Skip to main content

Fungal Endophytes: A Potential Source of Low-Cost Entrepreneurship

  • Chapter
  • First Online:
Applied Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 915 Accesses

Abstract

Plants are a potential reservoir of original microbes primarily known as endophytes, which can live inside their tissue without causing any visible harm. Fungal endophytes are abundantly reported from all tissues such as buds, flowers, stems, bark, leaves, roots, fruits, and seeds. Moreover, fungal endophytes can be grown with relative ease, making production at the large scale. Currently, research into the valuable use of fungal endophytes has been increased globally. The unique attributes of fungal endophytes thus herald huge promise for their application in biotechnology and various industries. In this chapter, the production of a wide range of new bioactive compounds or secondary metabolites from fungal endophytes that are a potential alternative resource of secondary plant metabolites as well as natural producers of much needed medicines. Current development that has been assemble the selection of fungal endophytes for the manufacture and popularize of precise biologically active new compounds originate from fungal endophytes. Many fungal endophytes provide the important medicinal compounds such as Taxol, Huperzine, Vincristine, Vinblastine, Podophyllotoxin, and other globally significant novel secondary metabolites, and they remain an untapped resource with enormous industrial potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adav, S. S., & Sze, S. K. (2014). Trichoderma secretome: An overview. In V. K. Gupta, M. Schmoll, A. Herrera-Estrella, R. S. Upadhyay, I. Druzhinina, & M. G. Tuohy (Eds.), Biotechnology and biology of Trichoderma (pp. 103–114). Elsevier.

    Chapter  Google Scholar 

  • Aguilar, A. C., & Barea, J. M. (1996). Arbuscularmycorrhizasand biological control of soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza, 6, 457–464.

    Article  Google Scholar 

  • Ahmed, M. E., & Rahman, A. (2014). Detection of the perfect condition to produce the tannase from Aspergillus niger at different medium. Journal of University of Babylon for Pure and Applied Sciences, 22, 1363–1371.

    Google Scholar 

  • Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2008). Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue cultured banana plants. Entomologia Experimentalis et Applicata, 129(2), 157–165.

    Article  Google Scholar 

  • Alves, A., Crous, P. W., Correia, A., & Phillips, A. J. L. (2008). Morphological and molecular data reveal cryptic speciation in Lasiodiplodiatheobromae. Fungal Diversity, 28, 1–13.

    Google Scholar 

  • Amirita, A., Sindhu, P., Swetha, J., Vasanthi, N. S., & Kannan, K. P. (2012). Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World Journal of Science and Technology, 2, 13–19.

    CAS  Google Scholar 

  • Amna, T., Puri, S. C., Verma, V., Sharma, J. P., Khajuria, R. K., Musarrat, J., Spiteller, M., & Qazi, G. N. (2006). Bioreactor studies on the endophytic fungus Entrophosporainfrequensfor the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Anbu, P., Gopinath, S. C. B., Chaulagain, B. P., & Lakshmipriya, T. (2017). Microbial enzymes and their applications in industries and medicine. BioMed Research International, 2017, 3. Article ID 2195808. https://doi.org/10.1155/2017/2195808.

  • Anitha, T. S., & Palanivelu, P. (2013). Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expression and Purification, 88, 214–220.

    Article  CAS  PubMed  Google Scholar 

  • Arivudainambi, U. E., Anand, T. D., Shanmugaiah, V., Karunakaran, C., & Rajendran, A. (2011). Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioidesagainst multidrug-resistant Staphylococcus aureus. FEMS Immunology and Medical Microbiology, 61, 340–345.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews, 21, 51–66.

    Article  Google Scholar 

  • Arora, D. S., Chander, M., & Gill, P. K. (2002). Involvement of lignin peroxidase manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration and Biodegradation, 15, 115–120.

    Article  Google Scholar 

  • Ayob, F. W., & Simarani, K. (2016). Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes. Saudi Pharmaceutical Journal, 24(3), 273–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacon, C. W., & Hinton, D. M. (1996). Symptomless endophytic colonisation of maize by Fusarium moniliforme. Canadian Journal of Botany, 75, 1195–1202.

    Article  Google Scholar 

  • Bae, H., Kim, S., Sicher, R. C., Jr., Kim, M. S., Strem, M. D., & Bailey, B. A. (2008). The beneficial endophyte, Trichoderma hamatum, delays the onset of drought stress in Theobroma cacao. Biological Control, 46, 24–35.

    Google Scholar 

  • Bagga, J., Pramanik, S. K., & Pandey, V. (2015). Production and purification of tannase from Aspergillus aculeatus using plant derived raw tannin. International Journal of Scientific Engineering and Technology, 4, 50–55.

    Article  Google Scholar 

  • Banerjee, D., Strobel, G., Geary, B., Sears, J., Ezra, D., Liarzid, O., & Coombs, J. (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology, 1, 17–186

    Google Scholar 

  • Banu, A. R., Devi, M. K., Gnanaprabhal, G. R., Pradeep, B. V., et al. (2010). Production and characterization of pectinase enzyme from Penicillium chrysogenum. Indian Journal of Science and Technology, 3, 377–381.

    Article  CAS  Google Scholar 

  • Batra, A., & Saxena, R. K. (2005). Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochemistry, 40, 1553–1557.

    Article  CAS  Google Scholar 

  • Bei, J., Chen, Z., Fu, J., Jiang, Z., et al. (2009). Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. Journal of Biotechnology, 139, 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson-Palme, J. (2018). The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants-but not always. Microbiome, 6, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezerra, J., Santos, M., Svedese, V., Lima, D., Fernandes, M., Paiva, L., & Souza-Motta, C. (2012). Richness of endophytic fungi isolated from Opuntia ficus-indica Mill.(Cactaceae) and preliminary screening for enzyme production. World Journal of Microbiology and Biotechnology, 28, 1989–1995.

    Article  CAS  PubMed  Google Scholar 

  • Bezerra, J. D., Nascimento, C. C., Barbosa, R. D., da Silva, D. C., Svedese, V. M., Silva-Nogueira, E. B., Gomes, B. S., Paiva, L. M., & Souza-Motta, C. M. (2015). Endophytic fungi from medicinal plant Bauhiniaforficata: Diversity and biotechnological potential. Brazilian Journal of Microbiology, 46, 49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, J. (2010). Fascinating microfungi (Hyphomycetes) of Western Ghats (p. 221). Broadway Book Centre, . ISBN:978-3-642-23341-8.

    Google Scholar 

  • Biz, A., Finkler, A. T. J., Pitol, L. O., Medina, B. S., et al. (2016). Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 111, 54–62.

