Skip to main content

“Overloading” Cognitive (Work)Load: What Are We Really Measuring?

  • Conference paper
  • First Online:
Information Systems and Neuroscience (NeuroIS 2021)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 52))

Included in the following conference series:

Abstract

Cognitive load is one of the most studied constructs in NeuroIS [1]. Not surprisingly, we have identified 27 papers presented at NeuroIS retreats between 2012 and 2020 which included measurement of cognitive load or related constructs. This paper reviews terminology used to refer to cognitive load, mental workload and its variations, as well as their operationalizations and measurements. All 27 papers employed physiological NeuroIS measures, while six of them additionally used subjective self-ratings. The wide range of measurements prompts us to question if we are measuring the same construct. We provide an overview and a summary of cognitive load terminology and measurement used in these 27 papers and conclude with recommendations for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, T., Davis, F.D., Riedl, R.: NeuroIS: a survey on the status of the field. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 29, pp. 1–10. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01087-4_1

    Chapter  Google Scholar 

  2. Moray, N.: Models and measures of mental workload. In: Moray, N. (ed.) Mental Workload: Its Theory and Measurement, pp. 13–21. Springer US, Boston (1979). https://doi.org/10.1007/978-1-4757-0884-4_2

  3. Baddeley, A.D.: Cognitive psychology and human memory. Trends Neurosci. 11, 176–181 (1988). https://doi.org/10.1016/0166-2236(88)90145-2

    Article  Google Scholar 

  4. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4, 295–312 (1994)

    Article  Google Scholar 

  5. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3, 159–177 (2002)

    Article  Google Scholar 

  6. Baddeley, A.: Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29 (2012). https://doi.org/10.1146/annurev-psych-120710-100422

    Article  Google Scholar 

  7. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2017. CCIS, vol. 726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0

    Book  Google Scholar 

  8. Longo, L., Leva, M.C. (eds.): H-WORKLOAD 2020. CCIS, vol. 1318. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62302-9

    Book  Google Scholar 

  9. Orru, G., Longo, L.: The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and germane loads: a review. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 23–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_3

    Chapter  Google Scholar 

  10. de Guinea, A.O., Titah, R., Leger, P., Micheneau, T.: Neurophysiological correlates of information systems commonly used self-reported measures: a multitrait multimethod study. In: 2012 45th Hawaii International Conference on System Sciences, pp. 562–571 (2012). https://doi.org/10.1109/HICSS.2012.448

  11. de Guinea, A.O., Titah, R., Leger, P.-M.: Neurophysiological correlates of information systems commonly used self-reported measures: a multitrait multimethod study. In: Proceedings Gmunden Retreat on NeuroIS 2012, Gmunden, Austria (2012)

    Google Scholar 

  12. Buettner, R.: Analyzing mental workload states on the basis of the pupillary hippus. In: Proceedings Gmunden Retreat on NeuroIS 2014, p. 1, Gmunden, Austria (2014)

    Google Scholar 

  13. Buettner, R.: Investigation of the relationship between visual website complexity and users’ mental workload: a NeuroIS perspective. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 10, pp. 123–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18702-0_16

    Chapter  Google Scholar 

  14. Dumont, L., Chénier-Leduc, G., de Guise, É., de Guinea, A.O., Sénécal, S., Léger, P.-M.: Using a cognitive analysis grid to inform information systems design. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 10, pp. 193–199. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18702-0_26

    Chapter  Google Scholar 

  15. Neurauter, M., et al.: The influence of cognitive abilities and cognitive load on business process models and their creation. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 10, pp. 107–115. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18702-0_14

    Chapter  Google Scholar 

  16. Randolph, A.B., Labonté-LeMoyne, É., Léger, P.-M., Courtemanche, F., Sénécal, S., Fredette, M.: Proposal for the use of a passive BCI to develop a neurophysiological inference model of IS constructs. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 10, pp. 175–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18702-0_23

