Skip to main content
Log in

Genome-wide association analysis of symbiotic nitrogen fixation in common bean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Significant SNPs and candidate genes for symbiotic nitrogen fixation (SNF) and related traits were identified on Pv03, Pv07 and Pv09 chromosomes of common bean.

Abstract

A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean Diversity Panel (ADP) comprising 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in both greenhouse and field experiments. After accounting for population structure and cryptic relatedness, significant SNPs were identified on chromosomes Pv03, Pv07 and Pv09 for nitrogen derived from atmosphere (Ndfa) in the shoot at flowering, and for Ndfa in seed. The SNPs for Ndfa in shoot and Ndfa in seed co-localized on Pv03 and Pv09. Two genes Phvul.007G050500 and Phvul.009G136200 that code for leucine-rich repeat receptor-like protein kinases (LRR-RLK) were identified as candidate genes for Ndfa. LRR-RLK genes play a key role in signal transduction required for nodule formation. Significant SNPs identified in this study could potentially be used in marker-assisted breeding to accelerate genetic improvement of common bean for SNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADP:

Andean Diversity Panel

BLASTn:

Basic local alignment search tool for nucleotide

GWAS:

Genome-wide association study

Ndfa:

Nitrogen derived from the atmosphere

GH:

Greenhouse

MLM:

Mixed linear model

LD:

Linkage disequilibrium

LRR-RLK:

Leucine-rich repeat receptor-like protein kinase

N:

Nitrogen

Pv:

Phaseolus vulgaris chromosome

SNF:

Symbiotic nitrogen fixation

SNP:

Single nucleotide polymorphism

References

  • Akibode CS, Maredia M (2012) Global and regional trends in production, trade and consumption of food legume crops. Staff Paper 2012–10. Department of Agricultural, Food and Resource Economics, Michigan State University

  • Beebe S (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Google Scholar 

  • Bliss FA (1993) Breeding common bean for improved biological nitrogen fixation. Plant Soil 152:71–79

    Article  Google Scholar 

  • Bliss F, Pereira P, Araujo R (1989) Registration of five high nitrogen fixing common bean germplasm lines. Crop Sci 29:240–241

    Article  Google Scholar 

  • Boddey RM, Alves BJR, de Henrique B, Soares L, Jantalia CP, Urquiaga S (2009) Biological nitrogen fixation and the mitigation of greenhouse gas emissions. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 387–413

    Google Scholar 

  • Bradbury P, Zhang D, Kroon T, Casstevens Y, Ramdoss Y, Buckler E (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Broughton WJ, Dilworth MJ (1970) Plant nutrient solutions. In: Somasegaran P, Hoben HJ (eds) Methods in legume-Rhizobium technology handbook for rhizobia niftal project. Univ of Hawaii, Hawaii, pp 245–249

    Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Buttery BR, Park SJ, Pv Berkum (1997) Effects of common bean (Phaseolus vulgaris L.) cultivar and Rhizobium strain on plant growth, seed yield and nitrogen content. Can J Plant Sci 77:347–351

    Article  Google Scholar 

  • Cichy KA, Porch TG, Beaver JS, Cregan P, Fourie D, Glahn RP, Grusak MA, Kamfwa K, Katuuramu DN, McClean P, Mndolwa E, Nchimbi-Msolla S, Pastor-Corrales MA, Miklas PN (2015) A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Sci. doi:10.2135/cropsci2014.09.0653

    Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681

    Article  CAS  PubMed  Google Scholar 

  • Elizondo Barron J, Pasini RJ, Davis DW, Stuthman DD, Graham PH (1999) Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris L.). Field Crops Res 62:119–128

    Article  Google Scholar 

  • Gage DJ (2009) Nodule development in legumes. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 1–24

    Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI, New York

    Book  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  • Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res 4:93–112

    Article  Google Scholar 

  • Graham PH (2009) Soil biology with an emphasis on symbiotic nitrogen fixation. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 171–209

    Google Scholar 

  • Graham P, Rosas J (1977) Growth and development of indeterminate bush and climbing cultivars of Phaseolus vulgaris L. inoculated with Rhizobium. J Agric Sci 88:503–508

    Article  Google Scholar 

  • Graham P, Rosas J, Estevez de Jensen C, Peralta E, Tlusty B, Acosta-Gallegos J, Arraes Pereira P (2003) Addressing edaphic constraints to bean production: the bean/cowpea CRSP project in perspective. Field Crops Res 82:179–192

    Article  Google Scholar 

  • Hardarson G, Bliss FA, Cigales-Rivero M, Henson RA, Kipe-Nolt JA, Longeri L, Manrique A, Pena-Cabriales J, Pereira PAA, Sanabria C, Tsai SM (1993) Genotypic variation in biological nitrogen fixation by common bean. Plant Soil 521:59–70

    Article  Google Scholar 

  • Hardy RWF, Havelka UD (1976) Photosynthate as a major factor limiting nitrogen fixation by field grown legumes with emphasis on soybeans. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London, pp 421–439

    Google Scholar 

  • Herridge DF, Redden RJ (1999) Evaluation of genotypes of navy and culinary bean (Phaseolus vulgaris L.) selected for superior growth and nitrogen fixation. Aust J Exp Agric 39:975–980

