Skip to main content

Common Bean Genetics, Breeding, and Genomics for Adaptation to Biotic Stress Conditions

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Pulse Crops

Abstract

Sustainable Development Goal 2 from the United Nations (Zero Hunger) states that there is a pressing need for increasing food production and quality through sustainable agricultural practices to feed the ever-growing human population. One of the key aspects to achieve a sustainable food production is to control plant pests, diseases and weeds through integrated crop management which mainly aims at reducing the widespread use of phytochemicals due to their persistence in the air, soil, water and food, as well as the development of biotic stress such as parasite resistance. Legume crops plants are, after cereals, the main source of food for the world population. These plants provide proteins, carbohydrates, minerals, vitamins, oils, fiber and other compounds of high nutraceutical value and beneficial properties for human health. The common bean (Phaseolus vulgaris L.) is the most widely used food legume for direct human consumption, and is present in regional, national and international marketson all continents by small farmers and large producers, with both green pods and dried seeds being marketed. Like other crops, beans need to adapt to changing conditions, in the current conditions of climate change. These conditions are producing new situations of abiotic and biotic stresses (mainly pests and diseases).Genetic improvement of the common bean includes the knowledge of its genetic diversity and the genome and gene function in response to the current changing environmental conditions. An important long-term challenge is the knowledge of the gene(s) that control relevant traits such as pest and disease tolerance/resistance that affects the crop yield and food security. New technologies built around the recently released common bean genome sequence that facilitates the arise of genomic resources, but they need the support of phenotypic data. Generating new bean cultivars or genotypes with enhanced resistance to different parasitesand new knowledge on possible innovative control methods are relevant for the improvement of a sustainable productivity of bean and its quality in different agrosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate T (1990) Studies on genetic, cultural and insecticidal controls against the bean fly, Ophiomyia phaseoli (Tryon) (Diptera: Agromyzidae), in Ethiopia. Simon Fraser University, Canada

    Google Scholar 

  • Abawi GS (1989) Root rots. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd Edn. International Agricultural Center for Tropical Agriculture (CIAT), Cali, pp 119–120

    Google Scholar 

  • Abawi GS, Pastor-Corrales MA (1990) Root roots of beans in Latin America and Africa: diagnosis, research methodologies, and management strategies. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 114 pp

    Google Scholar 

  • Abawi GS, Grogan RG (1979) Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69:899–904

    Article  Google Scholar 

  • Abawi GS, Ludwig JW, Gugino BK (2006) Bean root rot evaluation protocols currently used in New York. Annu Rep Bean Improv Coop 49:83–84

    Google Scholar 

  • Acevedo M, Steadman JR, Rosas JC (2012) Uromyces appendiculatus in Honduras: pathogen diversity and host resistance screening. Plant Dis 97(5):652–661

    Article  Google Scholar 

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47(S3):S44–S59

    Article  Google Scholar 

  • Adam-Blondon AF, Sevignac M, Dron M, Bannerot H (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal VD, Pastor-Corrales MA, Chirwa RM, Buruchara RA (2004) Andean beans (Phaseolus vulgaris) with resistance to the angular leaf spot pathogen (Phaeoisariopsis griseola) in Southern and Eastern Africa. Euphytica 136:201–210

    Article  Google Scholar 

  • Alavanja MC (2009) Introduction: pesticides use and exposure, extensive worldwide. Rev Environ Health 24:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen DJ, Smithson JB (1986) Proceedings of the bean fly workshop. In: PAN-African workshop, Arusha, Tanzania Series, pp 8–9

    Google Scholar 

  • Allen DJ, Buruchara RA, Smithson JB (1998) Diseases of common bean. In: Allen DJ, Lenne JM (eds) The pathology of food and pasture legumes. CAB International, Wallingford, pp 179–235

    Google Scholar 

  • Alves da Silva D, de Moura dos Reis RL, Ribeiro Gonçalves JG, Morais Carbonell SA, Chiorato AF (2018) Effect of heat stress on common bean under natural growing conditions in three locations in different climate zones in the state of São Paulo, Brazil. J Plant Breed Crop Sci 10(6):134–145

    Google Scholar 

  • Alves da Silva D, Pinto-Maglio CAF, de Oliveira EC, De Moura Dos Reis RL, Morais Carbonell SA et al (2020) Influence of high temperature on the reproductive biology of dry edible bean (Phaseolus). Sci Agricola 77(3):2020

    Google Scholar 

  • Alzate-Marin AL, Menarin H, Cardoso de Arruda MC, Chagas JM, Gonçalves de Barros E et al (1999) Backcross assisted by RAPD markers for the introgression of Co-4 and Co-6 anthracnose resistant genes in common bean cultivars. Annu Rept Bean Improv Coop 42:15–16

    Google Scholar 

  • Alzate-Marin AL, Souza KA, Silva MGM, Oliveira EJ, Moreira MA et al (2007) Genetic charac- terization of anthracnose resistance genes Co-43 and Co-9 in common bean cultivar Tlalnepantla 64 (PI207262). Euphytica 154:1–8

    Google Scholar 

  • Ambachew D, Mekbib F, Asfaw A, Beebe SE, Blair MW (2015) Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly. Crop J 3:305–316

    Article  Google Scholar 

  • Angelini F (1965) Cultivationi erbacea, Roma. Ital Agri 102(S12):S1152

    Google Scholar 

  • Angioi SA, Rau D, Attene G, Nanni L, Bellucci E et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843

    Article  CAS  PubMed  Google Scholar 

  • Angioi SA, Rau D, Rodriguez M, Logozzo G, Desiderio F et al (2009) Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol Breed 23:413–429

    Article  CAS  Google Scholar 

  • Aragao FJ (2014) GM plants with RNAi-golden mosaic resistant bean. BMC Proc 8(Suppl 4):O24

    Article  Google Scholar 

  • Aragão FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD et al (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Article  PubMed  Google Scholar 

  • Araújo SS, Beebe S, Crespi M, Delbreil B, González EM et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280

    Article  CAS  Google Scholar 

  • Araya CM, Alleyne AT, Steadman JR, Eskridge KM, Coyne DP (2004) Phenotypic and genotypic characterization of Uromyces appendiculatus from Phaseolus vulgaris in the Americas. Plant Dis 88(8):830–836

    Article  CAS  PubMed  Google Scholar 

  • Araya-Villalobos R, González-Ugalde WG, Camacho-Chacón F, Sánchez-Trejos P, Debouck DG (2001) Observations on the geographic distribution, ecology and conservation status of several Phaseolus bean species in Costa Rica. Genet Resour Crop Evol 48:221–232

    Article  Google Scholar 

  • Ariyarathne HM, Coyne DP, Jung G, Skroch PW, Vidaver AK et al (1999) Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J Amer Soc Hort Sci 124:654–662

    Article  CAS  Google Scholar 

  • Arunga EE, Ochuodho JO, Kinyua MG, Owuoche JO (2012) Characterization of Uromyces appendiculatus isolates collected from snap bean growing areas in Kenya. Afr J Agric Res 7(42):5685–5691

    Article  Google Scholar 

  • Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12

    Article  PubMed  Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RF, Gonçalves-Vidigal MC, Oblessuc PR, Melotto M (2018) The common bean COK-4 and the Arabidopsis FER kinase domain share similar functions in plant growth and defense. Mol Plant Pathol 9:1–14

    Google Scholar 

  • BaiY MichaelsTE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551

    Article  Google Scholar 

  • Balasubramanian P, Vandenberg A, Hucl P, Gusta L (2004) Resistance of Phaseolus species to ice crystallization at subzero temperature. Physiol Planta 120(3):451–457

    Article  CAS  Google Scholar 

  • Balsamo GM, Valentim-Neto PA, Mello CS, Arisi ACM (2015) Comparative proteomic analysis of two varieties of genetically modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and their non-GM counterparts. J Agric Food Chem 63(48):10569–10577

    Google Scholar 

  • Bashir M, Ahmad Z, Murata N (2000) Seed borne viruses: detection, identification and control. Agha Jee Printers 156 Bewap Plaza, PK

    Google Scholar 

  • Bassett M (1988) Linkage mapping of marker genes in common bean. In: Gepts P (ed) Genetic resources of Phaseolus Beans. Kluwer, Dordrecht, The Netherlands, pp 329–353

    Chapter  Google Scholar 

  • Beaver JS, Estévez de Jensen C, Lorenzo-Vázquez G, González A, Martínez H et al (2018) Registration of ‘Bella’ white-seeded common bean cultivar. J Plant Regist 12:190–193

    Article  Google Scholar 

  • Beaver JS, Porch TG, Zapata M (2008) Registration of ‘Verano’ white bean. J Plant Registr 2(3):187–189

    Article  Google Scholar 

  • Beaver JS, Zapata M, Alameda M, Porch TG, Rosas JC (2012) Registration of PR0401-259 and PR0650-31 dry bean germplasm lines. J Plant Registr 6(1):81–84

    Article  Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Article  Google Scholar 

  • Beebe S, Ramirez J, Jarvis A, Rao IM, Mosquera G et al (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change, 1st edn. Blackwell Publishing, pp 356–369

    Google Scholar 

  • Beebe S, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41(3):854–862

    Article  Google Scholar 

  • Beebe S, Toro O, González AV, Chacón MI, Debouck D (1997) Wildweed-crop complex of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet Resour Crop Evol 44:73–91

    Article  Google Scholar 

  • Beebe SE (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:1–20

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013)Phenotyping common beans for adaptation to drought. Front Physiol 4

    Google Scholar 

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Beebe SE, Rao IM, Mukankusi C, Buruchara R (2012) Improving resource use efficiency and reducing risk of common bean production in Africa, Latin America, and the Caribbean. In: Hershey CH (ed) Eco-efficiency: from vision to reality. CIAT, Cali, Colombia, pp 117–134

    Google Scholar 

  • Beebe SE, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Beebe SE, Bliss FA, Schwartz HF (1981) Root rot resistance in common bean germ plasm of Latin American origin. Plant Dis 65:485–489

    Article  Google Scholar 

  • Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S et al (2014) Decreased nucleotide and expression diversity and modified co-expression patterns characterize domestication in the common bean. Plant Cell 26:1901–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger PH, Wyatt SD, Shiel PJ, Silbernagel MJ, Druffel K, Mink GI (1997) Phylogenetic analysis of the Potyviridae with emphasis on legume-infecting potyviruses. Arch Virol 142:1979–1999

    Article  CAS  PubMed  Google Scholar 

  • Bezaweletaw K, Belete B, Sripichitt P (2006) Genetic gain in grain yield potential and associated agronomic traits in haricot bean (Phaseolus vulgaris L.). Kasetsart J (nat Sci) 40:835–847

    Google Scholar 

  • Bilgi VN, Bradley CA, Khot SD (2008) Response of dry bean genotypes to Fusarium root rot, caused by Fusarium solani f. sp. phaseoli, under field and controlled conditions. Plant Dis 92 (8):1197–1200

    Google Scholar 

  • Bitocchi E, Bellucci E, Giardini G, Rau R, Rodriguez M et al (2013) Molecular analysis of the parallel domestication of the common bean in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA 109:E788–E796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitocchi E, Rau D, Benazzo A, Bellucci E, Goretti D, Biagetti E, Panziera A et al (2017) High level of nonsynonymous changes in common bean suggests that selection under domestication increased functional diversity at target traits. Front Plant Sci 7:2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23(2):197–207

    Google Scholar 

  • Blair MW, Cortes AJ, Penmetsa RV, Farmer A, Carrasquilla-Garcia N et al (2013) A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126:535–548

    Article  PubMed  Google Scholar 

  • Blair MW, Cortès AJ, This D (2016) Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Sci 242:250–259

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC et al (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, González LF, Kimani M, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031

    Article  PubMed  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-SolísE BSE et al (2003) Development of a genome- wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD, Panella L, Campbell L, Khan MF (2010) Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet. Phytopathology 100:689–697

    Google Scholar 

  • Boyer JS (1968) Relationship of water potential to growth of leaves. Science 218:S443–S448

    Article  Google Scholar 

  • Boyer JS (1982) Plant Prod Environ Sci 218:443–448

    CAS  Google Scholar 

  • Brick MA, Ogg JB, Singh SB, Schwartz HF, Johnson JJ et al (2008) Registration of drought-tolerant, rust-resistant, high-yielding pinto bean germplasm line CO46348. J Plant Registr 2:2

    Article  Google Scholar 

  • Brisco EI, Porch TG, Cregan PB, Kelly JD (2014) Quantitative trait loci associated with resistance to Empoasca in common bean. Crop Sci 54:2509–2519