    Chapter  Google Scholar 

  17. Weber, B., et al.: Measuring cognitive load during process model creation. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 10, pp. 129–136. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18702-0_17

    Chapter  Google Scholar 

  18. Booyzen, T., Marsh, A., Randolph, A.B.: Exploring the mental load associated with switching smartphone operating systems. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 16, pp. 67–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41402-7_9

    Chapter  Google Scholar 

  19. Buettner, R.: The relationship between visual website complexity and a user’s mental workload: a NeuroIS perspective. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 16, pp. 107–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41402-7_14

    Chapter  Google Scholar 

  20. Hariharan, A., Dorner, V., Adam, M.T.P.: Impact of cognitive workload and emotional arousal on performance in cooperative and competitive interactions. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 16, pp. 35–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41402-7_5

    Chapter  Google Scholar 

  21. Milic, N.(N.): Consumer grade brain-computer interfaces: an entry path into NeuroIS domains. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 16, pp. 185–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41402-7_23

    Chapter  Google Scholar 

  22. Mirhoseini, S.M.M., Léger, P.-M., Sénécal, S.: The influence of task characteristics on multiple objective and subjective cognitive load measures. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 16, pp. 149–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41402-7_19

    Chapter  Google Scholar 

  23. Buettner, R., Scheuermann, I.F., Koot, C., Rössle, M., Timm, I.J.: Stationarity of a user’s pupil size signal as a precondition of pupillary-based mental workload evaluation. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 25, pp. 195–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67431-5_22

    Chapter  Google Scholar 

  24. Léger, P.-M., Charland, P., Sénécal, S., Cyr, S.: Predicting properties of cognitive pupillometry in human–computer interaction: a preliminary investigation. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 25, pp. 121–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67431-5_14

    Chapter  Google Scholar 

  25. Seeber, I., Weber, B., Maier, R., de Vreede, G.-J.: The choice is yours: the role of cognitive processes for IT-supported idea selection. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 25, pp. 17–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67431-5_3

    Chapter  Google Scholar 

  26. Sénécal, S., Léger, P.-M., Riedl, R., Davis, F.D.: How product decision characteristics interact to influence cognitive load: an exploratory study. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 25, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67431-5_7

    Chapter  Google Scholar 

  27. Weber, B., Neurauter, M., Burattin, A., Pinggera, J., Davis, C.: Measuring and explaining cognitive load during design activities: a fine-grained approach. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 25, pp. 47–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67431-5_6

    Chapter  Google Scholar 

  28. Calic, G., Shamy, N.E., Hassanein, K., Watter, S.: Paying attention doesn’t always pay off: the effects of high attention load on evaluations of ideas. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 29, pp. 65–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01087-4_8

    Chapter  Google Scholar 

  29. Perkhofer, L., Lehner, O.: Using gaze behavior to measure cognitive load. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 29, pp. 73–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01087-4_9

    Chapter  Google Scholar 

  30. Djurica, D., Mendling, J., Figl, K.: The impact of associative coloring and representational formats on decision-making: an eye-tracking study. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A., Fischer, T. (eds.) Information Systems and Neuroscience. LNISO, vol. 32, pp. 305–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28144-1_34

    Chapter  Google Scholar 

  31. Mirhoseini, S., Hassanein, K., Head, M., Watter, S.: User performance in the face of IT interruptions: the role of executive functions. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A., Fischer, T. (eds.) Information Systems and Neuroscience. LNISO, vol. 32, pp. 41–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28144-1_5

    Chapter  Google Scholar 

  32. Abbad Andaloussi, A., Soffer, P., Slaats, T., Burattin, A., Weber, B.: The impact of modularization on the understandability of declarative process models: a research model. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 133–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_15

    Chapter  Google Scholar 

  33. Giroux, F., Boasen, J., Sénécal, S., Léger, P.-M.: Hedonic multitasking: the effects of instrumental subtitles during video watching. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 330–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_38