    Article  Google Scholar 

  • Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46:642–654

    Article  Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS, Choi IY, Hwang EY, Pastor-Corrales MA, Cregan PB (2010) High throughput SNP discovery and assay development in common bean. BMC Genom 11:475

    Article  Google Scholar 

  • Jensen E, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    Article  CAS  Google Scholar 

  • Kamfwa K, Cichy KA, Kelly JD (2015) Genome-wide association study of agronomic traits in common bean. Plant Genome. doi:10.3835/plantgenome2014.09.0059

    Google Scholar 

  • Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Mafongoya PL, Mpepereki S, Mudyazhezha S (2009) The importance of biological nitrogen fixation in cropping systems in nonindustrialized nations. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 329–348

    Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nodari RO, Tsai SM, Guzmán P, Gilbertson RL, Gepts P (1993) Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peoples MB, Hauggaard-Nielsen H, Jensen ES (2009a) The potential environmental benefits and risks derived from legumes in rotations. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 349–385

    Google Scholar 

  • Peoples MB, Unkovich MJ, Herridge DF (2009b) Measuring symbiotic nitrogen fixation by legumes. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 125–170

    Google Scholar 

  • Pereira PAA, Miranda BD, Attewell JR, Kmiecik KA, Bliss FA (1993) Selection for increased nodule number in common bean (Phaseolus vulgaris L.). Plant Soil 148:203–209

    Article  Google Scholar 

  • Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramaekers L, Galeano CH, Garzon N, Vanderleyden J, Blair MW (2013) Identifying quantitative trait loci for symbiotic nitrogen fixation capacity and related traits in common bean. Mol Breed 31:163–180

    Article  CAS  Google Scholar 

  • Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  CAS  PubMed  Google Scholar 

  • Riely BK, Ané J-M, Penmetsa RV, Cook DR (2004) Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage. Curr Opin Plant Biol 7:408–413

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Lopez R, Jauregui D, Nava N, Alvarado-Affantranger X, Montiel J, Santana O, Sanchez F, Quinto C (2011) Down-regulation of SymRK correlates with a deficiency in vascular bundle development in Phaseolus vulgaris nodules. Plant, Cell Environ 34:2109–2121

    Article  CAS  Google Scholar 

  • Sanchez-Lopez R, Jauregui D, Quinto C (2012) SymRK and the nodule vascular system: an underground connection. Plant Signal Behav 7:691–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santos MA, Geraldi IO, Garcia AAF, Bortolatto N, Schiavon A, Hungria M (2013) Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas 150:17–25

    Article  PubMed  Google Scholar 

  • SAS Institute (2011) SAS version 9.3. SAS Institute Inc, Cary

    Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Shearer G, Kohl D (1986) N2 fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

    CAS  Google Scholar 

  • Singh SP, Gutiérrez JA (1984) Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33:337–345

    Article  Google Scholar 

  • Souza AA, Boscariol RL, Moon DH, Camargo LE, Tsai SM (2000) Effects of Phaseolus vulgaris QTL in controlling host-bacteria interactions under two levels of nitrogen fertilization. Genetics Mol Biol 23:155–161

    Article  CAS  Google Scholar 

  • Stacey G, Libault M, Brechenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121

    Article  CAS  PubMed  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Strodtman KN, Emerich DW (2009) Nodule metabolism. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Crop Science Society of America, Madison, pp 95–124

    Google Scholar 

  • Tsai SM, Da Silva PM, Cabezas WL, Bonetti R (1993) Variability in nitrogen fixation of common bean (Phaseolus vulgaris L.) intercropped with maize. Plant Soil 152:93–101

    Article  Google Scholar 

  • Tsai S, Nodari R, Moon D, Camargo L, Vencovsky R, Gepts P (1998) QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant Soil 204:135–145

    Article  CAS  Google Scholar 

  • Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91:37–46

    Article  CAS  PubMed  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res 65:211–228

    Article  Google Scholar 

  • van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165–181

    Article  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandemark GJ, Brick MA, Osorno JM, Kelly JD, Urrea CA (2014) Edible grain legumes. In: Smith S, Diers B, Specht J, Carver B (eds) Yield gains in major US field crops. CSSA Spec. Publ. 33. Crop Science Society of America, Madison, pp 87–124

  • Vincent JM (1970) A manual for practical study of root nodule bacteria. IBP Handbook No 15. Blackwell, Oxford

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, Gore M, Bradbury P, Yu J, Arnett D, Ordovas J (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research was supported by the Feed the Future Innovation Lab for Collaborative Research on Grain Legumes by the Bureau for Economic Growth, Agriculture, and Trade, US Agency for International Development, under the terms of Cooperative Agreement No. EDH-A-00-07-00005-00; and the US Department of Agriculture, Agricultural Research Service. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the US Agency for International Development or the US Government. We also thank Dr. Zixang Wen for his helpful comments on some aspects of data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Kelly.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

All experiments described in this manuscript comply with the current US laws in which they were performed.

Additional information

Communicated by I. Rajcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamfwa, K., Cichy, K.A. & Kelly, J.D. Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theor Appl Genet 128, 1999–2017 (2015). https://doi.org/10.1007/s00122-015-2562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2562-5

Keywords

Navigation