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P et al (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brücher OB, Brücher H (1976) The South American wild bean (Phaseolus aborigineus ‘Burk’.), as ancestor of the common bean. Econ Bot 30:257–272

    Article  Google Scholar 

  • Burghardt LT, Young ND, Tiffin P (2017) A guide to genome-wide association mapping in plants. Curr Protocols Plant Biol 2:22–38

    Article  Google Scholar 

  • Burle ML, Fonseca JR, Kami JA, GeptsP(2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    Google Scholar 

  • Busogoro JP, Jijakli MH, Lepoivre P (1999) Virulence variation and RAPD polymorphism in African isolates of Phaeoisariospis griseola (Sacc.) Ferr., the causal agent of angular leaf spot of common bean. Eur J Plant Pathol 105:559–569

    Article  CAS  Google Scholar 

  • Butare L, Rao I, Lepoivre P et al (2012) Phenotypic evaluation of interspecific recombinant inbred lines (RILs) of Phaseolus species for aluminium resistance and shoot and root growth response to aluminium–toxic acid soil. Euphytica 186:715–730

    Article  CAS  Google Scholar 

  • Campa A, Rodríguez-Suárez C, Giraldez R, Ferreira JJ (2014) Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biol 14:115

    Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins. Plant Cell 7:1113–1115

    Google Scholar 

  • Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92:43–50

    Article  CAS  PubMed  Google Scholar 

  • Casquero PA, Lema M, Santalla M, De Ron AM (2006) Performance of common bean landraces from Spain in the Atlantic and Mediterranean environments. Genet Resour Crop Evol 53:1021–1032

    Article  Google Scholar 

  • CGIAR (2015) http://ciat-library.ciat.cgiar.org/Articulos_Ciat/biblioteca/

  • Chacón MI, Pickersgill S, Debouck D (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  CAS  Google Scholar 

  • Champ MM (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88:S307–S319

    Article  CAS  PubMed  Google Scholar 

  • Chasompongpan N, Li PH, Dawis DW, Markhart AH (1990) Photoshyntetic responses to heat stess in common bean genotypes differing in in heat aclimatisation ptential. Crop Sci 30:S100–S104

    Article  Google Scholar 

  • Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinformat 10:595–608

    Article  CAS  Google Scholar 

  • Chen M, Wu J, Wang L, Mantri N, Zhang X et al (2017) Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLoS ONE 12:1–18

    Google Scholar 

  • Chiang HS, Norris DM (1983) Phenolic and tannin contents as related to anatomical parameters of soybean resistance to agromyzid bean flies. J Agric Food Chem 31:726–730

    Article  CAS  Google Scholar 

  • Chowdhury MA, Yu K, Park SJ (2002) Molecular mapping of root rot resistance in common bean. Annu Rept Bean Improv Coop 45:96–97

    Google Scholar 

  • CIAT (1980) Description of growth habit of Phaseolus vulgaris L. Annual report. Beans. International Centre for Tropical Agriculture (CIAT). Cali, Colombia

    Google Scholar 

  • CIAT (2015) Developing beans that can beat the heat. CIAT, Cali, Colombia

    Google Scholar 

  • CIAT (2020) International Center for Tropical Agriculture. https://genebank.ciat.cgiar.org/genebank/language.do?=en. Accessed 20 Dec 2020

  • CIAT (1992) Pathology in Africa. In: CIAT annual report, 1992. CIAT Bean Program. Cali, Colombia

    Google Scholar 

  • Cichy KA, Porch TG, Beaver JS, Cregan P, Fourie D et al (2015) A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Sci 55(5):2149–2160

    Article  CAS  Google Scholar 

  • Cichy KA, Wiesinger JA, Berry M, Nchimbi-Msolla S, Fourie D et al (2019) The role of genotype and production environment in determining the cooking time of dry beans (Phaseolus vulgaris L.). Legume Sci 1:1–15

    Article  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen JE (2010) Population and climate change. Proc Amer Phylosoph Soc 154:158–182

    Google Scholar 

  • Coimbra-Gonçalves GK, Gonçalves-Vidigal MC, Coelho RT, Valentini G, Vidigal Filho PS et al (2016) Characterization and mapping of anthracnose resistance genes in Mesoamerican common bean cultivar Crioulo 159. Crop Sci 56:2904–2915

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in 21st century. Phil Trans Roy Soc Lond Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Conner RL, Chen Y, Hou A, Balasubramanian PM, McLaren DL et al (2009) Seed-borne infection affects anthracnose development in two dry bean cultivars. Can J Plant Pathol 31:449–455

    Article  Google Scholar 

  • Constantin EC, Cleenwerc I, Maes M, Baeyen S, van Malderghem C et al (2016) Genetic characterisation of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of Xanthomonas genus. Plant Pathol 65:792–806

    Article  CAS  Google Scholar 

  • CorreaFJ, Saettler AW (1987) Angular leaf spot of red kidney beans in Michigan. Plant Dis 71:915918

    Google Scholar 

  • Correa-Victoria FJ, Pastor-Corrales MA, Saettler AW (1989) Angular leaf spot. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics. Centro Internacional de Agricultura Tropical, Cali, Colombia, pp 59–75

    Google Scholar 

  • Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006) Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Stud Mycol 55:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Intl J Environ Res Public Health 8:1402–1419

    Article  CAS  Google Scholar 

  • Das S, Plyler-Harveson T, Santra DK, Maharjan B, Nielson KA et al (2020) A longitudinal study on morpho-genetic diversity of pathogenic Rhizoctonia solani from sugar beet and dry beans of western Nebraska. BMC Microbiol 20:354–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David P, Sévignac M, Thareau V, Catillon Y, Kami J et al (2008) BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genom 280:521–533

    Article  CAS  Google Scholar 

  • Davies G (1998) Pest status and ecology of bean stem maggot (Ophiomyia spp.: Diptera: Agromyzidae) on the Niassa plateau, Mozambique. Intl J Pest Manag 44:215–223

    Article  Google Scholar 

  • Dawson B, Spannagle N (2009) The complete guide to climate change. Routlege, USA

    Google Scholar 

  • de Carvalho GA, Paula Junior TJ, Alzate-Marin AL, Nietsche S, Barros EG et al (1998) Inheritance of resistance of the Andean bean line AND-277 to race 63–23 of Phaeoisariopsis griseola and identification of a RAPD marker linked to the resistance gene. Fitopatol Bras 23:482–485

    CAS  Google Scholar 

  • De Jesus Junior WC, do Vale FXR, Coelho RR, Hau B, Zambolim L et al (2001) Effects of angular leaf spot and rust on yield loss of Phaseolus vulgaris. Phytopathology 91:1045–1053

    Google Scholar 

  • De Lima Castro SA, Gonçalves-Vidigal MC, Gilio TAS, Lacanallo GF, Valentini G et al (2017) Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genom 18:1–12

    Article  CAS  Google Scholar 

  • De Ron AM (2015) Grain legumes. Handbook of plant breeding. Springer Science+Business Media, New York, USA. 438 pp

    Google Scholar 

  • De Ron AM, González AM, Rodiño AP, Santalla M, Godoy L et al (2016) History of the common bean crop: its evolution beyond its areas of origin and domestication. Arbor 192(779):a317

    Google Scholar 

  • De Ron AM, Papa R, Bitocchi E, Gonz‡lez AM, Debouck DG et al (2015) Common bean. In: De Ron AM (ed) Grain legumes. Springer Science+Business Media, New York, USA Springer, New York: pp 1–36

    Google Scholar 

  • Debouck DG, Araya Villalobos R, Ocampo Sánchez RA, González UWG (1989) Collecting Phaseolus in Costa Rica. Plant Genet Resour Newsl 78:44–46

    Google Scholar 

  • Debouck DG, Smartt J (1995) Beans. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific & Technical, London, United Kingdom: pp 287–296

    Google Scholar 

  • Dick MW (2001) The peronosporomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota VII. Part A. Systematics and evolution. Springer, Berlin, Germany, pp 39–72

    Google Scholar 

  • Dillard HR, Cobb AC (1993) Survival of Colletotrichum lindemuthianum in bean debris in New York State. Plant Dis 77:1233–1238

    Article  Google Scholar 

  • Dramadri IO, Amongi W, Kelly JD, Mugisha Mukankusi C (2020) Genome-wide association analysis of resistance to Pythium ultimum in common bean (Phaseolus vulgaris). Plant Breed 00:1–13

    Google Scholar 

  • Drijfhout E (1978) Genetic interaction between Phaseolus vulgaris and bean common mosaic virus with implications for strain identification and breeding for resistance. Centre for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • Duncan RW, Gilbertson RL, Singh SP (2012) Direct and marker-assisted selection for resistance to common bacterial blight in common bean. Crop Sci 52:1511

    Article  Google Scholar 

  • Easterling WE, Aggarval PK, Batim P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana JF, Schmidhuber J, Tubiello FN (2007) Foof fibre and food products in climate changes. Cambridge Univ Press, UK

    Google Scholar 

  • Elia FM, Hosfield GL, Kelly JD, Uebersax MA (1997) Genetic analysis andinterrelationships between traits for cooking time, water absorption, and protein and tannin content of Andean dry beans. J Amer Soc Hortic Sci 122:512–518

    Article  Google Scholar 

  • Elias JCF (2018) Association analysis for characteristics related to drought tolerance in common bean (Phaseolus vulgaris L.). Doctoral thesis. Universidade Estadual de Maringá: Programa de Pós-Graduação em Agronomia. Brazil, 105 pp

    Google Scholar 

  • Ender M, Kelly JD (2005) Identification of QTL associated with white mold resistance in common bean. Crop Sci 45:2482–2490

    Article  CAS  Google Scholar 

  • Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157

    Article  CAS  Google Scholar 

  • European Phaseolus Database (2020) Phaseolus database. https://www.genbank.at/en/ecpgr-phaseolus.html. Accessed 20 Dec 2020

  • Falleiros MO, Mota SF, Ferreira AN, de Souza EA (2018) Mixture of Colletotrichum lindemuthianum races in anthracnose resistance screening and its implication for common bean breeding. Trop Plant Pathol 43:271–277

    Article  Google Scholar 

  • FAO (2010) The second report on the State of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2014) Genebank standards for plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO Wiews (2019) WIEWS—world information and early warning system on plant genetic resources for food and agriculture. Ex situ search: Phaseolus. http://www.fao.org/wiews/data/. Accessed 20 Dec 2020

  • Farid M, Earl HJ, Pauls KP, Navabi A (2017) Response to selection for improved nitrogen fixation in common bean (Phaseolus vulgaris L.). Euphytica 213:99

    Google Scholar 

  • Federici CT, Ehdaie B, Waines JC (1990) Domesticated and wild tepary bean: field performance with and without drought-stress. Agron J 82:896–900

    Article  Google Scholar 

  • Felicetti E, Song Q, Jia G, Cregan P, Bett KE et al (2012) Simple sequence repeats linked with slow darkening trait in pinto bean discovered by single nucleotide polymorphism assay and whole genome sequencing. Crop Sci 52:1600–1608

    Article  CAS  Google Scholar 

  • Feng X, Orellana GE, Myers JR, Karasev AV (2018) Recessive resistance to bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris) affects long-distance movement of the virus. Phytopathology 108(8):1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Poplawsky AR, Nikolaeva OV, Myers JR, Karasev AV (2014) Recombinants of Bean Common Mosaic Virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean. Phytopathology 104:786–793

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JJ, Campa A, Pérez-Vega E, Rodríguez-Suárez C, Giraldez R (2012) Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus. Theor Appl Genet 124:777–788

    Article  PubMed  Google Scholar 

  • Fisher ML, Kyle MM (1994) Inheritance of resistance to potyviruses in Phaseolus vulgaris l.3. Cosegregation of phenotypically similar dominant responses to 9 potyviruses. Theor Appl Genet 89:818–823

    Article  CAS  PubMed  Google Scholar 

  • Flores-Estevez N, Acosta-Gallegos JA, Silva-Rosales L (2003) Bean common mosaic virus and Bean common mosaic necrosis virus in Mexico. Plant Dis 87:21–25

    Article  CAS  PubMed  Google Scholar 

  • Fonsêca A, Ferreira J, dos Santos TrB, Mosiolek M, Bellucci E et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris l.). Chrom Res 18:487–502

    Google Scholar 

  • Fouilloux G (1979) New races of bean anthracnose and consequences in our breeding programs. In: Maraite H, Meyer JA (eds) International symposium of diseases of tropical food crops. Universite Catolique de Louvain-La Neuve, Belgium, pp 221–235