    Article  CAS  Google Scholar 

  • Bogner, C. W., Kamdem, R. S., Sichtermann, G., Matthäus, C., Hölscher, D., Popp, J., Proksch, P., Grundler, F. M., & Schouten, A. (2017). Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnology, 10, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Brugger, R., Nunes, C. S., Hug, D., Vogel, K., et al. (2004). Characteristics of fungal phytases from Aspergillus fumigatus and Sartorya fumigate. Applied Microbiology and Biotechnology, 63, 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Busby, P. E., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: Modifiers of plant disease. Plant Molecular Biology, 90, 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Casey, A., & Walsh, G. (2004). Identification and characterization of a phytase of potential commercial interest. Journal of Biotechnology, 110, 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Castro, M. S., & Fontes, W. (2005). Plant defense and antimicrobial peptides. Protein and Peptide Letters, 12, 11–16.

    Article  Google Scholar 

  • Chadha, B. S., Harmeet, G., Mandeep, M., Saini, H. S., & Singh, N. (2004). Phytase production by the thermophilic fungus Rhizomucorpusillus. World Journal of Microbiology & Biotechnology, 20, 105–109.

    Article  CAS  Google Scholar 

  • Chandrasekaran, G., Choi, S. K., Lee, Y. C., Kim, G. J., & Shin, H. J. (2014). Oxidative biodegradation of single-walled carbon nanotubes by partially purified lignin peroxidase from Sparassis latifolia mushroom. Journal of Industrial and Engineering Chemistry, 20, 3367–3374.

    Article  CAS  Google Scholar 

  • Chapla, D., Pandit, P., & Shah, A. (2012). Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology, 115, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Chathurdevi, G., & Gowrie, S. U. (2016). Endophytic fungi isolated from medicinal plant – A source of potential bioactive metabolites. International Journal of Current Pharmaceutical Research, 8, 50–56.

    CAS  Google Scholar 

  • Chen, Z., Song, Y., Chen, Y., Huang, H., Zhang, W., & Ju, J. (2012). Cyclic heptapeptides, cordyheptapeptides C–E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. Applied Microbiology and Biotechnology, 75, 1215–1219.

    CAS  Google Scholar 

  • Chen, G. D., Chen, Y., Gao, H., Shen, L. Q., Wu, Y., Li, X. X., Li, Y., Guo, L. D., Cen, Y. Z., & Yao, X.-S. (2013). Xanthoquinodins from the endolichenic fungal strain Chaetomium elatum. Journal of Natural Products, 76, 702–709.

    Article  CAS  PubMed  Google Scholar 

  • Cheplick, G. P., Perera, A., & Koulouris, K. (2000). Effect of drought stress on the growth of Lolium perennegenotypes with and without fungal endophytes. Functional Ecology, 14, 657–667.

    Article  Google Scholar 

  • Chin, Y. W., Balunas, M. J., Chai, H. B., & Kinghorn, A. D. (2006). Drug discovery from natural sources. Advances in Applied & Pharmaceuticals Sciences Journal, 8, 239–253.

    Google Scholar 

  • Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33, 1443–1454.

    Article  CAS  PubMed  Google Scholar 

  • Chow, Y., & Ting, A. S. (2015). Endophytic L-asparaginase producing fungi from plants associated with anticancer properties. Journal for Artistic Research, 6, 869–876.

    CAS  Google Scholar 

  • Cui, L., Liu, Q. H., Wang, H. X., & Ng, T. B. (2007). An alkaline protease from fresh fruiting bodies of the edible mushroom Pleurotuscitrinopileatus. Applied Microbiology and Biotechnology, 75, 81–85.

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, M. A., & Hiremath, K. G. (2015). Isolation and bioassay screening of medicinal plant endophytes from Western Ghats forests, Goa, India. International Journal of Advanced Research in Biological Sciences, 2, 176–190.

    Google Scholar 

  • de Alencar, G. N. C. A., Sorgatto, M., Peixoto-Nogueira, S. C., Betini, J. H. A., et al. (2013). Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substrate. Springerplus, 2, 380.

    Article  CAS  Google Scholar 

  • De Barry, A. (1866). Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten (Vol. II). Hofmeister’s Handbook of Physiological Botany.

    Google Scholar 

  • Desire, M. H., Bernard, F., Forsah, M. R., Assang, C. T., et al. (2014). Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn.leaves. Journal of Applied Biology and Biotechnology, 2, 1–6.

    Google Scholar 

  • Dhiman, S., Mukherjee, G., Kumar, A., Mukherjee, P., et al. (2017). Fungal tannase: Recent advances and industrial applications. In T. Satyanarayana, S. Deshmukh, & B. Johri (Eds.), Developments in fungal biology and applied mycology (pp. 295–313). Springer.

    Chapter  Google Scholar 

  • di Menna, M., Finch, S. C., Popay, A., & Smith, B. L. (2012). A review of the Neotyphodiumlolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. New Zealand Veterinary Journal, 60(6), 315–328.

    Article  PubMed  Google Scholar 

  • Ding, G., Li, Y., Fu, S., Liu, S., Wei, J., & Che, Y. (2008). Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. Journal of Natural Products, 72, 182–186.

    Article  CAS  Google Scholar 

  • Dissanayake, R. K., Ratnaweera, P. B., Williams, D. E., Wijayarathne, C. D., Wijesundera, R. L., Andersen, R. J., & de Silva, E. D. (2016). Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology, 7, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doilom, M., Manawasinghe, I. S., Jeewon, R., Jayawardena, R. S., Tibpromma, S., Hongsanan, S., Meepol, W., Lumyong, S., Jones, E. B. G., & Hyde, K. D. (2017). Can ITS sequence data identify fungal endophytes from cultures? A case study from Rhizophora apiculata. Mycosphere, 8, 1869–1892.

    Article  Google Scholar 

  • Dou, Y., Wang, X., Jiang, D., Wang, H., Jiao, Y., Lou, H., & Wang, X. (2014). Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobariaretigera. Drug Discoveries & Therapeutics, 8, 84–88.

    Article  CAS  Google Scholar 

  • Dreyfuss, M. M., & Chapela, I. H. (1994). Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In V. P. Gulb (Ed.), The discovery of the natural products with therapeutic potential (pp. 49–80). Butterworth-Heinemann.

    Google Scholar 

  • Duran, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Applied Catalysis B, 28, 83–99.

    Article  CAS  Google Scholar 

  • Eaton, C. J., Cox, M. P., & Scott, B. (2011). What triggers grass endophytes to switch from mutualism to pathogenism? Plant Science, 180(2), 190–195.

