (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122:73–105

    Article  Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol-Prog Ser 161:155–163

    Article  Google Scholar 

  • Roberts DA, Paul NA, Cole AJ, de Nys R (2015a) From waste water treatment to land management: conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements. J Environ Manag 157:60–68

    Article  CAS  Google Scholar 

  • Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015b) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5:9665

    Article  CAS  Google Scholar 

  • Ross ME (2017) Wastewater treatment by filamentous macro-algae. PhD, University of Edinburgh & SAMS

    Google Scholar 

  • Shama A, Joyce SG, Mari FD, Ranga Rao A, Ravishankar GA, Hudaa N (2019) Macroalgae and microalgae: novel sources of functional food and feed. In: Ravishankar GA, Ranga Rao A (eds) Handbook of algal technologies and phytochemicals. Food, health and nutraceutical applications, vol I. CRC Press, USA 207–219

    Google Scholar 

  • Sharma HSS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Smit AJ, Robertson BL, du Preez DR (1997) Influence of ammonium-N pulse concentrations and frequency, tank condition and nitrogen starvation on growth rate and biochemical composition of Gracilaria gracilis. J Appl Phycol 8:473–481

    Article  Google Scholar 

  • Soto D (2009) Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529. FAO, Rome 183

    Google Scholar 

  • Tuhy L, Samoraj M, Michalak I, Chojnacka K (2014) The application of biosorption for production of micronutrient fertilizers based on waste biomass. Appl Biochem Biotechnol 174:1376–1392

    Article  CAS  Google Scholar 

  • Valero-Rodriguez JM, Swearer SE, Dempster T, de Nys R, Cole AJ (2020) Evaluating the performance of freshwater macroalgae in the bioremediation of nutrient-enriched water in temperate environments. J Appl Phycol 32:641–652

    Article  CAS  Google Scholar 

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215–225

    Article  CAS  Google Scholar 

  • Xiao X, Agusti S, Lin F, Li K, Pan Y, Yu Y, Zheng Y, Wu J, Duarte CM (2017) Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci Rep 7:46613

    Article  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge projects: INTEGRATE - Integrate Aquaculture: an eco-innovative solution to foster sustainability in the Atlantic Area, funded by the ERDF through the INTERREG Atlantic Area 2014-2020 Programme (project grant number EAPA_232/2016); Water2Return - Recovery and recycling of nutrients: turning waste water into added-value products for a circular economy in agriculture (H2020 2017-2022) and LIFE AlgaeCan - Adding sustainability to the fruit and vegetable processing industry through solar-powered algal wastewater treatment (LIFE 16/ENV/EC 2017-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Berden Zrimec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zrimec, M.B., Malta, E., Dunbar, M.B., Cerar, A., Reinhardt, R., Mihelič, R. (2022). Wastewater Cultivated Macroalgae as a Bio-resource in Agriculture. In: Ranga Rao, A., Ravishankar, G.A. (eds) Sustainable Global Resources Of Seaweeds Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-91955-9_23

Download citation

Publish with us

Policies and ethics