    Google Scholar 

  • Fourie D, Miklas P, Ariyarathne HM (2004) Genes conditioning halo blight resistance toraces 1, 7 and 9 occur in a tight cluster. Annu Rept Bean Improv Coop 47:103–104

    Google Scholar 

  • Frahm MA, Rosas JC, Mayek-Perez N, Lopez-Salinas E, Acosta-Gallegos JA et al (2004) Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica 136:223–232

    Article  Google Scholar 

  • Fraser DE, Bidwell RG (1974) Photosynthesis and photorespiratin during the ontogeny on the bean plant. Can J Bot 52:S2561–S2570

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Wallace A, Grierson D, Lycett GW (1994) Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol 34:539–543

    Article  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon AF, Shirmohamadali A et al (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Freytag GF, Bassett MJ, Zapata M (1982) Registration of XR-235-1-1 bean germplasm (reg. No. GP42). Crop Sci 22:1268–1269

    Article  Google Scholar 

  • Freytag GF, Debouck DG (1996) Phaseolus costaricensis, a new wild bean species (Phaseolinae, Leguminosae) from Costa Rica and Panama, Central America. Novon 6:157–163

    Article  Google Scholar 

  • Fritsche-Neto R, Souza TLPO, Pereira HS, Faria LC, Melo LC, Novaes E et al (2019) Association mapping in common bean revealed regions associated with Anthracnose and Angular Leaf Spot resistance. Sci Agric 76(4):321–327

    Article  CAS  Google Scholar 

  • Galeano CH, Cortés AJ, Fernández AC, Soler A, Franco-Herrera N et al (2012) Gene-basedsingle nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galeano CH, Fernandez AC, Franco-Herrera N, Cichy KA, Mc Clean PE et al (2011) Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One 6:e28135

    Google Scholar 

  • Galeano CH, Fernández AC, Gómez M, Blair MW (2009) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genom 10:629

    Google Scholar 

  • Garzón LN, Ligarretoa GA, Blair MW (2007) Molecular marker-assisted back crossing of anthracnose resistance into Andean climbing beans (Phaseolus vulgaris L.). Crop Sci 48:562–570

    Google Scholar 

  • Garzon LN, Blair MW (2014) Development and mapping of SSR markerslinkedtoresistance-gene homologue clusters in common bean. Crop J2:183–194

    Google Scholar 

  • Geffroy V, Macadre C, David P, Pedrosa-Harand A, Sévignac M et al (2009) Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181:405–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geffroy V, Sévignac M, Billant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor Appl Genet 116:407–415

    Google Scholar 

  • Geffroy V, Sevignac M, DeOliveira JCF, Fouilloux G, Skroch P et al (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant Microbe Interact 13:287–296

    Google Scholar 

  • Geffroy V, Sicard D, de Oliveira JCF, Sévignac M, Séverine C et al (1999) Identification of anancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Microbe Interact 12(9):774–784

    Google Scholar 

  • Genesys (2020) Data accessed through genesys global portal on plant genetic resources. www.genesys-pgr.org. Accessed 20 Dec 2020

  • Gepts P (1988) Phaseolin as an evolutionary marker. In: Gepts P (ed) Genetic resources of Phaseolusbeans. Kluwer, Dordrecht, The Netherlands, pp 215–241

    Chapter  Google Scholar 

  • Gepts P (1999) Development of an integrated linkage map. In: Singh SP (ed) Common bean improvement in the twenty-first century. Developments in plant breeding. Springer, Dordrecht, The Hetherlands, pp 53–91

    Google Scholar 

  • Gepts P, Aragão FJ, DeBarros E, Blair MW, Brondani R et al (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 113–143

    Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa. Econ Bot 42:86–104

    Article  Google Scholar 

  • Gepts P (1993) Linkage map of common bean (Phaseolus vulgaris L.). In: O'Brien SJ (ed) Genetic maps. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 6101–6109

    Google Scholar 

  • Ghasemlou M, Gharibzahedi SMT, Emam-Djomeh Z (2013) Relating consumer preferences to textural attributes of cooked beans: development of an industrial protocol and microstructural observations. LWT Food Sci Technol 50:88–98

    Article  CAS  Google Scholar 

  • Gilbertson RL, Rand RE, Hagedorn DJ (1990) Survival of Xanthomonas campestris pv. phaseoli and pectolytic strains of X. campestris in bean debris. Plant Dis 74:322–327

    Article  Google Scholar 

  • Gilio TAS, Hurtado-Gonzales OP, Goncalves-Vidigal MC, Valentini G, Elias JCF et al (2020) Fine mapping of an anthracnose-resistance locus in Andean common bean cultivar Amendoim Cavalo. PLoS One 15(10):e0239763

    Google Scholar 

  • Gioia T, Logozzo G, Attene G, Bellucci E, Benedettelli S et al. (2013) Evidence for introduction bottleneck and extensive inter-gene pool (Mesoamerica x Andes) hybridization in the European common bean (Phaseolus vulgaris L.) germplasm. PLoS One 8:75974

    Google Scholar 

  • Gioia T, Logozzo G, Marzario S, Spagnoletti Zeuli P, Gepts P (2019) Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLos One 14 (1):e0211342

    Google Scholar 

  • Goday A, Jensen A, Culiáñez-Macia F, Albà M, Figueras M et al (1994) The maize abscisic acid-responsive protein Rab17 islocated in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy-Lutz G, Steadman GR, Higgins B, Powers K (2003) Genetic variation among isolates of the web blight pathogen of common bean based on PCR-RFLP of the ITS-rDNA region. Plant Dis 87:766–771

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Lutz G, Steadman GR, Higgins B, Powers K (2008) Phylogenetic analyses of Rhizoctonia solani subgroups associated with web blight symptoms of common bean based on ITS-5.8S rDNA. J Gen Plant Pathol 74:32–40

    Article  CAS  Google Scholar 

  • Gonçalves-Vidigal MC (1994) Herança da resistência às raças Alfa, Delta e Capa de Colletotrichum lindemuthianum (Sacc. et Magn.) Scrib. No Feijoeiro (Phaseolusvulgaris L.). PhD thesis, Universidade Federal de Viçosa, Viçosa, Brazil

    Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS et al (2011) Linkagemapping ofthePhg-1andCo-14genesforresistanceto angular leafspotandanthracnoseinthecommon bean cultivar AND 277. Theor Appl Genet 122:893–903

    Article  PubMed  Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Lacanallo GF, Vidigal Filho PS, Sousa LL et al (2013) Co-segregation analysis and mapping of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro.Theor Appl Genet 126:2245–2255

    Google Scholar 

  • Gonçalves-Vidigal MC, Gilio TAS, Valentini G, Vaz Bisneta M, Vidigal Filho PS et al (2020) New Andean source of resistance to anthracnose and angular leaf spot: fine-mapping of disease-resistance genes in California Dark Red Kidney common bean cultivar. PLOS ONE 15(6)

    Google Scholar 

  • Gonçalves-Vidigal MC, Kelly JD (2006) Inheritance of anthracnose resistance in the common bean cultivar Widusa. Euphytica 151:411–419

    Google Scholar 

  • Gonçalves-Vidigal MC, Lacanallo GF, Vidigal Filho PS (2008) A new Andean gene conferring resistance to anthracnose in common bean (Phaseolusvulgaris L.) cultivar Jalo Vermelho. Plant Breed 127:592–596

    Google Scholar 

  • Gonçalves-Vidigal MC, Meirelles AC, Poletine JP, Sousa LL, Cruz A (2012) Genetic analysis of anthracnose resistance in Pitanga dry bean cultivar. Plant Breed 131:423–429

    Google Scholar 

  • Gonçalves-Vidigal MC, Silva C, Vidigal Filho PS, Gonela A, Kvitschal MV (2007) Allelic relationships of anthracnose (Colletotrichum lindemuthianum) resistance in the common bean (Phaseolusvulgaris L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. Genet Mol Biol 30:589–593

    Google Scholar 

  • González AM, Yuste-Lisbona FJ, Fernández-Lozano A, Lozano R, Santalla M (2017) Genetic mapping and QTL analysis in common bean. In: Pérez de la Vega M, Santalla M, Marsolais F (eds) The common bean genome. Springer, Cham, pp 69–107

    Google Scholar 

  • González AM, Yuste-Lisbona FJ, Godoy L et al (2016) Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.). Mol Breed 36:166

    Google Scholar 

  • González AM, Yuste-Lisbona FJ, Rodiño AP, De Ron AM, Capel C et al (2015) Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis common bean. Front Plant Sci 6:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Goretti D, Bitocchi E, Bellucci E, Rodríguez M, Rau D et al (2014) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breed 33:531–544

    Article  CAS  Google Scholar 

  • Groth JV, Mogen BD (1978) Completing the life cycle of Uromyces phaseoli var. typica on bean plants. Phytopathology 68:1674–1677

    Article  Google Scholar 

  • Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG et al. (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genom 17(1):239

    Google Scholar 

  • Gurley WB (2000) HSP 101: a key component for aquisition mof thermotolerance in plants. Plant Cell 12:S457–S460

    Article  Google Scholar 

  • Guzmán P, Gilbertson RL, Nodari R, Johnson WC, Temple SR et al (1995) Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–607

    Article  Google Scholar 

  • Hagedorn DJ (1994) Rhizoctonia root rot.In: Hall R (ed) Compendium of bean diseases. APS Press, St Paul, MN, pp 9–13

    Google Scholar 

  • Hagerty CH, Cuesta-Marcos A, Cregan PB, Song Q, McClean P et al (2015) Mapping and root rot resistance and root architecture quantitative trait loci in common bean. Crop Sci 55:1969–1977

    Article  CAS  Google Scholar 

  • Haley SD, Afanador LK, Kelly JD (1994) Identification and application of a random amplified polymorphic DNA marker for the I gene (potyvirus resistance) in common bean. Phytopathology 84:157–160

    Article  CAS  Google Scholar 

  • Hall R (ed) (1991) Compendium of bean diseases. APS Press, St Paul, MN

    Google Scholar 

  • Han B, Huang X (2013) Sequencing-based genome-wide association study in rice. Curr Opin Plant Biol 16(2):133–138

    Article  CAS  PubMed  Google Scholar 

  • Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P et al (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45

    Article  CAS  PubMed  Google Scholar 

  • Hangen L, Bennik MR (2003) Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65

    Google Scholar 

  • Harikrishnan R, Yang XB (2004) Recovery of anastomosis group of R. solani group from different latitudinal positions and influences of temperatures on their growth and survival. Plant Dis 88:817–823

    Article  CAS  PubMed  Google Scholar 

  • Harlan J, de Wet J (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunic, avirulent plant symbiosis. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harndahl U (1999) The cloroplast small heat shock protein undergoes oxidation dependent conformational changes and max protect plants from oxidative stress. Cello Stress Chaperones 4(S2):S200–S230

    Google Scholar 

  • Hart JP, Griffiths PD (2013) A series of eIF4E alleles at the bc-3 locus are associated with recessive resistance to Clover yellow vein virus in common bean. Theor Appl Genet 126:2849–2863

    Article  CAS  PubMed  Google Scholar 

  • Hart JP, Griffiths PD (2015) Genotyping-by-sequencing enabled mapping and marker development for the By-2 potyvirus resistance allele in common bean. Plant Genome 8(1):1–14

    Article  CAS  Google Scholar 

  • He JK (2014) An analysis of China’s CO2 emission peaking target and pathways. Adv Clim Change Res 5(4):155–161

    Article  Google Scholar 

  • Hillocks R, Madata CS, Chirwa R, Minja EM, Msolla S (2006) Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica 150:215–231

    Article  Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. New directions for a diverse planet. In: Proceedings of the 4th international crop science congress. Regional Institute, Gosford. www.cropscience.org.au/icsc2004. Hortic Rev 37:1–99

  • Hosfield GL, Uebersax MA (1980) Variability in physico-chemical properties and nutritional components of tropical and domestic dry bean germplasm. J Amer Soc Hortic Sci 105:246–252

    Article  CAS  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedlings diseases. Biocontrol Sci Technol 3:435–444

    Article  Google Scholar 

  • Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome 10:1–17

    Google Scholar 

  • Hoyos-VillegasVW MkwailaPB, CreganP KellyJD (2015) QTL analysis of white mold avoidance in pinto bean (Phaseolus vulgaris). Crop Sci 55:2116–2129