    Article  CAS  PubMed  Google Scholar 

  • El-Ghonemy, A. (2017). Extracellular alkaline lipase from a novel fungus Curvularia sp. DHE 5: Optimisation of physicochemical parameters, partial purifcation and characterisation. Food Technology and Biotechnology, 55(2), 206–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ghonemy, D. H., El-Gamal, M. S., Tantawy, A. E., & Ali, T. H. (2017). Extracellular alkaline lipase from a novel fungus Curvularia sp. DHE 5: Optimisation of physicochemical parameters partial purification and characterization. Food Technology and Biotechnology, 55, 206–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Maali, N., Mohrram, A., El-Kashef, H., & Gamal, K. (2018). Novel resources of Taxol from endophytic and entomopathogenic fungi: Isolation, characterization and LC-Triple mass spectrometric quantification. Talanta, 190, 466–474.

    Article  CAS  PubMed  Google Scholar 

  • Erbert, C., Lopes, A. A., Yokoya, N. S., Furtado, N. A. J. C., Conti, R., Pupo, M. T., et al. (2012). Antibacterial compound from the endophytic fungus Phomopsis longicollaisolated from the tropical red seaweed Bostrychia radicans. Botanica Marina, 55, 435–440.

    Article  CAS  Google Scholar 

  • Escudero, N., Ferreira, S. R., Lopez-Moya, F., Naranjo-Ortiz, M. A., Marin-Ortiz, A. I., Thornton, C. R., & Lopez-Llorca, L. V. (2016). Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochoniachlamydosporia. Fungal Biology, 120, 572–585.

    Article  CAS  PubMed  Google Scholar 

  • Eyberger, A. L., Dondapati, R., & Porter, J. R. (2006). Endophyte fungal isolates from Podophyllum peltatum produces podophyllotoxin. Journal of Natural Products, 69(8), 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  • Facchini, F. D. A., Vici, A. C., Pereira, M. G., Jorge, J. A., & Polizeli, T. M. (2015). Enhanced lipase production of Fusarium verticillioides by using response surface methodology and wastewater pretreatment application. Journal of Biochemical Technology, 6, 996–1002.

    Google Scholar 

  • Faeth, S. H., Gardner, D. R., Hayes, C. J., Jani, A., Wittlinger, S. K., & Jones, T. A. (2006). Temporal and spatial variation in alkaloid levels in Achnatherumrobustum, a native grass infected with the endophyte Neotyphodium. Journal of Chemical Ecology, 32(2), 307–324.

    Article  CAS  PubMed  Google Scholar 

  • Farag, A. M., & Hassan, M. A. (2004). Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology, 34, 85–93.

    Article  CAS  Google Scholar 

  • Fareed, S., Jadoon, U. N., Ullah, I., Ayub, M., Jadoon, M. U. R., Bibi, Z., Waqas, M., & Nisa, S. (2017). Isolation and biological evaluation of endophytic fungus from Ziziphus nummularia. Journal of Entomology and Zoology Studies, 5(3), 32–38.

    Google Scholar 

  • Fillat, Ú., Martín-Sampedro, R., Macaya-Sanz, D., Martín, J. A., Ibarra, D., Martínez, M. J., & Eugenio, M. E. (2016). Screening of eucalyptus wood endophytes for laccase activity. Process Biochemistry, 51, 589–598.

    Article  CAS  Google Scholar 

  • Fisher, P. J., & Petrini, O. (1990). A comparative study of fungal endophytes in xylem and bark of Alnus species in England and Switzerland. Mycological Research, 94, 313–319.

    Article  Google Scholar 

  • Fouda, A. H., Hassan, S. E., Eid, A. M., & Ewais, E. E. (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepiassinaica (Bioss.). Annals of Agricultural Science, 60, 95–104.

    Article  Google Scholar 

  • Friedrich, J., Gradisˇar, H., Vrecl, M., & Pogacˇnik, A. (2005). In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomycesmicrosporus. Enzyme and Microbial Technolog, 36, 455–460.

    Article  CAS  Google Scholar 

  • Fu, J., Zhou, Y., Li, H. F., Ye, Y. H., & Guo, J. H. (2011). Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. Asian Journal of Research in Microbiology, 5, 1231–1236.

    Google Scholar 

  • Gangadevi, V., & Muthumary, J. (2009). Taxol production by Pestalotiopsisterminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnology and Applied Biochemistry, 52, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Gao, D., Du, L., Yang, J., Wu, W. M., & Liang, H. (2010). A critical review of the application of white rot fungus to environmental pollution control. Critical Reviews in Biotechnology, 30, 70–77.

    Article  CAS  PubMed  Google Scholar 

  • Gog, A., Roman, M., Tos, M., Paizs, C., & Irimie, F. D. (2012). Biodiesel production using enzymatic transesterification-current state and perspectives. Renewable Energy, 39, 10–16.

    Article  CAS  Google Scholar 

  • Goyal, S., Ramawat, K. G., & Mérillon, J. M. (2017). Different shades of fungal metabolites: An Overview. In J. M. Mérillon & K. G. Ramawat (Eds.), Fungal metabolites. Springer.

    Google Scholar 

  • Gradisar, H., Kern, S., & Friedrich, J. (2000). Keratinase of Doratomycesmicrosporus. Applied Microbiology and Biotechnology, 53, 196–200.

    Article  CAS  PubMed  Google Scholar 

  • Guo, B., Dai, J.-R., Ng, S., Huang, Y., Leong, C., Ong, W., & Carté, B. K. (2000). Cytonic acids A and B: Novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaemaspecies. Journal of Natural Products, 63, 602–604.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L. D., Huang, G. R., & Wang, Y. (2008). Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis(Pinaceae) in the Dongling Mountains, Beijing. International Journal of Plant Biology, 50, 997–1003.

    Article  Google Scholar 

  • Harper, J. K., Arif, A. M., Ford, E. J., Strobel, G. A., Porco, J. A., Tomer, D. P., Oneill, K. L., Heider, E. M., & Grant, D. M. (2003). Pestacin: A 1, 3-dihydro isobenzofuran from Pestalotiopsismicrosporapossessing antioxidant and antimycotic activities. Tetrahedron, 59, 2471–2476.

    Article  CAS  Google Scholar 

  • Hartman, G. L., Manandhar, J. B., & Sinclair, J. B. (1986). Incidence of Colletotrichum spp. on soybeans and weeds in Illinois and pathogenicity of Colletotrichum truncatum. Plant Disease, 70, 780–782.

    Article  Google Scholar 

  • Hegde, S. V., Ramesha, A., & Srinvas, C. (2011). Optimization of amylase production from an endophytic fungi Discosia sp. isolated from Calophylluminophyllum. International Journal of Agricultural Technology, 7, 805–813.

    Google Scholar 

  • Hesterkamp, T. (2017). Antibiotics clinical development and pipeline. In How to overcome the antibiotic crisis—Facts, challenges, technologies and future perspective. In M. Stadler & P. Dersch (Eds.), Current topics in microbiology and immunology (Vol. 398, pp. 447–474).

    Google Scholar 

  • Hill, N. S., Belesky, D. P., & Stringer, W. C. (1991). Competitiveness of tall fescue as influenced by Acremonium coenophialum. Crop Science, 31, 185–190.

    Article  Google Scholar 

  • Hoffman, A. M., Mayer, S. G., Strobel, G. A., Hess, W. M., Sovocool, G. W., Grange, A. H., Harper, J. K., Arif, A. M., Grant, D. M., & Kelley-Swift, E. G. (2008). Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 69(1049), 1056.

    Google Scholar 

  • Hol, W. H. G., La, P. E., De Moens, M., & Cook, R. (2007). Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic and Applied Ecology, 8, 500–509.

    Article  Google Scholar 

  • Huang, J. W., Shih, H. D., Huang, H. C., & Chung, W. C. (2007). Effects of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Canadian Journal of Plant Pathology, 29(3), 261–267.

    Google Scholar 

  • Isabelle, K. M., Celine, N., Augustin, N., Jean, B. J., Paul-Keilah, L., Pierre, E., Valere, T. F., & Jules-Roger, K. (2019). Antimicrobial activities of two secondary metabolites isolated from Aspergillus niger, endophytic fungus harbouring stems of Acanthus montanus. Biological Sciences and Pharmaceutical Research, 7(1), 7–15.

    Google Scholar 

  • Istifadah, N., & Mcgee, P. A. (2006). Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophoratritici-repentis. Australasian Plant Pathology, 35, 411–418.

    Article  Google Scholar 

  • Jeewon, R., Wanasinghe, D. N., Rampadaruth, S., Puchooa, D., Zhou, L.-G., Liu, A.-R., & Wang, H.-K. (2017). Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence analyses of ribosomal and protein genes phylogenetic markers: A taxonomic dead end? Mycosphere, 8(10), 1802–1817.

    Article  Google Scholar 

  • Jia, M., Chen, L., Xin, H., Zheng, C., Rahman, K., Han, T., & Qin, L. (2016). A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology, 7, 906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo, H. S., Kumar, C. G., Park, G. C., Paik, S. R., & Chang, C. S. (2003). Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. Journal of Applied Microbiology, 95, 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Jurynelliz, R-V., David, P., Gloria, O., Carlos, R., Jesus-Bonilla, D., & Walleska. (2016). Enzymatic and bacterial activity of fungal strains isolated from Alpiniazerumbet. Abstracts of papers, 251st ACS national meeting & exposition, San Diego, CA, United States, March 13–17, CHED-1130.

    Google Scholar 

  • Kalra, K., Chauhan, R., Shavez, M., & Sachdeva, S. (2013). Isolation of laccase producing Trichoderma spp. and effect of pH and temperature on its activity. International Journal of ChemTech Research, 5(5), 2229–2235.

    CAS  Google Scholar 

  • Kalyanasundaram, I., Jayaprabha, N., & Srinivasan, M. (2015). Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. Journal of Microbiology and Antimicrobials, 7(2), 13–20.

    Article  Google Scholar 

  • Kaul, S., Ahmed, M., Zargar, K., Sharma, P., & Dhar, M. K. (2013). Prospecting endophytic fungal assemblage of digitalis lanata Ehrh, (foxglove) as a novel source of digoxin: A cardiac glycoside. Biotechnology, 3, 335–340.

    Google Scholar 

  • Khan, A. L., Al-Harrasi, A., Al-Rawahi, A., Al-Farsi, Z., Al-Mamari, A., Waqas, M., Asaf, S., Elyassi, A., Mabood, F., Shin, J. H., & Lee, I. J. (2016). Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One, 11(6), e0158207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, S., Shin, D.-S., Lee, T., & Oh, K.-B. (2004). Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. Journal of Natural Products, 67, 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. W., Choi, H. G., Song, J. H., et al. (2019). Bioactive secondary metabolites from an endophytic fungus Phoma sp. PF2 derived from Artemisia princeps Pamp. Journal of Antibiotics, 72, 174–177.

    Article  CAS  Google Scholar 

  • Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Kjer, J., Wray, V., Edrada-Ebel, R., Ebel, R., Pretsch, A., Lin, W., & Proksch, P. (2009). Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. Journal of Natural Products, 72, 2053–2057.

    Article  CAS  PubMed  Google Scholar 

  • Ko, H. G., Park, S. H., Kim, S. H., Park, H. G., & Park, W. M. (2005). Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiologica, 50, 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Kudalkar, P., Strobel, G., Riyaz-Ul-Hassan, S., Geary, B., & Sears, J. (2012) Muscodorsutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 53, 319–325.

    Google Scholar 

  • Kudanga, T., & Mwenje, E. (2005). Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Canadian Journal of Microbiology, 51, 773–776.

    Article  CAS  PubMed  Google Scholar 

  • Kües, U. (2015). Fungal enzymes for environmental management. Current Opinion in Biotechnology, 33, 268–278.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., & Kaushik, N. (2013). Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One, 8, e56202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunamneni, A., Camarero, S., García-Burgos, C., Plou, F. J., Ballesteros, A., & Alcalde, M. (2008). Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories, 7(1), 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusari, S., & Spiteller, M. (2012). Metabolomics of endophytic fungi producing associated plant secondary metabolites: Progress, challenges and opportunities. In U. Roessner (Ed.), Metabolomics (pp. 241–266). InTech.

    Google Scholar 

  • Kusari, S., Singh, S., & Jayabaskaran, C. (2014). Rethinking production of Taxol®(paclitaxel) using endophyte biotechnology. Trends in Biotechnology, 32, 304–311.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. H., Wi, S. G., Singh, A. P., & Kim, Y. S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophoraputeana. Journal of Wood Science, 50, 281–284.

    Article  Google Scholar 

  • Lee, J. S., Baik, H. S., & Park, S. S. (2006). Purification and characterization of two novel fibrinolytic proteases from mushroom Fomitellafraxinea. Journal of Microbiology and Biotechnology, 16, 264–271.

    CAS  Google Scholar 

  • Leo, V. V., Passari, A. K., Joshi, J. B., Mishra, V. K., Uthandi, S., Ramesh, N., Gupta, V. K., Saikia, R., Sonawane, V. C., & Singh, B. P. (2016). A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Frontiers in Microbiology, 7, 447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J. Y., Harpe, J. K., Grant, D. M., Tombe, B. O., Bashyal, W. M., & Hess, & Strobel, G.A. (2001). Ambuic acid, a highly functionalized cyclohexane with antifungal activity from Pestalotiopsis sp. and Monochaetia sp. Phytochemistry, 56, 463–468.

    Article  CAS  PubMed  Google Scholar 

  • Li, G. H., Yu, Z. F., Li, X., Wang, X. B., Zheng, L. J., & Zhang, K. Q. (2007a). Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chemistry & Biodiversity, 4, 1520–1524.

    Article  CAS  Google Scholar 

  • Li, W. C., Zhou, J., Guo, S. Y., & Guo, L. D. (2007b). Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Diversity, 25, 69–80.