    Chapter  Google Scholar 

  34. Jones, T., Randolph, A.B., Cortes, K., Terrell, C.: Using NeuroIS tools to understand how individual characteristics relate to cognitive behaviors of students. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 181–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_20

    Chapter  Google Scholar 

  35. Mizrahi, D., Laufer, I., Zuckerman, I.: The effect of individual coordination ability on cognitive-load in tacit coordination games. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 244–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_28

    Chapter  Google Scholar 

  36. Ocón Palma, M.D.C., Seeger, A.-M., Heinzl, A.: Mitigating information overload in e-commerce interactions with conversational agents. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A., Fischer, T. (eds.) Information Systems and Neuroscience. LNISO, vol. 32, pp. 221–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28144-1_24

    Chapter  Google Scholar 

  37. Randolph, A., Mekbib, S., Calvert, J., Cortes, K., Terrell, C.: Application of NeuroIS tools to understand cognitive behaviors of student learners in biochemistry. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A., Fischer, T. (eds.) Information Systems and Neuroscience. LNISO, vol. 32, pp. 239–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28144-1_26

    Chapter  Google Scholar 

  38. McGregor, M., Azzopardi, L., Halvey, M.: Untangling cost, effort, and load in information seeking and retrieval. In: CHIIR 2021, p. 11 (2021)

    Google Scholar 

  39. Cameron, A.-F., Webster, J.: Multicommunicating: juggling multiple conversations in the workplace. Inf. Syst. Res. 24, 352–371 (2012). https://doi.org/10.1287/isre.1120.0446

    Article  Google Scholar 

  40. Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 50, 904–908 (2006). https://doi.org/10.1177/154193120605000909

  41. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research (1988)

    Google Scholar 

  42. Xie, B., Salvendy, G.: Prediction of metal workload in single and multiple task environments. Int. J. Cogn. Ergon. 4, 213–242 (2000)

    Article  Google Scholar 

  43. Coyne, J.T., Baldwin, C., Cole, A., Sibley, C., Roberts, D.M.: Applying real time physiological measures of cognitive load to improve training. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS (LNAI), vol. 5638, pp. 469–478. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02812-0_55

    Chapter  Google Scholar 

  44. Pope, A.T.: Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 40, 187–195 (1995). https://doi.org/10.1016/0301-0511(95)05116-3

  45. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison of machine learning methods and subjective assessment techniques. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_3

    Chapter  Google Scholar 

  46. Zagermann, J., Pfeil, U., Reiterer, H.: Measuring cognitive load using eye tracking technology in visual computing. Presented at the Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, 24 October 2016 (2016). https://doi.org/10.1145/2993901.2993908

  47. Zagermann, J., Pfeil, U., Reiterer, H.: Studying eye movements as a basis for measuring cognitive load. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 1–6. Association for Computing Machinery (2018). https://doi.org/10.1145/3170427.3188628

  48. Duchowski, A.T., et al.: The index of pupillary activity: measuring cognitive load vis-à-vis task difficulty with pupil oscillation. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 282:1–282:13. ACM (2018). https://doi.org/10.1145/3173574.3173856

  49. Antonenko, P., Paas, F., Grabner, R., van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22, 425–438 (2010). https://doi.org/10.1007/s10648-010-9130-y

    Article  Google Scholar 

  50. Longo, L., Orru, G.: An evaluation of the reliability, validity and sensitivity of three human mental workload measures under different instructional conditions in third-level education. In: McLaren, B.M., Reilly, R., Zvacek, S., Uhomoibhi, J. (eds.) CSEDU 2018. CCIS, vol. 1022, pp. 384–413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21151-6_19

    Chapter  Google Scholar 

  51. Bracken, B., et al.: Validation of a physiological approach to measure cognitive workload: CAPT PICARD. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2019. CCIS, vol. 1107, pp. 66–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32423-0_5

    Chapter  Google Scholar 

  52. Riedl, R., Léger, P.-M.: Topics in NeuroIS and a taxonomy of neuroscience theories in NeuroIS. In: Riedl, R., Léger, P.-M. (eds.) Fundamentals of NeuroIS. SNPBE, pp. 73–98. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-45091-8_4