    Article  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hurtado-Gonzales OP, Valentini G, Gilio TAS, Martins AM, Song Q et al (2017) Fine mapping of Ur-3, a historically important rust resistance locus in common bean. G3 7 (2):557–569

    Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS et al (2010) High through-put SNP discovery and assay development in common bean. BMC Genom 11:475–483

    Article  CAS  Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS et al (2010) High-throughput SNP discovery and assay development in common bean. BMC Genom 11:475

    Article  CAS  Google Scholar 

  • IBPGR (1982) Phaseolus vulgaris. Descriptors. International Plant Genetic Resources Unit, Rome

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydrationtolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Summary for policymakers. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK, pp 7–22

    Google Scholar 

  • Ishkawa H, Aizawa H, KishiraH OT, Sakata M (1983) Light-induced changes of membrane potential in guard cells of Vicia faba. Plant Cell Physiol 24:S769–S772

    Article  Google Scholar 

  • Jain S, Poromarto S, Osorno JM, McClean PE, Nelson BD (2019) Genome wide association study discovers genomic regions involved in resistance to soybean cyst nematode (Heterodera glycines) in common bean. PLoS One 14(2): e0212140

    Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agro-ecosystem. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Jenks MA, Hasegawa PM (2005) Plant abiotic stress. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Johansen E, Edwards MC, Hampton RO (1994) Seed transmission of viruses: current perspectives. Annu Rev Phytopathol 32:363–386

    Article  Google Scholar 

  • Johnson W, Gepts P (2002) The role of epistasisin controlling seed yield and other agronomic traits in an (Phaseolus vulgaris L.). Euphytica 125:69–79

    Google Scholar 

  • Johnson W, Guzmán P, Mandala D, Mkandawire ABC, Temple Setal (1997) Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37:248–254

    Google Scholar 

  • Johnson WC, Gepts P (1999) Segregation for performance in recombinant inbred populations resulting from inter-gene pool crosses of common bean (Phaseolus vulgaris L.). Euphytica 106:45–56

    Article  Google Scholar 

  • Jones SJ, Gent DH, Pethybridge SJ, Hay FS (2011) NZ J Crop Hortic Sci 40:147–159

    Article  Google Scholar 

  • Kaeppler SM (1997) Power analysis for quantitative trait locus mapping in populations derived by multiple backcrosses. Theor Appl Genet 95:618–621

    Article  Google Scholar 

  • Kamfwa K, Cichy KA, Kelly JD (2015) Genome-wide association study of agronomic traits in common bean. The Plant Genome 8(2):1–12

    Article  CAS  Google Scholar 

  • Kamfwa K, Cichy KA, Kelly JD (2015) Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theor Appl Genet 128(10):1999–2017

    Article  CAS  PubMed  Google Scholar 

  • Kapeya H, Chirwa R, Mviha P (2005) Development of an integrated pest and resource management package for the control of bean stem maggot (Ophiomyia spp.) in Malawi. Paper presented at PABRA millennium workshop, 28 May–1 June, 2005 Arusha Tanzania, pp 182–186

    Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10:5692

    Article  CAS  Google Scholar 

  • Katan J (2017) Diseases caused by soilborne pathogens: biology, management and challenges. J Plant Pathol 99(2):305–315

    Google Scholar 

  • Kayitare JS (1993) Infestation of Phaseolus vulgaris (L) By the beanfly Ophiomyia Spp. (Diptera: Agromyzidae) and its management by cultural practices. University of Ghana, Accra

    Google Scholar 

  • Keller B, Manzanares C, Jara C, Lobaton JD, Studer B (2015) Fine-mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 128:813–826

    Google Scholar 

  • Kelly JD (1997) A review of varietal response to bean common mosaic potyvirus in Phaseolus vulgaris. Plant Var Seeds 10:1–6

    Google Scholar 

  • Kelly JD (2001) Remaking of plant architecture for efficient production. Adv Agron 71:110–143

    Google Scholar 

  • Kelly JD (2004) Advances in common bean improvement: some case histories with broader applications. Acta Hort 637:99–122

    Article  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Haley SD (1994) Registration of “Raven” black bean. Crop Sci 34:1406–1407

    Google Scholar 

  • Kelly JD, Kolkman JM, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102:343–356

    Article  Google Scholar 

  • Kelly JD, Stavely R, Mikla P, Afanador L, Haley SD (1993) Pyramiding rust resistance genes using RAPD markers. Annu Rept Bean Improv Coop36:166–167

    Google Scholar 

  • Kelly JD, Vallejo V (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    Article  CAS  Google Scholar 

  • Kelly JD, Young RA (1996) Proposed symbols for anthracnose resistance genes. Annu Rept Bean Improv Coop 39:20–24

    Google Scholar 

  • Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hortsci 39:1196–1207

    Article  CAS  Google Scholar 

  • Kelly JD, Stavely JR, Miklas PN (1996) Proposed symbols for rust resistance genes. Annu Rept Bean Improv Coop 39:25–31

    Google Scholar 

  • Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci USA 78:S3526–S3530

    Article  Google Scholar 

  • Khang DT, Dung TN, Elzaawely AA, Xuan TD (2016) Phenolic profiles and antioxidant activity of germinated legumes foods 5(S2):S27

    Google Scholar 

  • Kimno SK, Kiplagat OK, Arunga EE, and Chepkoech E (2016) Evaluation of selected French bean (Phaseolus vulgaris L.) genotypes for resistance to angular leaf spot (Pseudocercospora griseola) in Western Kenya. Amer J Exp Agri 13(4):1–6

    Google Scholar 

  • Kiryowa M, Nkalubo ST, Mukankusi C, Talwana H, Gibson P, Tukamuhabwa P (2015) Effect of marker aided pyramiding of anthracnose and Pythium root rot resistance genes on plantagronomic characters among advanced common bean genotypes. J Agric Sci 7:98–104

    Google Scholar 

  • Klein PG, Klein RR, Rodríguez-Cerezo E, Hunt AG, Shaw JG (1994) Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769

    Article  CAS  PubMed  Google Scholar 

  • Koenig R, Singh S, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 44:50–60

    Article  Google Scholar 

  • Koike ST, Gladders P, Paulus AO (2007) Vegetable diseases—acolour handbook. Academic Press, Burlington, MA

    Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Google Scholar 

  • Kole C, Gupta PK (2004) Genome mapping and map-based cloning. In: Jain HK, Kharkwal MC (eds) Plant breeding—from Mendelian to molecular approaches. Narosa Publishing House, New Delhi, India, pp 255–299

    Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548

    Google Scholar 

  • Kolkman JM, Kelly JD (2002) Agronomic traits affecting resistance to white mold in common bean. Crop Sci 42:693–699

    Article  Google Scholar 

  • Konsens I, Kigel J (1991) The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Ann Bot 67(4):391–399

    Google Scholar 

  • Konzen ER, Recchia GH, Cassieri F, Caldas DGG, Mier y Teran JGB et al (2019) DREB genes from common bean show broad to specific abiotic stress responses and distinct leaves of nucleotide diversity. Intl J Genom 9520642

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács M, Stuparevic I, Mrsa V, Maraz A (2008) Characterization of cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation. FEMS Yeast Res 8(7):1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Kraft JM, Burke DW, Hagland WA (1981) Fusarium diseases of beans, peas and lentils. Pennysvania State University Press, University Park, PA, USA

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Google Scholar 

  • Lacanallo GF, Gonçalves-Vidigal MC (2015) Mapping of an Andean gene for anthracnose resistance (Co-13) in common bean (Phaseolus vulgaris L.) Jalo Listras Pretas landrace. Aust J Crop Sci 9:394–400

    Google Scholar 

  • Laizer HC, Chacha MN, Ndakidemi PA (2019) Farmers’ knowledge, perceptions and practices in managing weeds and insect pests of common bean in Northern Tanzania. Sustainability 11:4076

    Article  Google Scholar 

  • Lamprecht H (1961) Weitere Kopplungsstudienan Phaseolusvulgaris miteinerUbersicht uberdie Koppelungsgruppen. Agri Hort Genet 19:319–332

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Landeras E, Trapiello E, Braña M, González AJ (2017) Occurrence of angular leaf spot caused by Pseudocercospora griseola in Phaseolus vulgaris in Asturias, Spain. Span J Agric Res 15:e10SC03

    Google Scholar 

  • Larsen RC, Miklas PN, Druffel KL, Wyatt SD (2005) NL-3K isolate is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology 95:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses in signal transduction plants. In: Plandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, vol 2, pp S195–S225

    Google Scholar 

  • Leakey CIA (1988) Genotypic and phenotypic markers in common bean. In: Gepts P (ed) Genetic resources of phaseolus bean. Kluver, Dordrecht, Netherlands, pp 245–327

    Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stabily heat-denatured model substrates and can maintain a substrate in a folding-component state. EMBO J 16:S659–S671

    Article  Google Scholar 

  • Lee GJ, Vierling E (2000) A smal heat shock protein cooperates whit heat shock protein 70 systems to reactivate a heat denatured protein. Plant Physiol 122:S189–S198

    Article  Google Scholar 

  • Lee PF, Hsing YC, Chow TY (2000) Promoter activity of a soybean gene encoded seed maturation protein, CmPM9. Bot Bull Acd Sci Sin 41:S175–S182

    Google Scholar 

  • Li S, Tam YK, Hartman GL (2000) Molecular differentiation of Fusarium solani f.sp. glycines from other Fusarium solani based on mitochondrial small subunit rDNA sequences. Ecol Popul Biol J 90:491–497

    CAS  Google Scholar 

  • Liebenberg MM, Pretorius ZA (1997) A review of angular leaf spot of common bean (Phaseolus vulgaris L). African Plant Prot. 3(2):81–106

    Google Scholar 

  • Lima Castro SA, Gonçalves-Vidigal MC, Gilio TAS, Lacanallo GF, Valentini G et al (2017) Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genom 18:306

    Article  CAS  Google Scholar 

  • Lin CY, Robert JK, Key JL (1984) Aquisitionof thermotolerancein soybean seedling. Plant Physiol 74:S152–S160

    Article  Google Scholar 

  • Lin TY, Markhart AH (1996) Phaseolus acutifolius is more heat tolerant than P. vulgaris in absence of water stress. Crop Sci 36:S110–S114

    Article  Google Scholar 

  • Lioi L (1989) Geographical variation of phaseolin patterns in an old-world collection of Phaseolus vulgaris. Seed Sci Technol 17:317–324

    Google Scholar 

  • Lioi L (1989) Varition in the storage protein phaseolin in common bean (Phaseolus vulgaris L.) from the Mediterranean area. Euphytica 44:151–155

    Article  CAS  Google Scholar 

  • Liu B, Klein R (2012) Root rot caused by Rhizoctonia solani on soybean. University of Nebraska-Lincoln CROPWATCH

    Google Scholar 

  • Logozzo G, Donnoli R, Macaluso L, Papa R, Knüpffer H et al (2007) Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Evol 54:1763–1779

    Article  Google Scholar 

  • Long R, Temple S, Meyer R, Schwankl L, Godfrey L et al (2014) Lima bean production in California. UC ANR Publication 8505

    Google Scholar 

  • Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA (2018) Population genomics: advancing understanding of nature. In: Rajora OP (ed) Population genomics: concepts, approaches and applications. Springer International Publishing AG, Part of Springer Nature, pp 3–79

    Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lyons JM, Raison JK (1973) A temperature induced phase changes in mitochodral membranes and its relationship to chilling injury in plant tissues. Progres Refrigeration SciTech 3:S167–S170

    Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12(2):57–63

    Article  CAS  PubMed  Google Scholar 

  • MacRobbie EAC (1998) Signal transduction and ion channels in guard cells. Phil Trans R Soc London 1374:S1475–S1488

    Article  Google Scholar 

  • Mahiya-Farooq, Padder BA, Bhat NN, Shah MD, Shikari AB et al (2019) Temporal expression of candidate genes at the Co-1 locus and their interaction with other defense related genes in common bean. Physiol Mol Plant Pathol 108: 101424

    Google Scholar 

  • Mahmood T, Safdar W, Abbasi BH, Naqvi SMS (2010) An overwiev on the small heat shock proteins. Afr J Biotechnol 9:S927–S949

    Article  Google Scholar 

  • Mahuku GS, Henríquez MA, Montoya C, Jara C, Teran H et al (2011) Inheritance and development of molecular markers linked to angular leaf spot resistance genes in the common bean accession G10909. Mol Breed 28:57–71

    Article  Google Scholar 

  • Mahuku GS, Iglesias ÁM, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396

    Article  CAS  Google Scholar 

  • Mahuku GS, Jara C, Cajiao C, Beebe S (2003) Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130(3):303–313

    Article  Google Scholar 

  • Mahuku GS, Jara CE, Cajiao C, Beebe S (2002) Sources of resistance to Colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools. Plant Dis 86(12):1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Mahuku GS, Jara C, Cajiao C, Beebe S (2003) Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130:303–313

    Article  Google Scholar 

  • Mahuku GS, Jara C, Cuasquer JB, Castellanos G (2002) Genetic variability within Phaeoisariopsis griseola from Central America and its implications for resistance breeding of common bean. Plant Pathol 51:594–604

    Article  Google Scholar 

  • Matloob AAH, Juber KS (2013) Biological control of bean root rot disease caused by Rhizoctonia solani under green house and field conditions. Agric Biol J North America 4:512–519

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685

    Article  Google Scholar 

  • McClean PE, Raatz B (2017) Common bean genomes: mining new knowledge of a major societal crop. In: Pérez de la Vega M, Santalla M, Marsolais F (eds) The common bean genome. Springer, Cham, pp 129–145

    Google Scholar 

  • McConnell M, Mamidi S, Lee R, Chikara S, Rossi M et al (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolusvulgaris L.). Theor Appl Genet 121(6):1103–1116

    Google Scholar 

  • McKern NM, Mink GI, Barnett OW, Mishra A, Whittaker LA et al (1992) Isolates of bean common mosaic viruses comprising two distinct potyviruses. Phytophatology 82:923–929

    Article  CAS  Google Scholar 

  • McMillan MS, Schwartz HF, Otto KL (2003) Sexual stage development of Uromyces appendiculatus and its potential use for disease resistance screening of Phaseolus vulgaris. Plant Dis 87(9):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • McRostie GP (1919) Inheritance of anthracnose resistance as indicated by across between a resistant and a susceptible bean. Phytopathology 9:141–148

    Google Scholar 

  • Mejía-Jiménez A, Muñoz C, Jacobsen HJ et al (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88:324–331

    Article  PubMed  Google Scholar 

  • Melgarejo TA, Lehtonen MT, Fribourg CE, Raennae li M, Valkonen JPT (2007) Strains of BCMV and BCMNV characterized from lima bean plants affected by deforming mosaic disease in Peru. Arch Virol 152:1941–1949

    Google Scholar 

  • Melotto M, Kelly JD (2000) AnallelicseriesattheCo-1locusfor anthracnose in common bean of Andean origin. Euphytica 116:143–149

    Google Scholar 

  • Melzer MS, and Boland GJ (2001) First report of angular leaf spot caused by Phaeoisariopsis griseola on bean in Ontario, Canada. Plant Dis 85:919

    Google Scholar 

  • Méndez-Vigo B, Rodríguez C, Pañeda A, Ferreira JJ, Giraldez R (2005) Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141:237–245

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Meziadi C, Blanchet S, Geffroy V, Pflieger S (2017) Genetic resistance against viruses in Phaseolus vulgaris L.: state of the art and future prospects. Plant Sci 265:39–50

    Article  CAS  PubMed  Google Scholar 

  • Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A et al (2016) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci 242:351–357

    Google Scholar 

  • Michaels TE, Smith TH, Larsen J, Beattie AD, Pauls KP (2006) OAC Rex common bean. Can J Plant Sci 86:733736

    Google Scholar 

  • Michiels J (1994) Effects of temperature stress on bean-nodulating rhizobium strains. Appl Environ Microbiol 60(S4):S1206–S1212

    Article  Google Scholar 

  • Mikami K, Kanesaki Y, Suzuki I, Murata M (2002) The histidine and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46(S4):S905-S915

    Google Scholar 

  • Miklas P, Fourie D, Trapp J, Larsen RC, Chavarro C, Blair MW, Gepts P (2011) Genetic characterization and molecular mapping Pse-2 gene for resistance to halo blight in common bean. Crop Sci 51:2439–2448

    Google Scholar 

  • Miklas P, Fourie D, Wagner J, Larsen RC, Mienie CMC (2009) Tagging and mapping Pse-1 gene for resistance to halo blight in common bean host differential cultivar UI-3. Crop Sci 49:41–48

    Article  CAS  Google Scholar 

  • Miklas PN, Delorme R, Stone V, Stavely J, Steadman J et al (2000) Bacterial, fungal, virus disease loci mapped in a recombinant inbred common bean population (‘Dorado/XAN176’). J Amer Soc Hort Sci 125:476–481

    Google Scholar 

  • Miklas PN, Fourie D, Trapp J, Davis J, Myers JR (2014) New loci including Pse-6 conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Sci 54:2099–2108

    Article  Google Scholar 

  • Miklas PN, Johnson E, Stone V, Beaver JS, Montoya C, Zapata M (1996) Selective mapping of QTL conditioning disease resistance in commom bean. Crop Sci 36:1344–1351

    Article  CAS  Google Scholar 

  • Miklas PN, Johnson WC, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci 41:309–315

    Article  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Singh SP (2003) Registration of anthracnose resistant Pinto Bean germplasm line USPT-ANT-1. Crop Sci 43:1889–1890

    Google Scholar 

  • Miklas PN, Larsen KM, Terpstra KA, Hauf DC, Grafton KF, Kelly JD (2007) QTL analysis of ICA Bunsi-derived resistance to white mold in a pinto × navy bean cross. Crop Sci 47:174–179

    Google Scholar 

  • Miklas PN, Pastor-Corrales MA, Jung G, Coyne DP, Kelly JD, McClean PE, Gepts P (2002) Comprehensive linkage map of bean rust resistance genes. Annu Rept Bean Improv Coop 45:125–129

    Google Scholar 

  • Miklas PN, Porter LD, Kelly JD, Myers JR (2013) Characterization of white mold disease avoidance in common bean. Eur J Plant Pathol 135:525–543

    Google Scholar 

  • Miklas PN, Smith JR, Singh SP (2006) Registration of common bacterial blight resistant dark red kidney bean germplasm line USDK-CBB-15. Crop Sci 46:1005

    Article  Google Scholar 

  • Miklas PN, Smith JR, Singh SP (2006b) Registration of common bacterial blight resistant dark red kidney bean germplasm line USDK-CBB-15. Crop Sci 46:1005

    Google Scholar 

  • Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85:745–749

    Google Scholar 

  • Miklas PN, Stone V, Urrea CA, Johnson E,Beaver JS (1998) Inheritance and QTL analysis of field resistance to ashy stem blight. Crop Sci 38:916–921

    Google Scholar 

  • Miklas PN, Pastor-Corrales MA, Jung G, Coyne DP, Kelly JD et al (2002) Comprehensive linkage map of bean rust resistance genes. Annu Rept Bean Improv Coop 45:125–129

    Google Scholar 

  • Mkwaila W, Terpstra KA, Ender M, Kelly JD (2011) Identification of QTL for agronomic traits and resistance to white mold in wild and landrace germplasm of common bean. Plant Breed 130(6):665–672

    Article  Google Scholar 

  • Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M et al (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a Middle American diversity panel of common bean. Plant Genome 9(3):1–21

    Article  CAS  Google Scholar 

  • Moghaddam SM, Song Q, Mamidi S, Schmutz J, Lee R et al (2014) Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Front Plant Sci 5:1–14

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Mohler V, Singrun C (2004) General considerations: marker-assisted selection. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement (Biotechnology in Agriculture and Forestry 55). Springer, Berlin, Heidelberg, pp 305–317

    Google Scholar 

  • Monterroso WA, Wien HC (1990) Flower and pod abscission due to heat stress in bean. J Amer Soc HortSci 115:S631–S634

    Article  Google Scholar 

  • Morales FJ, Castano M (1992) Increased disease severity induced by some comoviruses in bean genotypes possessing monogenic dominant resistance to Bean common mosaic potyvirus. Plant Dis 76:570–573

    Article  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Hane JK, Valliyodan B, Nguyen HT et al (2019) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ 42(1):6–19

    Article  CAS  PubMed  Google Scholar 

  • Mukeshimana G, Ma YM, Walworth AE, Song GQ, Kelly JD (2013) Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotechnol Rep 7(1):59–70

    Google Scholar 

  • Munoz LC, Blair MW, Duque MC, Tohme J, Roca W (2004) Introgression in common bean x Tepary bean interspecific congruity_backcross lines as measured by AFLP marker. Crop Sci 44:637–645

    Article  CAS  Google Scholar 

  • Muñoz-Perea CG, Terán H, Allen RG, Wright JL, Westermann DT, Singh SP (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46:2111–2120

    Google Scholar 

  • Murube E, Campa A, Ferreira JJ (2019) Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04. PLoS One 14(2):e0212298

    Google Scholar 

  • Mushi C, Slumpa S (1996) Diallel analysis of bean crosses for resistance to bean stem maggot (Ophiomyia spp.). Annu Rept Bean Improv Coop 39:311–312

    Google Scholar 

  • Muthomi JW, Wafula GO, Nderitu JH, Chemining’wa GN (2018) Integration of seed dressing, bio-pesticides and intercropping to reduce pesticide use in snap bean production. Intl J Agric Sci Nat Resour 5:12–20

    Google Scholar 

  • Mutlu N, Vidaver AK, Coyne DP, Steadman JR, Lambrecht JA et al (2008) Differential Pathogenicity of Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans strains on bean genotypes with common blight resistance. Plant Dis 92:546–554

    Article  CAS  PubMed  Google Scholar 

  • Mutune B, Ekesi S, Niassy S, Matiru V, Bii C et al (2016) Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on beans Phaseolus vulgaris. J Pest Sci 89:993–1001

    Article  Google Scholar 

  • Mwang’ombe AW, Kipsumbai PK, Kiprop EK, Olubayo FM, Ochieng JW (2008) Analysis of Kenyan isolates of Fusarium solani f. sp. phaseoli from common bean using colony characteristics, pathogenicity and microsatellite DNA. Afr J Biotechnol 7:1662–1671

    Google Scholar 

  • Nabhan GP (1985) Native crop diversity in Aridoamerica: conservation of regional gene pools. Econ Bot 39:387–399

    Google Scholar 

  • Naderpour M, Lund OSø, Larsen R, Johansen E (2010) Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol Plant Pathol 11:255–263

    Google Scholar 

  • Nakedde T, Ibarra-Perez FJ, Mukankusi C, Waines JG, Kelly JD (2016) Mapping of QTL associated with Fusarium root rot resistance and root architecture traits in black beans. Euphytica 212:51–63

    Article  CAS  Google Scholar 

  • Namayanja A, Buruchara R, Mahuku G, Rubaihayo P, Kimani P et al (2006) Inheritance of resistance to angular leaf spot in common bean and validation of the utility of resistance linked markers for marker-assisted selection outside the mapping population. Euphytica 151:361–369

    Google Scholar 

  • Nassary EK, Baijukya F, Ndakidemi PA (2020) Sustainable intensification of grain legumes optimizes food security on smallholder farms in sub-Saharan Africa—a review. Intl J Agric Biol 23:S25

    Google Scholar 

  • Navarro F, Sass ME, Nienhuis J (2004) Identification and mapping bean root rot resistance in an ‘Eagle_Puebla 152’ population. Annu Rept Bean Improv Coop 47:83–84

    Google Scholar 

  • Nay MM, Souza LPO, Raatz B, Mukankusi CM, Gonçalves-Vidigal MC et al (2019) A review of angular leaf spot resistance in common bean. Crop Sci 59:1376–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekesa P, Ndiritu JH, Otsyula RM (1998) Bean research in Western Kenya: lessons and experiences. In: Farrell G and Kibata GN (eds) Crop protection research in Kenya. Proceedings of the second biennial crop protection conference, 16–17 Sept 1998. Kenya Agricultural Research Institute (KARI)/UK Department for International Development (DFID), Nairobi, pp 237–244

    Google Scholar 

  • Nelson PE, Toussoun TA, Cook RJ (1983) Fusarium diseases, biology and taxanomy. Pennsylvania State University Press, University Park, PA

    Google Scholar 

  • Nemchinova YP, Stavely JR (1998) Development of SCAR primers for the Ur-3 rust resistance gene in common bean. Phytopathology 88:S67

    Google Scholar 

  • Neumann ER, Wulff-Pedersen E, Johnsen K, Krogh E (1995) Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: implications for the upper mantle. Lithos 35:S83–S107

    Article  Google Scholar 

  • Nicoli A, Zambolim L, Paula Júnior TJ, Vieira RF, Teixeira H et al (2012) Resistance of advanced common bean lines to Fusarium root rot. Trop Plant Pathol 37:393–398

    Article  Google Scholar 

  • Nirenberg HI (1989) Identification of Fusarium occurring in Europe on cereals and potatoes. In: Chelkowski J (ed) Fusariummycotoxins, taxonomy and pathogenicity. Elsevier, Amsterdam, pp 179–193

    Google Scholar 

  • Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T (2019) Breeding for bean fly resistance in common bean (Phaseolus vulgaris L.): a review. Acta Agri Scand Sect BSoil Plant Sci 69:275–285

    Google Scholar 

  • Nkhata, W, Shimelis H, Melis R, Chirwa R, Mathew I et al (2021a) Assessment of smallholder farmers’ awareness of bean fly (Ophiomyia spp.) and management practices in central and northern Malawi: implications for resistance breeding. Crop Prote 105353

    Google Scholar 

  • Nkhata W, Shimelis H, Melis R, Chirwa R, Mzengeza T et al (2021b) Selection for bean fly (Ophiomyia spp) resistance and agronomic performance in selected common bean (Phaseolus vulgaris L.) accessions. Crop Protec 105404

    Google Scholar 

  • Nodari RO, Koinange EMK, Kelly JD, Gepts P (1992) Towards an integrated linkage map of common bean. I. Development of genomic DNA probes and levels of restriction fragment length polymorphism. Theor Appl Genet 84:186–192

    Article  CAS  PubMed  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean. 1. Development of an RFLP-based linkage map.Theor Appl Genet 85:513–520

    Google Scholar 

  • Nordenstedt N, Marcenaro D, Chilagane D, Mwaipopo B, RajamaÈki ML et al (2017) Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS One 12(5):e0178242

    Google Scholar 

  • Ntahimpera N, Dillard HR, Cobb AC, Seem RC (1997) Influence of tillage practices on anthracnose development and distribution in dry bean fields. Plant Dis 81:71–76

    Article  CAS  PubMed  Google Scholar 

  • Ntatsi G, Gutiérrez-Cortines ME, Karapanos I, Barros A, Weiss J et al (2018) The quality of leguminous vegetables as influenced by preharvest factors. Sci Hort 232:S192–S199

    Article  Google Scholar 

  • Nzungize JR, Lyumugabe F, Busogoro JP, Baudoin JP (2012) Pythium root rot of common bean: biology and control methods. A review. Biotechnol Agron Soc Environ 16:405–413

    Google Scholar 

  • O’Boyle PD, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Amer Soc Hort Sci 132:381–386

    Article  Google Scholar 

  • Oblessuc PR, Baroni RM, Pereira GS, Chioratto AF, Carbonell SAM et al (2014) Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Mol Breed 34:1313–1329

    Google Scholar 

  • Oblessuc PR, Francisco C, Melotto M (2015) The Co-4 locus on Chromosome Pv08 contains a unique cluster of 18 COK-4 genes and is regulated by immune response in common bean. Theor Appl Genet 128:1193–1208

    Article  CAS  PubMed  Google Scholar 

  • Oblessuc PR, Perseguini JMKC, Baroni RM, Chioratto AF, Carbonell SAM et al (2013) Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. Theor Appl Genet 126:2451–2465

    Article  CAS  PubMed  Google Scholar 

  • Oblessuc PR, Baroni RM, Garcia AAF, Chioratto AF, Carbonell SAM et al. (2012) Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genet 13:50

    Google Scholar 

  • Ogoshi A (1996) Introduction—the genus Rhizoctonia. In: Sneh B, Jabaji-Hare S, Neate SM, Dijst G (eds) Rhizoctoniaspecies: taxonomy, molecular biology, ecology, pathology and disease control. Springer, Drodrecht, Netherlands, pp 1–9

    Google Scholar 

  • Ojwang PPO, Melis R, Githiri MS, Songa JM (2011) Genetic analysis for resistance to bean fly (Ophiomyia phaseoli) and seed yield among common bean genotypes in a semi-arid environment. Field Crops Res 120:223–229

    Article  Google Scholar 

  • Ojwang PPO, Eldridge T, Corredor-Moreno P, Njung’e V (2019) Genome-wide association study of resistance to bean fly and population structure of market classes of common bean. bioRxiv: 633545

    Google Scholar 

  • Oladzad A, Porch T, Rosas JC, Moghaddam SM, Beaver J et al (2019a) Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. G3 Genes Genomes Genet 9(6):1881–1892

    Google Scholar 

  • Oladzad A, Zitnick-Anderson K, Jain S, Simons K, Osorno JM et al (2019) Genotypes and genomic regions associated with Rhizoctonia solani resistance in common bean. Front Plant Sci 10:956

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira EJ, Alzate-Marin AL, Borém A, Azeredo Fagundes S, Barros EG et al (2005) Molecular marker-assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breed 124:572–575

    Article  Google Scholar 

  • Onokpise OU, Wutoh XN, Tambong JT, Meboka MM, Sama AE et al (1999) Evaluation of macabo cocoyam germplasm in Cameroon. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, USA, pp 394–396

    Google Scholar 

  • Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (2007) Association mapping in plants. Springer Science-Business Media, New York, USA

    Google Scholar 

  • Osborn TC, Hartweck LM, Harmsen RH, Vogelzang RD, Kmiecik KA et al. (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. (Registrations of Genetic Stocks). Crop Sci 43(4):1570–1572

    Google Scholar 

  • Otsyula RM, Buruchara RA, Mahuku G, Rubaihayo P (2003) Inheritance and transfer of root rots (Pythium) resistance to bean genotypes. Afr Crop Sci Soc 6:295–298

    Google Scholar 

  • Păltineanu C, Mihăilescu IC, Dragotă C, Vasenciuc F, Prefac Z, Popescu M (2005) Corelația dintre indicele de ariditate, deficitul de apă climatic și repartiția geografică a acestora în România. Analele Univ Spru Haret, Seria Geografie 8:S23–S28

    Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts PA (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Belluci E, Rossi M, Leonardi S, Rau D et al (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    Article  CAS  PubMed  Google Scholar 

  • Pardossi A, Vemien P, Tognoni F (1992) Involvement of ascisic acid in regulated water status in Phaseolus vulgaris during chylling. Plant Physiol 100(S3):S1243–S1250

    Article  Google Scholar 

  • Park DJ, Rupert T (2000) Breeding for root rot resistance in common bean (Phaseolus vulgaris L.). Annu Rept Bean Improv Coop 43:41–42

    Google Scholar 

  • Parker JP, Michaels TE (1986) Simple genetic control of hybrid plant development in interspecific crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breed 97:315–323

    Article  Google Scholar 

  • Pastor-Corrales MA (1996) Traditional and molecular confirmation of the coevolution of beans and pathogens in Latin America. Annu Rept Bean Improv Coop 39:46–47

    Google Scholar 

  • Pastor-Corrales MA, Tu JC (1989) Anthracnose. In Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, pp 77–104

    Google Scholar 

  • Pastor-Corrales MA, Aime MC (2004) Differential cultivars and molecular markers segregate isolates of Uromyces appendiculatus into two distinct groups that correspond to the gene pools of the gene pools of their common bean hosts. Phytopathology 94(6):82

    Google Scholar 

  • Pastor-Corrales MA, Otoya MM, Molina A, Singh SP (1995) Resistance to Colletotrichum lindemuthianum isolates from Middle America and Andean South America in different common bean races. Plant Dis 79:63–67

    Article  Google Scholar 

  • Pastor-Corrales MA, Jara C, Singh SP (1998) Pathogenic variation in, source of, and breeding for resistance to Phaeoisariopsis griseola causing angular leaf spot in common bean. Euphytica 103:161–171

    Article  Google Scholar 

  • Pastor-Corrales MA, Kelly JD, Steadman JR, Lindgren DT, Stavely JR et al (2007) Registration of six great northern bean germplasm lines with enhanced resistance to rust and bean common mosaic and necrosis potyviruses. J. Plant Regis. 1(1):77–79

    Article  Google Scholar 

  • Paul B (2004) A new species isolated from Burgundian vineyards and its antagonism towards Botrytis cinerea, the causative agent of the grey mould disease. FEMS Microbiol Lett 234:269–274

    Google Scholar 

  • Pedraza F, Gallego G, Beebe S, Tohme J (1997) Marcadores SCAR y RAPD para laresistencia alabacteriosis común (CBB). In: Singh SP, Voysest O (eds) Taller de mejoramiento de frijol para el siglo XXI, bases para uma estratégia para America Latina. CIAT, Cali, Colombia, pp 130–134

    Google Scholar 

  • Perry G, DiNatale C, Xie W, Navabi A, Reinprecht Y et al (2013) A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes. Front Plant Sci 4:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Perseguini JM, Oblessuc PR, Rosa JR, Gomes KA, Chiorato AF et al. (2016) Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS One 11:e0150506

    Google Scholar 

  • Pflieger S, Blanchet S, Meziadi C, Richard MMS, Thareau V et al (2014) The one-step Bean pod mottle virus (BPMV)—derived vector is a functional genomics tool for efficient overexpression of heterologous protein, virus-induced gene silencing and genetic mapping of BPMV R-gene in common bean (Phaseolus vulgaris L.). BMC Plant Biol 14:1–16

    Article  CAS  Google Scholar 

  • Piñón MGT, Moghaddam SM, Lee RK, Mérida JCV, DeYoung DJ et al (2020) Genetic diversity of Guatemalan climbing bean collections. Genet Resour Crop Evol 68:639–656

    Article  Google Scholar 

  • Pinto JMA, Pereira R, Mota SF, Ishikawa FH, Souza EA (2012) Investigating phenotypic variability in Colletotrichum lindemuthianum populations. Phytopathology 102:490–497

    Article  CAS  PubMed  Google Scholar 

  • Pitesky ME, Stackhouse KR, Mitloehner FM (2009) Clearing the air: livestock’s contribution toclimate change. Adv Agron 103:1–40

    Article  CAS  Google Scholar 

  • Plyler-Harveson T, Harveson R, Nielsen AK, Santra D (2011) Genetic characterization of Rhizoctonia solani population from sugar beet and dry bean. In: 2011 APS-IPCC meeting. Honolulu. American Phytopathological Society, p 152

    Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD et al (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3(2):433–461

    Google Scholar 

  • Provvidenti R (1974) Inheritance of resistance to Watermelon mosaic virus 2 in Phaseolus vulgaris. Phytopathology 64:1448–1450

    Article  Google Scholar 

  • Provvidenti R (1987) List of genes in Phaseolus vulgaris for resistance to viruses. Annu Rept Bean Improv Coop 30:1–4

    Google Scholar 

  • Pynenburg GM, Sikkema PH, Robinson DE, Gillard CL (2011) The interaction of annual weed and white mold management systems for dry bean production in Canada. Can J Plant Sci 91:587–598

    Article  Google Scholar 

  • Ragagnin VA, De Souza TLPO, Sanglard DA, Arruda KMA, Costa MR et al (2009) Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed 128:156–163

    Google Scholar 

  • Ramírez-Delgadillo R, Delgado-Salinas A (1999) A new species of Phaseolus (Fabaceae) from west-central Mexico. SIDA 18:637–646

    Google Scholar 

  • Rao IM, Beebe SE, Polania J, Ricaurte J, Cajiao C et al (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21:265–281

    Google Scholar 

  • Rava Seijas CA, Sartorato A, Porto de Carvalho JR (1985) Yield losses in dry bean (Phaseolus vulgaris L.) caused by angular leaf spot (Isariopsis griseola Sacc.). Annu Rept Bean Improv Coop 28:5–6

    Google Scholar 

  • Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protocols 3:410–418

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    Article  PubMed  Google Scholar 

  • Ribeiro ND, Filho AC, Poersch NL, Jost E, Rosa SS (2008) Genetic progress in traits of yield, phenology and morphology of common bean. Crop Breed Appl Biotechnol 8:232–238

    Article  Google Scholar 

  • Richard MS, Pflieger S, Sévignac M, Thareau V, Blanchet S et al (2014) Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127:1653–1666

    Article  CAS  PubMed  Google Scholar 

  • Richardson KL, Vales MI, Kling JG, Mundt CC, Hayes PM (2006) Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theor Appl Genet 113:485–495

    Article  CAS  PubMed  Google Scholar 

  • Rodiño AP, De La Fuente M, De Ron AM, Lema MJ, Drevon JJ et al (2011) Variation for nodulation and plant yield of common bean genotypes and environmental effects on the genotype expression. Plant Soil 346:349–361

    Article  CAS  Google Scholar 

  • Rodiño AP, Riveiro M, Santalla M, De Ron AM (2007) Sources of variation of common bean for drought tolerance. Annu Rept Bean Improv Coop 50:163–164

    Google Scholar 

  • Rodiño P, Santalla M, González AM, De Ron AM, Singh SP (2006) Novel genetic variation in common bean from the Iberian Peninsula. Crop Sci 46:2540–2546

    Article  CAS  Google Scholar 

  • Rogers D (1980) Host plant resistance to Ophiomyia phaseoli (Tryon) (Diptera: Agromyzidae) in Phaseolus vulgaris. Aust J Entomol 18:245–250

    Article  Google Scholar 

  • Román-Aviles B, Beaver JS (2003) Inheritance of heat tolerance in common bean of Andean origin. J Agri Univ Puerto Rico 87:113–121

    Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of quantitative trait loci conditioningresistanceto fusarium root rot in common bean. Crop Sci45:1881–1890

    Google Scholar 

  • Román-Avilés B, Snapp SS and Kelly JD (2003) Fusarium root rot of common beans. Michigan State University Extension Bulletin E2876, New, Jan 2003

    Google Scholar 

  • Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas JC, Castro A, Beaver JS, Pérez CA, Morales-Gómez A, Lépiz R (2000) Genetic improvement of the tolerance to high temperature and resistance to bean golden mosaic virus on common beans. Agron Mesoam 11(1):1–10

    Article  Google Scholar 

  • Rossi M, Bitocchi E, Belluci E, Nanni L, Rau D et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34:195–236

    Article  CAS  Google Scholar 

  • Russell DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep 12(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Saettler AW (1989) Common bacterial blight. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics. Center Internacional de Agricultura Tropical, Cali, Columbi, pp 261–283

    Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for thermotolerance to many forms of stress. EMBOJ 11:S2357–S2364

    Article  Google Scholar 

  • Santalla M, Amurrio JM, de Ron AM (2001) Interrelationships between cropping systems for pod and seed quality components and breeding implications in common bean. Euphytica 121:45–51

    Article  Google Scholar 

  • Santalla M, Rodiño A, De Ron A (2002) Allozyme evidencesupporting southwestern Europe as a secondary center ofgenetic diversity for common bean. Theor Appl Genet 104:934–944

    Article  CAS  PubMed  Google Scholar 

  • Sartorato A (2004) Pathogenic variability and genetic diversity of Phaeoisariopsis griseola isolates from two counties in the state of Goias, Brazil. J Phytopathol 152:385–390

    Article  Google Scholar 

  • Sathaye J, Shukla PR, Ravindranath NH (2006) Climate change, sustainable development and India: global and national concerns. Curr Sci 90(3):314–325

    Google Scholar 

  • Sayadi Maazou AR, Tu J, Qiu J, Liu Z (2016) Breeding for drought tolerance in maize (Zea mays L.). Afr J Paediatr Surg 07:S1858–S1870

    Google Scholar 

  • Scheel D, Wasternack C (2004) Plant signal transduction. Oxford Univ Ann Bot 93(6):783–784

    Article  Google Scholar 

  • Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21(S8):S289–S296

    Article  Google Scholar 

  • Schmit V, Debouck DG (1991) Observations on the origin of Phaseolus polyanthus Greenman. Econ Bot 45:345–364

    Article  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, We GA, Cannon SB et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analyses of resistance to Fusarium root rot in bean. Crop Sci 41:535–542

    Article  CAS  Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white mold: a review. Crop Sci 53(5):1832–1844

    Article  Google Scholar 

  • Schwartz HF, Otto KL (2000) Enhanced bacterial disease management strategy. Annu Rept Bean Improv Coop 43:37–38

    Google Scholar 

  • Schwartz HF, Correa F, Pineda P, Otoya MM, Katherman MJ (1981) Dry bean yield losses caused by Ascochyta, angular, and white leaf spots in Colombia. Plant Dis 65:494–496

    Article  Google Scholar 

  • Schwartz HF, Gent DH, Gary DF, Harveson RM, (2007) Dry bean, Pythium wilt and root rots. High plains IPM Guide, a cooperative effort of the University of Wyoming, University of Nebraska, Colorado State University and Montana State University

    Google Scholar 

  • Schwartz HF, Steadman JR, Coyne DP (1987) Influence of Phaseolus vulgaris blossoming characteristics and canopy structure upon reaction to Sclerotinia sclerotiorum. Phytopathology 68:465–470

    Article  Google Scholar 

  • Schwartz HF, Steadman JR, HallR, Forster RL (2005) Compendium of bean diseases, 2nd edn. APS Press, St. Paul, MN, p 109

    Google Scholar 

  • Seki M, Kamel A, Zamaguchi-Sinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opinion Biotechnol 14:S194–S199

    Article  CAS  Google Scholar 

  • Seo Y, Rojas MR, Lee J, Lee S, Jeon J et al (2006) A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci USA 103:11856–11861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi Shinozaki K (1999) Molecular responses to cold, drought, heat and salt stress in higer plants. RG Landes Company 29:60

    Google Scholar 

  • Siameto EN, Okoth S, Amugune NO, Chege NC (2011) Molecular characterization and identification of biocontrol isolates of Trichoderma harzianum from Embu District, Kenya. Trop Subtrop Agroecosyst 13:81–90

    Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and Phaseolus coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Singh S (2001) Broadening the genetic base of common bean cultivars. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh SP (1991) Breeding for seed yield. In: Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, Wallingford, pp 383–443

    Google Scholar 

  • Singh SP (1992) Common bean improvement in the tropics. Plant Breed Rev 10:199–269

    Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396

    Article  Google Scholar 

  • Singh SP, Miklas PN (2015) Breeding common bean for resistance to common blight: a review. Crop Sci 55:971–984

    Article  Google Scholar 

  • Singh SP, Muñoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89

    Article  Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

    Article  Google Scholar 

  • Solis-Ramose LY, Ortiz-Pavon JC, Andrade-Torres A, Porras-Murillo R, Angulo AB et al (2019) Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris) var. Brunca. Rev Biol Trop 67(2):83–94

    Article  Google Scholar 

  • Soltani A, MafiMoghaddam S, Oladzad-Abbasabadi A, Walter K, Kearns PJ et al (2018) Genetic analysis of flooding tolerance in an Andean diversity panel of dry bean (Phaseolus vulgaris L.). Front Plant Sci 9:767

    Google Scholar 

  • Soltani A, Weaduwage SM, Sharkez TD, Lowrz DB (2019) Elevated temperatures cause loss of seed set in common bean potentially through the disruption of surce-skin relationships. BMC Genom 20:312

    Article  Google Scholar 

  • Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY, Schroeder SG et al. (2015) SNP assay development for linkage map construction, anchoring whole genome sequence and other genetic and genomic applications in common bean. G3 Genes Genomes Genet 5:2285–2290

    Google Scholar 

  • Soule M, Porter L, Medina J, Santana GP, Blair MW et al (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and I9365-31. Crop Sci 51:123–139

    Google Scholar 

  • Sousa LL, Cruz AS, Vidigal Filho PS, Vallejo VA, Kelly JD et al (2014) Genetic mapping of the resistance allele Co-52 to Colletotrichum lindemuthianum in the common bean MSU 7–1 line. J Crop Sci 8:317–323

    Google Scholar 

  • Souza MA, Pimentel AJB, Ribeiro G (2011) Melhoramento para tolerância ao calor. In: Fritsche-Neto R, Borém A (eds) Melhoramento de plantas para condições de estresses abióticos. Viçosa, MG, p 250

    Google Scholar 

  • Souza TLPO, Dessaune SN, Sanglard DA, Moreira MA, Barros EG (2011) Characterization of the rust resistance gene present in the common bean cultivar Ouro Negro the main rust resistance source used in Brazil. Plant Pathol 60:839–845

    Google Scholar 

  • Souza TLPO, Faria JC, Aragao FJL, Del Peloso MJ, Faria LC et al (2018) Agronomic performance and yield stability of the RNA interference-based bean golden mosaic virus-resistant common bean. Crop Sci 58(2):579–591

    Article  CAS  Google Scholar 

  • Souza TLPO, Gonçalves-Vidigal MC, Raatz B et al (2016) Major loci controlling resistance to the angular leaf spot of common bean. Annu Rept Bean Improv Coop 59:49–50

    Google Scholar 

  • Souza TLPO, Ragagnin VA, Dessaune SN, Sanglard DA, Carneiro JES et al (2014) DNA marker-assisted selection to pyramid rust resistance genes in “Carioca” seeded common bean lines. Euphytica 199:303–316

    Article  CAS  Google Scholar 

  • Sparvoli F, Bollini R, Cominelli E (2015) Nutritional value. In: De Ron AM (ed) Grain legumes, series: handbook of plant breeding. Springer Science+Business Media, New York, USA, pp 291–325

    Google Scholar 

  • Spence NJ, Walkey DGA (1995) Variation for pathogenicity among isolates of bean common mosaic virus in Africa and reinterpretation of the genetic relationship between cultivars of Phaseolus vulgaris and pathotypes of BCMV. Plant Pathol 44:527–546

    Article  Google Scholar 

  • Stavely JR (1984) Pathogenic specialization in Uromyces phaseoli in the United States and rust resistance in beans. Plant Dis 68:95–99

    Article  Google Scholar 

  • Stavely JR (1990) Genetics of rust resistance in Phaseolus vulgaris plant introduction PI181996. Phytopathology 80:1056

    Google Scholar 

  • Stavely JR (2000) Pyramiding rust and viral resistance genes using traditional and marker techniques in common bean. Annu Rept Bean Improv Coop 43:1–4

    Google Scholar 

  • Stavely JR (1998) Recombination of two major dominan trust resistance genes that are tightly linked in repulsion. Annu Rept Bean Improv Coop 41:17–18

    Google Scholar 

  • Stavely JR, Freytag GF, Steadman JR, Schwartz HF (1983) The 1983 bean rust workshop. Annu Rep Bean Improv Coop 26:iv–vi

    Google Scholar 

  • Stavely JR, Steadman JR, McMillan RT Jr (1989) New pathogenic variability in Uromyces appendiculatus in North America. Plant Dis 73(5):428–432

    Article  Google Scholar 

  • Stavely JR, Pastor-Corrales MA (1989) Rust. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Cali, Colombia, pp 159–164

    Google Scholar 

  • Steadman JR and Boland G (2005) White mold. In: Schwartz HF, Steadman JR, Hall R, and Forster RL (eds) Compendium of bean diseases, 2nd edn. Amer Phytopath Soc, St. Paul, MN, pp 44–46

    Google Scholar 

  • Steadman JR, Pastor-Corrales MA, Beaver JS (2002) An overview of the 3rd bean rust and 2nd bean common bacterial blight international workshops, March 4–8, 2002, Pietermaritzburg, South Africa. Annu Rept Bean Improv Coop 45:120–124

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M et al (2006) Livestock’s long shadow. Environmental issues and options. Livestock, environment, and development initiative. United Nations Food and Agriculture Organization, Rome

    Google Scholar 

  • Stenglein SA, Balatti PA(2006) Genetic diversity of Phaeoisariopsis griseola in Argentina as revealed by pathogenic and molecular markers. Physiol Mol Plant Pathol 68:158–167

    Google Scholar 

  • Strausbaugh CA, Myers JR, Forster RL, McClean PE (1999) bc-1 and bc-u—two loci controlling bean common mosaic virus resistance in common bean are linked. J Amer Soc Hortic Sci 124:644–648

    Article  Google Scholar 

  • Suga H, Hasegawa T, Mitsui H, Kageyama K, Hyakumachi M (2000) Phylogenetic analysis of the phytopathogenic fungus Fusarium solani based on the rDNA-ITS region. Mycol Res 104:1175–1183

    Article  CAS  Google Scholar 

  • Svetleva D, Velcheva M, Bhowmik G (2003) Biotechnology as a useful tool in common bean (Phaseolus vulgaris L) improvement. Euphytica 131:189–200

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44:1046–1056

    Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Google Scholar 

  • Tautz D (1989) Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JD, Teverson DM, Davis JHC (1996) Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris. Plant Pathol 45:479–485

    Article  Google Scholar 

  • Taylor JD, Teverson DM, Allen MA, Pastor-Corrales MA (1996) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478

    Article  Google Scholar 

  • Terán H, Singh SP (2002) Comparison of sources and lines selected for drought resistance in common bean. Crop Sci 42:64–70

    Article  PubMed  Google Scholar 

  • Teran JCBMY, Konzen ER, Palkovic A, Tsai SM, Gepts P (2020) Exploration of the yield Potential of Mesoamerican wild common beans from contrasting eco-geographic regions by nested recombinant inbred populations. Front Plant Sci 11:346

    Article  Google Scholar 

  • Thomas CV, Waines JG (1984) Fertile backcross and allo-tetraploid plants from crosses between tepary beans and com-mon beans. J Hered 75:93–98

    Article  Google Scholar 

  • Thomas HR, Zaumeyer WJ (1950) Inheritance of symptom expression of pod mottle virus. Phytopathology 40:1007–1010

    Google Scholar 

  • Thomazella C, Gonçalves-Vidigal MC, Vidigal Filho PS, de Carvalho Nunes WM, Batista Vida J (2002) Characterization of Colletotrichum lindemuthianum races in Paraná state, Brazil. Crop Breed Appl Biotechnol 2(1):55–60

    Article  Google Scholar 

  • Thompson MD, Brick MA, McGinley JN, Thompson HJ (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49:179–186

    Article  CAS  Google Scholar 

  • Tock AJ, Fourie D, Walley PG, Holub EB, Soler A, Cichy KA et al (2017) Genome-wide linkage and association mapping of halo blight resistance in common bean to race 6 of the globally important bacterial pathogens. Front Plant Sci 8:1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Toenniessen GH, O’Toole JC, De VJ (2003) Advances in plant biotechnology and its adoption in developing countries. Genomics, proteomics, and metabolomics 427. Curr Opin Plant Biol 6:191–198

    Article  PubMed  Google Scholar 

  • Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A et al (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. Phaseolicola. Mol Breed 33:577–588

    Article  CAS  Google Scholar 

  • Trabanco N, Campa A, Ferreira JJ (2015) Identification of a new chromosomal region involved in the genetic control of resistance to anthracnose in common bean. Plant Genome 8(2):1–11

    Article  CAS  Google Scholar 

  • Trewavas A (2003) Aspects of plant inteligence. Ann Bot 92(S1):S1–S20

    Article  CAS  Google Scholar 

  • Trewavas A, Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9(S7):S1181–S1195

    Article  Google Scholar 

  • Tu JC (1992) Colletotrichum lindemuthianum on bean: population dynamics of the pathogen and breeding for resistance. In: Bailey JA, Jegen MJ (eds) Colletotrichum: biology, pathology and control. CAB International, Wallingford, UK, pp 203–224

    Google Scholar 

  • Udomprassert N, Li PH, Davis DW, Markhart AH (1996) Effects of root temperature leaf gas exhange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris. Crop Sci 35(S2):S490–S495

    Google Scholar 

  • United Nations Framework Convention on Climate Change [UNFCCC] (2007) https://unfcc.int/files/essential_background/background_publications_htmlpdf

  • United States Environmental Protection Agency [USEPA] (2018). https://www.epa.gov

  • UPOV Union for the Protection Of new Varieties of plants (2015) Technical Committee. Fifty-First Session. Geneva

    Google Scholar 

  • Valentín Torres S, Vargas MM, Godoy-Lutz G, Porch TG, Beaver JB (2016) Isolates of Rhizotonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Dis 100:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Valentini G, Gonçalves-Vidigal MC, Hurtado-Gonzales OP et al (2017) High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases. Theor Appl Genet 130:1705–1722

    Article  CAS  PubMed  Google Scholar 

  • Valentini G, Gonçalves-Vidigal MC, Vidigal Filho PS, Gilio TAS, Hurtado-Gonzales OP et al (2018) A high-density SNP consensus map reveals segregation distortion regions in common bean. Annu Rept Bean Improv Coop 61:143–144

    Google Scholar 

  • Vallejos C, Skroch P, Nienhuis J (2001) Phaseolus vulgaris-the common bean. Integration of RFLP and RAPD based linkage maps. In: Phillips R, Vasil I (eds) DNA based markers in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 301–317

    Google Scholar 

  • Vallejos CE, Chase CD (1991) Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor Appl Genet 81:413–419

    Article  CAS  PubMed  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    Google Scholar 

  • Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:S165–S181

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetics Res 93:343–349

    Article  Google Scholar 

  • Varshney RK, Glaszmann JC, Leung HRJ (2010) More genomic resources for less-20 studied crops. Trends Biotechnol 28:452–460

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Google Scholar 

  • Vasconcellos RCC, Oraguzie OB, Soler A, Arkwazee H, Myers JR et al (2017) Meta-QTL for resistance to white mold in common bean. PLoS ONE 12:1–22

    Article  CAS  Google Scholar 

  • Vasquez-Guzman J (2016) Identifying dry bean genotypes and genomic regions associated with root rot resistance with emphasis on Fusarium solani f. sp. phaseoli. PhD thesis, North Dakota State University, Fargo ND

    Google Scholar 

  • Vavilov N (1920) The law of homologous series in variation. Lecture at the 3rd All-Russian breeding conference, Saratov, p 16

    Google Scholar 

  • Vavilov N (1922) The law of homologous series in variation. JGEN 12:47–89

    Google Scholar 

  • Vaz Bisneta M, Gonçalves-Vidigal MC (2020) Integration of anthracnose resistance loci and RLK and NBS-LRR-encoding genes in the Phaseolus vulgaris L. genome. Crop Sci 60:2901–2918

    Article  CAS  Google Scholar 

  • Veltcheva M, Svetleva D, Petkova S, Perl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)—problems and progress. Sci Hortic-Amsterdam 107(1):2–10

    Google Scholar 

  • Vetter SH, Sapkota TB, Hillier J, Stirling CM, Macdiarmid JI et al (2017) Greenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigation. Agric Ecosyst Environ 237:234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetter T, Reinhardt J, Florke M, van Griensven A, Hattermann F et al (2017) Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim Change 141:419–433

    Article  CAS  Google Scholar 

  • Vianna GR, Albino MMC, Dias BBA, de Mesquita SL, Rech EL et al (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgarisL.). Sci Hort 99:371–378

    Article  CAS  Google Scholar 

  • Vidigal Filho PS, Gonçalves-Vidigal MC, Silva CR, Gonela A, Lacanallo GF (2008) Identification of anthracnose resistance genes in common bean cultivars from Paraná State, Brazil. Annu Rept Bean Improv Coop 51:64–65

    Google Scholar 

  • Vidigal Filho PS, Gonçalves-Vidigal MC, Vaz Bisneta M, Souza VB, Gilio TA et al (2020) Genome-wide association study of resistance to anthracnose and angular leaf spot in Brazilian Mesoamerican and Andean common bean cultivars. Crop Sci 60(6):2931–2950

    Article  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Plant Physiol Plant Mol Biol 45:S579–S720

    Article  Google Scholar 

  • Vigouroux Y, MacMullen M, Hittinger CT, Houchins K, Schulz L et al (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S et al (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275

    Article  Google Scholar 

  • Viteri DM, Cregan PB, Trapp JJ, Miklas P, Singh SP (2015) A new common bacterial blight resistance QTL in VAX1 common bean and interaction of the new QTL, SAP6, and SU91with bacterial strains. Crop Sci 54:1598

    Article  CAS  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernandez-Oñate M, Minoche AE et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voysest O, Dessert M (1991) Bean cultivars: classes and commercial. In: Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, Wallingford, pp 119–159

    Google Scholar 

  • Wade BL, Zaumeyer WJ (1940) Genetic studies of resistance to alfalfa mosaic virus and stringiness in Phaseolus vulgaris. J Amer Soc Agron 32:127–134

    Article  Google Scholar 

  • Wall JR (1970) Experimental introgression in the genus Phaseolus. I. Effect of mating systems on interspecific gene flow. Evolution 24:356–366

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang W, Jacobs JL, Chilvers MI, Mukankusi CM, Kelly JD et al (2018) QTL analysis of Fusarium root rot resistance in an Andean Middle American common bean RIL population. Crop Sci 58:1–15

    Google Scholar 

  • Wang J, Gai J (2001) Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica 122:9–18

    Article  CAS  Google Scholar 

  • Watson C, Reckling M, Preisse S, Bachinger J, Bergkvist G et al (2017) Grain legume production and use in European agricultural systems. Adv Agron S237–S284

    Google Scholar 

  • Wendels C, Jacobson B, Harveson R (2009) Rhizoctonia root and crown rot. In: Harveson R, Harveson L, Hein G (eds) Compendium of beet diseases and pests. APS Press, St Paul, pp 33–36

    Google Scholar 

  • Willetts HJ, Wong JAL (1980) The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot Rev 46:101–165

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNApolymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Google Scholar 

  • Wolf B, Zheng X, Brüggemann N, Chen W, Dannenmann M et al (2010) Grazing induced reduction of natural nitrous oxide release from continental steppe. Nature 464:881–884

    Article  CAS  PubMed  Google Scholar 

  • Wolf L, Rizzini L, Stracke R, Ulm RSA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153(3):1123–1134

    Google Scholar 

  • Wu J, Zhu J, Wang L, Wang S (2017) Genome-wide association study identifies NBS-LRR-encoding genes related with anthracnose and common bacterial blight in the common bean. Front Plant Sci 8:1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie W, Khanal R, McClymont S, Stonehouse R, Kirstin B et al (2017) Interaction of quantitative trait loci for resistance to common bacterial blight and pathogen isolates in Phaseolus vulgaris L. Mol Breed 37:55

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell Suppl S165-S183

    Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu Y, Li P, Yang Z, Xu C (2017) Genetic mapping of quantitative trait loci in crops. Crop J 5:175–184

    Article  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Rao IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372:3–25

    Article  CAS  Google Scholar 

  • Yoshii K (1980) Common and fuscous blights. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics. CIAT, Cali, Colombia, pp 157–172

    Google Scholar 

  • Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101

    Article  CAS  PubMed  Google Scholar 

  • Young R, Kelly JD (1996) RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci 37:940–946

    Article  Google Scholar 

  • Young RA, Melotto M, Nodari RO, Kelly JD (1998) Marker-assisted dissection of the oligogenic anthracnose resistance in the common bean cultivar, ‘G2333.’ Theor Appl Genet 96:87–94

    Article  CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V (2000a) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 199:300–304

    Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000b) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolusvulgaris L.). J Hered 91:429–434

    Google Scholar 

  • Yu K, Park SJ, Zhang B, Haffner M, Poysa V (2004) An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138:89–95

    Google Scholar 

  • Yu Z, Stall R, Vallejos C (1998) Detection of genes for resistance to common bacterial blight of beans. Crop Sci 38:1290–1296

    Article  CAS  Google Scholar 

  • Yuste-Lisbona FJ, Gonzalez AM, Capel C, Garcıa-Alcazar M, Capel J et al (2014) Genetic variation underlying pod size and color traits of common bean depends on quantitative trait loci with epistatic effects. Mol Breed 33:939–952

    Article  Google Scholar 

  • Zaumeyer WJ, Thomas HR (1957) A monographic study of bean diseases and methods of their Control. Technical Bulletin No. 868. United States Department of Agriculture, Washington, D.C. 255 pp

    Google Scholar 

  • Zeven AC (1997) The introduction of the common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in The Netherlands in 1946. Euphytica 94:319–328

    Article  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeats markers. Theor Appl Genet 117:629–640

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Ablett GR, Anderson TR, Racjan I, Schaafsma AW (2005) Inheritance and genetic mapping of resistance to Rhizoctonia root rot and hypocotyls rot in soybean. Crop Sci 45:1441–1447

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  • Zitnick-Anderson K, Oladzadabbasabadi A, Jain S, Modderman C, Osorno JM et al (2020) Sources of resistance to Fusarium solani and associated genomic regions in common bean diversity panels. Front Genet 11:475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou XL, Shi C, Austin RS, Merico D, Munholland S et al (2014) Genome-wide single nucleotide polymorphism and insertion-deletion discovery through next-generation sequencing of reduced representation libraries in common bean. Mol Breed 33:769–778

    Article  CAS  Google Scholar 

  • Zuiderveen GH, Padder BA, Kamfwa K, Song Q, Kelly JD (2016) Genome-wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLoS One 11: e0156391

    Google Scholar 

  • http://www.pulsesincrease.eu

  • http://www.legato-fp7.eu

  • http://www.eurolegume.eu

  • https://www.ipcc.ch/report/srccl. IPCC report 2019 titled—climate change and land

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. De Ron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Ron, A.M. et al. (2022). Common Bean Genetics, Breeding, and Genomics for Adaptation to Biotic Stress Conditions. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91043-3_1

Download citation

Publish with us

Policies and ethics