    Google Scholar 

  • Li, H. Q., Li, X. J., Wang, Y. L., Zhang, Q., Zhang, A. L., Gao, J. M., & Zhang, X. C. (2011). Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochemical Systematics and Ecology, 39, 876–879.

    Article  CAS  Google Scholar 

  • Li, G., Wang, H., Zhu, R., Sun, L., Wang, L., Li, M., Li, Y., Liu, Y., Zhao, Z., & Lou, H. (2012). Phaeosphaerins A–F, cytotoxic perylenequinones from an endolichenic fungus, Phaeosphaeria sp. Journal of Natural Products, 75, 142–147.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Kusari, S., Lamshöft, M., Schüffler, A., Laatsch, H., & Spiteller, M. (2014). Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. Journal of Natural Products, 77, 2335–2341.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Yang, J., Zhou, X., Zhao, W., & Jian, Z. (2015). Isolation and identification of a 10-deacetyl baccatin-III- producing endophyte from Taxus wallichiana. Applied Biochemistry and Biotechnology, 175, 2224–2231.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Z.-J., Lu, Z.-Y., Zhu, T.-J., Fang, Y.-C., Gu, Q.-Q., & Zhu, W.-M. (2008). Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegicerascorniculatum. Chemical & Pharmaceutical Bulletin, 56, 217–221.

    Article  CAS  Google Scholar 

  • Liu, Z. Z., Chen, Y., Lian, B., Zhang, Z., Zhao, Y. Y., Ji, Z. H., Lv, Y. N., & Li, H. G. (2019). Comparative study on population ecological distribution and extracellular enzyme activities of endophytic fungi in Artemisia annua. Journal of Biological Sciences and Medicine, 7, 94–105.

    Google Scholar 

  • Lu, H., Xou, W. X., Meng, J. C., Hu, J., & Tan, R. X. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151, 67–73.

    Article  CAS  Google Scholar 

  • Maia, M. M. D., Heasley, A., Camargo de Morais, M. M., Melo, E. H. M., et al. (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource Technology, 76, 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Mane, R. S., Shinde, M. B., Wagh, P. R., & Malkar, H. M. (2017). Isolation of endophytic microorganisms as a source of novel secondary metabolite producers against Tuberculosis. International Journal for Science and Advance Research in Technology, 3, 1267–1269.

    Google Scholar 

  • Maria, G. L., Sridhar, K. R., & Raviraja, N. S. (2005). Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology, 1, 67–80.

    Google Scholar 

  • Marinho, A. M., Rodrigues-Filho, E., Moitinho, M. L. R., & Santos, L. S. (2005). Biologically active polyketides produced by Penicillium janthinellumisolated as an endophytic fungus from fruits of Melia azedarach. Journal of the Brazilian Chemical Society, 16, 280–283.

    Article  Google Scholar 

  • Marques, T. A., Baldo, C., Borsato, D., Buzato, J. B., & Celligo, M. A. P. C. (2014). Production and partial characterization of a thermostable alkaline and organic solvent tolerant lipase from Trichoderma atroviride 676. International Journal of Scientific and Technology Research, 3, 77–83.

    Google Scholar 

  • Martins, E. S., Silva, D., Da, S., & R., & Gomes, E. (2002). Solid state production of thermostable pectinases from thermophilic Thermoascusaurantiacus. Process Biochemistry, 37, 949–954.

    Article  CAS  Google Scholar 

  • Mitchell, A.M., Strobel, G.A., Hess, W.M., Vargas, P.N. & Ezra, D. (2008) Muscodorcrispans, a novel endophyte from Anansananassoidesin the Bolivian Amazon. Fungal Diversity, 31, 37–43.

    Google Scholar 

  • Mohamed, S. A., Abdel-Mageed, H. M., Tayel, S. A., El-Nabrawi, M. A., & Fahmy, A. S. (2011). Characterization of Mucor racemosuslipase with potential application for the treatment of cellulite. Process Biochemistry, 46, 642–648.

    Article  CAS  Google Scholar 

  • Moonjely, S., Barelli, L., & Bidochka, M. K. (2016). Insect pathogenic fungi as endophytes. Advances in Genetics, 94, 107–135.

    Article  CAS  PubMed  Google Scholar 

  • Moy, M., Li, H. M., Sullivan, R., White, J. F., Jr., & Belanger, F. C. (2002). Endophytic fungal β-1, 6-glucanase expression in the infected host grass. Plant Physiology, 130, 1298–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nag Raj, T. R. (1993). Coelomycetous anamorphs with appendage bearing conidia (p. 1101). Edwards Brothers Publishing Co.

    Google Scholar 

  • Nassimi, Z., & Taheri, P. (2017). Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide & antioxidants. Biocontrol Science and Technology, 27, 1–16.

    Article  Google Scholar 

  • Nicoletti, R., & Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of spermatophyta. Agriculture, 5, 918–970.

    Article  CAS  Google Scholar 

  • Nieto-Domínguez, M., de Eugenio, L. I., York-Durán, M. J., Rodríguez-Colinas, B., et al. (2017). Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chemistry, 232, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Nongalleima, K. H., Dey, A., Deb, L., Singh, C., Biseshwori, T., Devi, H. S., & Devi, S. I. (2013). Endophytic fungus isolated from Zingiber zerumbet (L.) Sm. inhibits free radicals and cyclooxygenase activity. International Journal of PharmTech Research, 5, 301–307.

    Google Scholar 

  • Nwuche, C. O., & Ogbonna, J. C. (2011). Isolation of lipase producing fungi from palm oil mill effluent (POME) dump sites at Nsukka. Brazilian Archives of Biology and Technology, 54, 113–116.

    Article  CAS  Google Scholar 

  • Ofek-Lalzar, M., Gur, Y., ben-Moshe, S., Sharon, O., Kosman, E., Mochli, E., & Sharon, A. (2016). Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiology Ecology, 92(10), fiw152.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, A. C. D., Fernandes, M. L., & Mariano, A. B. (2014). Production and characterization of an extracellular lipase from Candida guilliermondii. Brazilian Journal of Microbiology, 45(4), 1503–1511.

    Article  CAS  PubMed  Google Scholar 

  • Onofre, S. B., Mattiello, S. P., da Silva, G. C., Groth, D., & Malagi, I. (2013). Production of cellulases by the endophytic fungus Fusarium oxysporum. Journal of Microbiology, 3, 131–134.

    Google Scholar 

  • Owen, N. L., & Hundley, N. (2004). Endophytes – The chemical synthesizers inside plants. Science Progress, 87, 79–99.

    Article  CAS  PubMed  Google Scholar 

  • Pachauri, P., Aranganathan, V., More, S., Sullia, S. B., & Deshmukh, S. (2017). Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels, 1, 7.

    Google Scholar 

  • Patil, M. G., Pagare, J., Patil, S. N., & Sidhu, A. K. (2015a). Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. International Journal of Current Microbiology and Applied Sciences, 4, 1035–1042.

    CAS  Google Scholar 

  • Patil, M. P., Patil, R. H., & Maheshwari, V. L. (2015b). Biological activities and identification of bioactive metabolite from endophytic Aspergillus flavus L7 isolated from Aeglemarmelos. Current Microbiology, 71, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Peng, X. W., & Chen, H. Z. (2007). Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Annals of Microbiology, 57(2) 239–242.

    Google Scholar 

  • Petrini, O., & Fisher, P. J. (1988). A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Transactions of the British Mycological Society, 91, 233–238.

    Article  Google Scholar 

  • Petrini, O., Sieber, T. N., Toti, L., & Viret, O. (1992). Ecology, metabolite production and substrate utilization in endophytic fungi. Natural Toxins, 1, 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.

    Article  CAS  PubMed  Google Scholar 

  • Prabha, P., Govindan, K., Suganya, K., & Murugan, M. (2018). Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egyptian Journal of Basic and Applied Sciences, 5(4), 303–312.

    Google Scholar 

  • Prabavathy, D., & Nachiyar, V. (2012). Screening for extracellular enzymes and production of cellulase by an endophytic Aspergillus sp, Using Cauliflower Stalk as substrate. International Journal of Applied Biomedical Engineering, 6(2).

    Google Scholar 

  • Prabavathy, D., & Nachiyar, V. (2013). Screening the Bioactivity of ethyl acetate extract of endophytic Phoma sp. isolated from Vitex negundo. International conference on chemical and environmental engineering, pp. 15–16.

    Google Scholar 

  • Puntambekar, U. S. (1995). Cellulase production by the edible mushroom Volvarielladiplasia. World Journal of Microbiology and Biotechnology, 11, 695.

    Article  CAS  PubMed  Google Scholar 

  • Puri, S. C., Verma, V., Amna, T., Qazi, G. N., & Spiteller, M. (2005). An endophytic fungus from Nothapodytesfoetidathat produces Camptothecin. Journal of Natural Products, 68, 1717–1719.

    Article  CAS  PubMed  Google Scholar 

  • Rabha, A. J., Naglot, A., Sharma, G. D., Gogoi, H. K., & Veer, V. (2014). In vitro evaluation of antagonism of endophytic Colletotrichumgloeosporioides against potent fungal pathogens of Camelliasinensis. Indian Journal of Microbiology, 54, 302–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju, D. C., Thomas, S. M., & Thomas, S. E. (2015). Screening for extracellular enzyme production in endophytic fungi isolation from Calophylluminophyllum L leaves. Journal of Chemical and Pharmaceutical Research, 7, 900–904.

    Google Scholar 

  • Ramawat, K. G., Dass, S., & Mathur, M. (2009). The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In K. G. Ramawat (Ed.), Herbal drugs: Ethnomedicine to modern medicine (pp. 7–32). Springer.

    Chapter  Google Scholar 

  • Ratnaweera, P. B., Williams, D. E., de Silva, E. D., Wijesundera, R. L., Dalisay, D. S., & Andersen, R. J. (2014). Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilussetaceusendemic to Sri Lanka. Mycology, 5, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Ratnaweera, P. B., Williams, D. E., Patrick, B. O., de Silva, E. D., & Andersen, R. J. (2015). Solanioic acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solaniisolated from tubers of the medicinal plant Cyperus rotundus. Organic Letters, 17, 2074–2077.

    Article  CAS  PubMed  Google Scholar 

  • Redman, R. S., Sheehan, K. B., Stout, R. G., Rodrigues, R. J., & Henson, J. M. (2002). Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science, 298, 1581.

    Article  CAS  PubMed  Google Scholar 

  • Rehman, S., Shawl, A. S., Sultana, S., Kour, A., Riyaz-ul-hassan, S., Ghulam, N., & Q. (2009). In vitro cytotoxicity of an endophytic fungus isolated from Nothapodytesfoetida. Annales de Microbiologie, 59, 157–161.

    Article  CAS  Google Scholar 

  • Reiter, B., Pfeifer, U., Schwab, H., & Sessitsch, A. (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora sub sp. atroseptica. Applied and Environmental Microbiology, 68, 2261–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riga, E., Lacey, L. A., & Guerra, N. (2008). Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biological Control, 45, 380–385.

    Article  Google Scholar 

  • Rollinger, J. L., & Langenheim, J. H. (2018). Geographic survey of fungal endophyte community composition in leaves of coastal redwood. Mycologia, 85(2), 149–156.

    Article  Google Scholar 

  • Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N., (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 278, 1–9.

    Google Scholar 

  • Sahoo, K., Dhal, N. K., & Das, R. (2014). Production of amylase enzyme from mangrove fungal isolates. African Journal of Biotechnology, 13, 4338–4346.

    Google Scholar 

  • Saikkonen, K., Wäli, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte-plant symbioses. Trends in Plant Science, 9, 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Saleem, A., & Ebrahim, M. K. H. (2014). Production of amylase by fungi isolated from legume seeds collected in AlmadinahAlmunawwarah Saudi Arabia. Journal of Taibah University for Science, 8, 90–97.

    Article  Google Scholar 

  • Sara, B., Noreddine, K. C., & Jacqueline, D. (2016). Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the East of Algeria. African Journal of Biotechnology, 15, 207–213.

    Article  CAS  Google Scholar 

  • Saxena, R. K., Malhotra, B., & Batra, A. (2005). Commercial importance of some fungal enzymes. In D. K. Arora (Ed.), Handbook of fungal biotechnology (2nd ed., pp. 287–298). Marcel Dekker.

    Google Scholar 

  • Schard, C. L., Leuchtmann, A., & Spiering, M. J. (2004). Symbioses of grasses with seed borne fungal endophytes. Annual Review of Plant Biology, 55, 315–340.

    Article  CAS  Google Scholar 

  • Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661–686.

    Article  PubMed  Google Scholar 

  • Schulz, B., & Boyle, C. (2006). What are endophytes? In B. Schulz, C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes. Soil biology (Vol. 9, pp. 1–13). Springer.

    Chapter  Google Scholar 

  • Schulz, B., Boyle, C., Draeger, S., Rommert, A. K., & Krohn, K. (2002). Endophytic fungi: A source of novel biologically active secondary metabolites. Mycological Research, 9, 996–1004.

    Article  CAS  Google Scholar 

  • Senthilmurugan, V. I. J. I. G., Sekar, R., Kuru, S., & Balamurugan, S. (2013). Phytochemical Screening, Enzyme and Antibacterial activity analysis if Endophytic Fungi Botrytis sp. Isolated From Ficus Benghalensis(L.). International Journal of Pharma and Bio Sciences, 2(4), 264–273.

    Google Scholar 

  • Sharma, D., Pramanik, A., & Agrawal, P. K. (2016). Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglectaBAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3Biotech, 6(2), 210.

    Google Scholar 

  • Sieber, T. N. (1985) EndophytischePilze von Winterweizen (Triticum aestivum L.). Ein Vergleich Zwischen Weizenausgebeiztem und solchemausungebeiztemSaatgut. Ph.D. thesis. Zurich.

    Google Scholar 

  • Sieber, T. N. (1988). EndophytischePilze in Nadeln von gesunden und geschädigten Fichten [Piceaabies (L.) Karst.]. European Journal of Plant Pathology, 18, 321–342.

    Google Scholar 

  • Sieber, T. N. (1989). Endophytic fungi in twigs of healthy and diseased Norway spruce and white fir. Mycological Research, 92, 322–326.

    Article  Google Scholar 

  • Sieber, T. N. (2007). Endophytic fungi in forest trees: Are they mutualists? Fungal Biology Reviews, 21, 75–89.

    Article  Google Scholar 

  • Sinclair, J. B., & Cerkauskas, R. F. (1996). Latent infection vs. endophytic colonization by fungi. In S. C. Redlin & L. M. Carris (Eds.), Endophytic fungi in grasses and woody plants: Systematics, ecology, and evolution (pp. 3–29). APS Press.

    Google Scholar 

  • Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E., & Hadar, Y. (2007). Basidiomycete’s laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme and Microbial Technology, 41, 57–61.

    Article  CAS  Google Scholar 

  • Souza, P. M., & Magalhaes, P. O. (2010). Application of microbial a-amylase in industry—A review. Brazilian Journal of Microbiology, 41, 850–861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Srilakshmi, J., Madhavi, J., Lavanya, S., & Ammani, K. (2015). Commercial potential of fungal protease: Past, present and future prospects. International Journal of Pharmaceutical, Chemical and Biological Sciences, 2, 218–234.

    CAS  Google Scholar 

  • Srivastava, A., & Kar, R. (2009). Characterization and application of tannase produced by Aspergillus niger ITCC 651407 on pomegranate rind. Brazilian Journal of Microbiology, 40, 782–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinson, M., Ezra, D., Hess, W. M., Sears, J., & Strobel, G. A. (2003). An endophytic Gliocladium sp. of Eucryphiacordifolia producing selective volatile antimicrobial compounds. Plant Science, 165, 913–922.

    Article  CAS  Google Scholar 

  • Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel, G. A., Dirksie, E., & Sears, & Markworth, C. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G., Ford, E., Worapong, J., Harper, J. K., Arif, A. M., Grant, D. M., Fung, P. C., & Chau, R. M. W. (2002). Isopestacin, an isobenzofuranone from Pestalotiopsismicrospora, possessing antifungal and antioxidant activities. Phytochemistry, 60, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Strobel, G., Tomsheck, A., Geary, B., Spakowicz, D., Strobel, S., Mattner, S., & Mann, R. (2010). Endophyte Strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology, 1, 187–194.

    Article  CAS  Google Scholar 

  • Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases-production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832–844.

    CAS  Google Scholar 

  • Sunitha, V. H., Devi, D. N., & Srinivas, C. (2013). Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World Journal of Agricultural Sciences, 9, 1–9.

    CAS  Google Scholar 

  • Suryanarayan, T. S., Kumarsan, V., & Jonson, J. A. (1998). Foliar fungal endophytes from two species of the mangrove Rhizophora. Canadian Journal of Microbiology, 44, 1003–1006.

    Article  Google Scholar 

  • Suryanarayanan, T. S. (1992). Light-incubation: a neglected procedure in mycology. Mycologist, 6, 144.

    Article  Google Scholar 

  • Suryanarayanan, T. S., Thirunavukkarasu, N., Govindarajulu, M. B., Sasse, F., Jansen, R., & Murali, T. S. (2009). Fungal endophytes and bioprospecting: An appeal for a concerted effort. Fungal Biology, 23(1-2), 9–19.

    Article  Google Scholar 

  • Suto, M., Takebayashi, M., Saito, K., Tanaka, M., Yokota, A., & Tomita, F. (2002). Endophytes as producers of xylanase. Journal of Bioscience and Bioengineering, 93, 88–90.

    Article  CAS  PubMed  Google Scholar 

  • Tadych, M., Bergen, M. S., & White, J. F., Jr. (2014). Epichloe spp. associated with grasses: New insights on life cycles, dissemination and evolution. Mycologia, 106(2), 181–201.

    Article  PubMed  Google Scholar 

  • Tan, R. X., & Zou, W. X. (2001). Endophytes: A rich source of functional metabolites. Natural Product Reports, 18, 448–449.

    Article  CAS  PubMed  Google Scholar 

  • Tawfike, A. F., Romli, M., Clements, C., Abbott, G., Young, L., Schumacher, M., Edrada, E., & R. (2019). Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillusflocculus via bioactivity guided isolation and MS based metabolomics. Journal of Chromatography B, 1106–1107, 71–83.

    Article  CAS  Google Scholar 

  • Tian, J., Fu, L., Zhang, Z., Dong, X., Xu, D., Mao, Z., Liu, Y., Lai, D., & Zhou, L. (2017). Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: Isolation, structure elucidation, and their antibacterial and antioxidant activities. Natural Product Research, 31, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Torres, D. P. M., Goncalves, M. P. F., Teixeir, J. A., & Rodrigues, L. R. (2010). Galacto-oligosaccharides: Production properties applications and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9, 438–454.

    Article  CAS  PubMed  Google Scholar 

  • Ul-Haq, I., Idrees, S., & Rajoka, M. I. (2002). Production of lipases by Rhizopus oligosporus by solid-state fermentation. Process Biochemistry, 37, 637–641.

    Article  CAS  Google Scholar 

  • Ullrich, R., Huong, L. M., Dung, N. L., & Hofrichter, M. (2005). Laccase from the medicinal mushroom Agaricus blazei: Production purification and characterization. Applied Microbiology and Biotechnology, 67, 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Valladao, A. B. G., Sartore, P. E., Freire, D. M. G., & Cammarota, M. C. (2009). Evaluation of different pre-hydrolysis times and enzyme pool concentrations on the biodegradability of poultry slaughterhouse wastewater with a high fat content. Water Science and Technology, 60(1), 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Valladao, A. B. G., Torres, A. G., Freire, D. M., & Cammarota, M. C. (2011). Profiles of fatty acids and triacylglycerols and their influence on the anaerobic biodegradability of effluents from poultry slaughterhouse. Bioresource Technology, 102, 7043–7050.

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le, V., & A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. The New Phytologist, 206(4), 1196–1206.

    Article  PubMed  Google Scholar 

  • Vázquez, M. A., Cabrera, E. C. V., Aceves, M. A., & Mallol, J. L. F. (2018). Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fbrous substrates. Biotechnology Research and Innovation, 3(1), 177–186.

    Article  Google Scholar 

  • Veselá, M., & Friedrich, J. (2009). Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomycesmarquandii. Biotechnology and Bioprocess Engineering, 14, 84–90.

    Article  CAS  Google Scholar 

  • Wagenaar, M. M., Corwin, J., Strobel, G., & Clardy, J. (2000). Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. Journal of Natural Products, 63, 1692–1695.

    CAS  PubMed  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., Von Wettstein, D., Franken, P., & Kogel, K. H. (2005). The endophytic fungus Piriformsporaindica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences USA, 102, 13386–13391.

    Article  CAS  Google Scholar 

  • Wang, Y., & Guo, L. D. (2007). A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Canadian Journal of Botany, 85, 911–917.

    Article  Google Scholar 

  • Wang, H. T., & Hsu, J. T. (2006). Usage of enzyme substrate to protect the activities of cellulase protease and α-amylase in simulations of monogastric animal and avian sequential total tract digestion. Asian-Australasian Journal of Animal Sciences, 19, 1164–1173.

    Article  CAS  Google Scholar 

  • Wang, J., Li, G., Lu, H., Zheng, Z., Huang, Y., & Su, W. (2000). Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxusmairei. FEMS Microbiology Letters, 193, 249–253.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Zheng, Z., Liu, S., Zhang, H., Li, E., Guo, L., & Che, Y. (2010). Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. Journal of Natural Products, 73, 920–924.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. W., Xu, B. G., Wang, J. Y., Su, Z. Z., Lin, F.-C., Zhang, C. L., & Kubicek, C. P. (2012). Bioactive metabolites from Phomaspecies, an endophytic fungus from the Chinese medicinal plant Arisaemaerubescens. Applied Microbiology and Biotechnology, 93, 1231–1239.

    CAS  PubMed  Google Scholar 

  • Wang, Q. X., Bao, L., Yang, X. L., Liu, D. L., Guo, H., Dai, H. Q., Song, F. H., Zhang, L. X., Guo, L. D., & Li, S. J. (2013). Ophiobolins P–T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia, 90, 220–227.

    Article  PubMed  CAS  Google Scholar 

  • Weber, D., Sterner, O., Anke, T., Gorzalczancy, S., Martino, V., & Acevedo, C. (2004). Phomol, a new anti-inflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. The Journal of Antibiotics, 57, 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Weihua, Q., & Hongzhang, C. (2008). An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. BioresourTechnol, 99, 5480–5484.

    Article  CAS  Google Scholar 

  • Wen, X., Jia, Y., & Li, J. (2009). Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaetechrysosporium—A white rot fungus. Chemosphere, 75, 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  • White, J. F. (1988). Endophyte-host associations in forage grasses. A proposal concerning origin and evolution. Mycologia, 80(4), 442–446.

    Article  Google Scholar 

  • Wohlgemuth, R. (2010). Biocatalysis-key to sustainable industrial chemistry. Current Opinion in Biotechnology, 21, 713–724.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S. H., Chen, Y. W., Shao, S. C., Wang, L. D., Yu, Y., Li, Z. Y., Yang, L. Y., Li, S. L., & Huang, R. (2009). Two new solanapyrone analogues from the endophytic fungus Nigrospora sp. YB-141 of Azadirachta indica. Chemistry & Biodiversity, 6, 79–85.

    Article  CAS  Google Scholar 

  • Xu, Q. Y., Huang, Y. J., Zheng, Z. H., & Song, S. Y. (2005). Purification, elucidation and activities study of cytosporone. Journal of Xiamen University Natural Science, 44, 425–428.

    CAS  Google Scholar 

  • Yadav, A. N. (2015). Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. thesis, IARI, New Delhi/BIT, Ranchi. p. 234.

    Google Scholar 

  • Yao, J., Guo, G. S., Ren, G. H., & Liu, Y. H. (2014). Production, characterization and applications of tannase. Journal of Molecular Catalysis B, 101, 137–147.

    Article  CAS  Google Scholar 

  • Yasser, M. M., Mousa, A. S. M., Marzouk Marym, A., & Tagyan, A. I. (2019). Molecular identification, extracellular enzyme production and antimicrobial activity of endophytic fungi isolated from solanum tuberosum L. in Egypt. Biosciences Biotechnology Research Asia, 16(1), 135–142.

    Article  Google Scholar 

  • Ye, Z., Pan, Y., Zhang, Y., Cui, H., Jin, G., McHardy, A. C., Fan, L., & Yu, X. (2017). Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Research, 24, 635–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, C., Wang, H. Y., Wu, C. S., Jiao, Y., Li, M., Wang, Y. Y., Wang, S. Q., Zhao, Z. T., & Lou, H. X. (2013). Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochemistry Letters, 6, 662–666.

    Article  CAS  Google Scholar 

  • Yuan, Z., Tian, Y., He, F., & Zhou, H. (2019). Endophytes from Ginkgobiloba and their secondary metabolites. Chinese Medicine, 14(1), 14–51.

    Article  CAS  Google Scholar 

  • Zabalgogeazcoa, I. (2008). Fungal endophytes and their interections with plant pathogens. Spanish Journal of Agricultural Research, 6, 138–146.

    Article  Google Scholar 

  • Zhang, S. S.-Q. O. M., & Qi-Yong, Z.-D. T. (2007). Isolation and characterization of endophytic microorganisms in glycyrrhiza inflata Bat. from Xinjiang [J]. Microbiology, 5, 14.

    Google Scholar 

  • Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23, 753–771.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. Y., Tao, L. Y., Liang, Y. J., Chen, L. M., Mi, Y. J., & Zheng, L. S. (2010). Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Marine Drugs, 8, 1469–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Li, L., Niu, S., Si, Y., Guo, L., Jiang, X., & Che, Y. (2012). A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussiaafricana. Journal of Natural Products, 75, 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y. G., Gong, S., Zhang, J., Wang, L., & Yu, X. (2014). A new species of the genus Trematosphaeriafrom China. Mycological Progress, 13, 33–43.

    Google Scholar 

  • Zhou, P., Wu, Z., Tan, D., Yang, J., Zhou, Q., Zeng, F., Zhang, M., Bie, Q., Chen, C., & Xue, Y. (2017). Atrichodermones A–C, three new secondary metabolites from the solid culture of an fungal strain, Trichoderma atroviride. Fitoterapia, 123, 18–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Shukla, A.C., Tangjang, S. (2022). Fungal Endophytes: A Potential Source of Low-Cost Entrepreneurship. In: Shukla, A.C. (eds) Applied Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-90649-8_2

Download citation

Publish with us

Policies and ethics