    Chapter  Google Scholar 

Papers on CL Measurement Cited in the Reviewed 27 Papers (Note: May Somewhat Overlap with the References Above)

  1. Antonenko, P., Paas, F., Grabner, R., van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22, 425–438 (2010). https://doi.org/10.1007/s10648-010-9130-y

    Article  Google Scholar 

  2. Bagyaraj, S., Ravindran, G., Devi, S.S.: Analysis of spectral features of EEG during four different cognitive tasks. Int. J. Eng. Technol. 6, 10 (2014)

    Google Scholar 

  3. Berka, C., et al.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78, B231-244 (2007)

    Google Scholar 

  4. Bouma, H., Baghuis, L.C.: Hippus of the pupil: periods of slow oscillations of unknown origin. Vision. Res. 11, 1345–1351 (1971). https://doi.org/10.1016/0042-6989(71)90016-2

    Article  Google Scholar 

  5. Brűnken, R., Plass, J.L., Leutner, D.: Direct measurement of cognitive load in multimedia learning. Educ. Psychol. 38, 53–61 (2003)

    Article  Google Scholar 

  6. Campbell, F.W., Robson, J.G., Westheimer, G.: Fluctuations of accommodation under steady viewing conditions. J. Physiol. 145, 579–594 (1959). https://doi.org/10.1113/jphysiol.1959.sp006164

    Article  Google Scholar 

  7. Chen, F., et al.: Eye-based measures. In: Chen, F., et al. (eds.) Robust Multimodal Cognitive Load Measurement. HIS, pp. 75–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31700-7_4

    Chapter  Google Scholar 

  8. Czajka, A.: Pupil dynamics for iris liveness detection. IEEE Trans. Inf. Forensics Secur. 10, 726–735 (2015). https://doi.org/10.1109/TIFS.2015.2398815

    Article  Google Scholar 

  9. Elchlepp, H., Best, M., Lavric, A., Monsell, S.: Shifting attention between visual dimensions as a source of switch costs. Psychol. Sci. 28, 470–481 (2017). https://doi.org/10.1177/0956797616686855

    Article  Google Scholar 

  10. Friedman, N., Fekete, T., Gal, K., Shriki, O.: EEG-based prediction of cognitive load in intelligence tests. Front. Hum. Neurosci. 13 (2019). https://doi.org/10.3389/fnhum.2019.00191

  11. Gärtner, M., Grimm, S., Bajbouj, M.: Frontal midline theta oscillations during mental arithmetic: effects of stress. Front. Behav. Neurosci. 9 (2015). https://doi.org/10.3389/fnbeh.2015.00096

  12. Goldinger, S.D., Papesh, M.H.: Pupil dilation reflects the creation and retrieval of memories. Curr. Dir. Psychol. Sci. 21, 90–95 (2012). https://doi.org/10.1177/0963721412436811

    Article  Google Scholar 

  13. Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, New York, NY, USA, pp. 301–310. Association for Computing Machinery (2010). https://doi.org/10.1145/1864349.1864395

  14. Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem-solving. Science 143, 1190–1192 (1964). https://doi.org/10.1126/science.143.3611.1190

    Article  Google Scholar 

  15. Klimesch, W., Schimke, H., Schwaiger, J.: Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiol. 91, 428–441 (1994). https://doi.org/10.1016/0013-4694(94)90164-3

    Article  Google Scholar 

  16. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999). https://doi.org/10.1016/S0165-0173(98)00056-3

    Article  Google Scholar 

  17. Klimesch, W., Sauseng, P., Hanslmayr, S.: EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 53, 63–88 (2007). https://doi.org/10.1016/j.brainresrev.2006.06.003

    Article  Google Scholar 

  18. Knapen, T., de Gee, J.W., Brascamp, J., Nuiten, S., Hoppenbrouwers, S., Theeuwes, J.: Cognitive and ocular factors jointly determine pupil responses under equiluminance. PLoS ONE 11, e0155574 (2016). https://doi.org/10.1371/journal.pone.0155574

    Article  Google Scholar 

  19. Kruger, J.-L., Hefer, E., Matthew, G.: Measuring the impact of subtitles on cognitive load: eye tracking and dynamic audiovisual texts. In: Proceedings of the 2013 Conference on Eye Tracking South Africa, New York, NY, USA, pp. 62–66. Association for Computing Machinery (2013). https://doi.org/10.1145/2509315.2509331

  20. Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry a window to the preconscious? Perspect. Psychol. Sci. 7, 18–27 (2012). https://doi.org/10.1177/1745691611427305

    Article  Google Scholar 

  21. Lange, F., et al.: Neural correlates of cognitive set shifting in amyotrophic lateral sclerosis. Clin. Neurophysiol. 127, 3537–3545 (2016). https://doi.org/10.1016/j.clinph.2016.09.019

    Article  Google Scholar 

  22. Niedermeyer: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Oxford University Press (2017)

    Google Scholar 

  23. Paas, F.G., Van Merriënboer, J.J., Adam, J.J.: Measurement of cognitive load in instructional research. Percept Motor Skills 79, 419–430 (1994). https://doi.org/10.2466/pms.1994.79.1.419

    Article  Google Scholar 

  24. Paas, F., Tuovinen, J.E., Tabbers, H., Gerven, P.W.M.V.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38, 63–71 (2003). https://doi.org/10.1207/S15326985EP3801_8

    Article  Google Scholar 

  25. Pope, A.T.: Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 40, 187–195 (1995). https://doi.org/10.1016/0301-0511(95)05116-3

  26. Roux, F., Uhlhaas, P.J.: Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends Cogn. Sci. 18, 16–25 (2014). https://doi.org/10.1016/j.tics.2013.10.010

    Article  Google Scholar 

  27. Shi, Y., Ruiz, N., Taib, R., Choi, E., Chen, F.: Galvanic skin response (GSR) as an index of cognitive load. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, New York, NY, USA, pp. 2651–2656. Association for Computing Machinery (2007). https://doi.org/10.1145/1240866.1241057

  28. Siegle, G.J., Ichikawa, N., Steinhauer, S.: Blink before and after you think: blinks occur prior to and following cognitive load indexed by pupillary responses. Psychophysiology 45, 679–687 (2008). https://doi.org/10.1111/j.1469-8986.2008.00681.x

    Article  Google Scholar 

  29. Speier, C., Valacich, J.S., Vessey, I.: The influence of task interruption on individual decision making: an information overload perspective. Decis. Sci. 30, 337–360 (1999). https://doi.org/10.1111/j.1540-5915.1999.tb01613.x

    Article  Google Scholar 

  30. van Son, D., de Rover, M., De Blasio, F.M., van der Does, W., Barry, R.J., Putman, P.: Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann. N. Y. Acad. Sci. 1452, 52–64 (2019). https://doi.org/10.1111/nyas.14180

    Article  Google Scholar 

  31. Wang, Q.: An eye-tracking study of website complexity from cognitive load perspective. Decis. Support Syst. 62, 1–10 (2014)

    Article  Google Scholar 

  32. Zekveld, A.A., Heslenfeld, D.J., Johnsrude, I.S., Versfeld, N.J., Kramer, S.E.: The eye as a window to the listening brain: neural correlates of pupil size as a measure of cognitive listening load. NeuroImage 101, 76–86 (2014). https://doi.org/10.1016/j.neuroimage.2014.06.069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Gwizdka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gwizdka, J. (2021). “Overloading” Cognitive (Work)Load: What Are We Really Measuring?. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A.B., Müller-Putz, G. (eds) Information Systems and Neuroscience. NeuroIS 2021. Lecture Notes in Information Systems and Organisation, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-88900-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88900-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88899-2

  • Online ISBN: 978-3-030-88900-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics