Skip to main content

Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays

  • Chapter
  • First Online:
Nanotoxicology in Safety Assessment of Nanomaterials
  • The original version of this chapter was revised: The reference citations within the text weren’t updated in sequential order which has been corrected now. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-88071-2_18

Abstract

For safety assessment of nanomaterials (NMs), in vitro genotoxicity data based on well-designed experiments is required. Metal-based NMs are amongst the most used in consumer products. In this chapter, we report results for three metal-based NMs, titanium dioxide (NM-100), cerium dioxide (NM-212) and silver (NM-302) in V79 cells, using a set of in vitro genotoxicity assays covering different endpoints: the medium-throughput comet assay and its modified version (with the enzyme formamidopyrimidine DNA glycosylase, Fpg), measuring DNA strand beaks (SBs) and oxidized purines, respectively; the micronucleus (MN) assay, assessing chromosomal damage; and the Hprt gene mutation test. The results generated by this test battery showed that all NMs displayed genotoxic potential. NM-100 induced DNA breaks, DNA oxidation damage and point mutations but not chromosome instability. NM-212 increased the level of DNA oxidation damage, point mutations and increased the MN frequency at the highest concentration tested. NM-302 was moderately cytotoxic and induced gene mutations, but not DNA or chromosome damage. In conclusion, the presented in vitro genotoxicity testing strategy allowed the identification of genotoxic effects caused by three different metal-based NMs, raising concern as to their impact on human health. The results support the use of this in vitro test battery for the genotoxicity assessment of NMs, reducing the use of more expensive, time-consuming and ethically demanding in vivo assays, in compliance with the 3 R’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 19 July 2022

    The original version of this chapter was revised: The reference citations within the text weren’t updated in sequential order. It has been corrected now; the renumbered citations have been updated throughout the respective chapter.

References

  1. Bettencourt A, Gonçalves LM, Gramacho AC, Vieira A, Rolo D, Martins C et al (2020) Analysis of the characteristics and cytotoxicity of titanium dioxide nanomaterials following simulated in vitro digestion. Nano 10(8):1516. https://doi.org/10.3390/nano10081516

    Article  CAS  Google Scholar 

  2. Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C et al (2017) High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(1):e1413. https://doi.org/10.1002/wnan.1413

    Article  CAS  Google Scholar 

  3. Doak SH, Manshian B, Jenkins GJS, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res Genet Toxicol Environ Mutagen 745(1–2):104–111. https://doi.org/10.1016/j.mrgentox.2011.09.013

    Article  CAS  Google Scholar 

  4. Louro H, Saruga A, Santos J, Pinhão M, Silva MJ (2019) Biological impact of metal nanomaterials in relation to their physicochemical characteristics. Toxicol In Vitro 56:172–183. https://doi.org/10.1016/j.tiv.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  5. Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A et al (2018) Genotoxicity assessment of nanomaterials: recommendations on best practices, assays, and methods. Toxicol Sci 164(2):391–416. https://doi.org/10.1093/toxsci/kfy100

    Article  CAS  PubMed  Google Scholar 

  6. Louro H, Bettencourt A, Gonçalves LM, Almeida A, Silva MJ (2015) Role of nanogenotoxicology studies in safety evaluation of NMs. In: Thomas S, Grohens Y, Ninan N (eds) Nanotechnology applications for tissue engineering, vol. 1, issue 1. William. Andrew Publishing/Elsevier, pp 263–297. https://doi.org/10.1016/B978-0-323-32889-0.00016-9

  7. Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M (2020) Genotoxicity of nanomaterials: advanced in vitro models and high throughput methods for human hazard assessment – a review. Nano 10(10):1911. https://doi.org/10.3390/nano10101911

    Article  CAS  Google Scholar 

  8. Huk A, Collins AR, El Yamani N, Porredon C, Azqueta A, De Lapuente J, Dusinska M (2015b) Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 30(1):85–88. https://doi.org/10.1093/mutage/geu077

    Article  CAS  PubMed  Google Scholar 

  9. EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S et al (2018) Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: part 1, human and animal health. EFSA J 16(7):e5327. https://doi.org/10.2903/j.efsa.2018.5327

    Article  Google Scholar 

  10. Kazimirova A, El Yamani N, Rubio L, García-Rodríguez A, Barancokova M, Marcos R, Dusinska M (2020) Effects of titanium dioxide nanoparticles on the Hprt gene mutations in V79 hamster cells. Nano 10(3):465. https://doi.org/10.3390/nano10030465

    Article  CAS  Google Scholar 

  11. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278. https://doi.org/10.3109/17435390.2013.773464

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T et al (2014a) Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett 226(3):314–319. https://doi.org/10.1016/j.toxlet.2014.02.020

    Article  CAS  PubMed  Google Scholar 

  13. Jain AK, Senapati VA, Singh D, Dubey K, Maurya R, Pandey AK (2017) Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): the role of cellular uptake. Food Chem Toxicol 105:127–139. https://doi.org/10.1016/j.fct.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  14. Wang JJ, Sanderson BJS, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res Genet Toxicol Environ Mutagen 628(2):99–106. https://doi.org/10.1016/j.mrgentox.2006.12.003

    Article  CAS  Google Scholar 

  15. Huk A, Izak-Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dušinska M (2014) Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 11:65. https://doi.org/10.1186/s12989-014-0065-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huk A, Izak-Nau E, El Yamani N, Uggerud H, Vadset M, Zasonska B et al (2015a) Impact of nanosilver on various DNA lesions and HPRT gene mutations – effects of charge and surface coating. Part Fibre Toxicol 12:25. https://doi.org/10.1186/s12989-015-0100-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Asakura M, Sasaki T, Sugiyama T, Takaya M, Koda S, Nagano K et al (2010) Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile a fibers. J Occup Health 52(3):155–166. https://doi.org/10.1539/joh.L9150

    Article  CAS  PubMed  Google Scholar 

  18. Manshian BB, Jenkins GJS, Williams PM, Wright C, Barron AR, Brown AP et al (2013) Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology 7(2):144–156. https://doi.org/10.3109/17435390.2011.647928

    Article  CAS  PubMed  Google Scholar 

  19. Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Fröhlich E (2015) Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity. Toxicol Sci 144(1):114–127. https://doi.org/10.1093/toxsci/kfu260

    Article  CAS  PubMed  Google Scholar 

  20. Rubio L, El Yamani N, Kazimirova A, Dusinska M, Marcos R (2016a) Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts. Environ Res 146:185–190. https://doi.org/10.1016/j.envres.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  21. Guichard Y, Fontana C, Chavinier E, Terzetti F, Gaté L, Binet S, Darne C (2016) Cytotoxic and genotoxic evaluation of different synthetic amorphous silica nanomaterials in the V79 cell line. Toxicol Ind Health 32(9):1639–1650. https://doi.org/10.1177/0748233715572562

    Article  CAS  PubMed  Google Scholar 

  22. Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R et al (2018) Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environ Mol Mutagen 59(3):211–222. https://doi.org/10.1002/em.22163

    Article  CAS  PubMed  Google Scholar 

  23. Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJS (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24(4):285–293. https://doi.org/10.1093/mutage/gep010

    Article  CAS  PubMed  Google Scholar 

  24. El Yamani N, Collins AR, Rundén-Pran E, Fjellsbø LM, Shaposhnikov S, Zienolddiny S, Dusinska M (2017) In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis 32(1):117–126. https://doi.org/10.1093/mutage/gew060

    Article  CAS  PubMed  Google Scholar 

  25. Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson HL (2017) Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 32(1):127–137. https://doi.org/10.1093/mutage/gew030

    Article  CAS  PubMed  Google Scholar 

  26. Harris G, Palosaari T, Magdolenova Z, Mennecozzi M, Gineste JM, Saavedra L et al (2015) Iron oxide nanoparticle toxicity testing using high-throughput analysis and high-content imaging. Nanotoxicology 9(S1):87–94. https://doi.org/10.3109/17435390.2013.816797

    Article  CAS  PubMed  Google Scholar 

  27. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Hull DR (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. https://doi.org/10.3762/bjnano.6.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Younis A, Chu D, Li S (2016) Cerium oxide nanostructures and their applications. In: Farrukh MA (ed) Functionalized nanomaterials (intechopen). https://doi.org/10.5772/65937

    Chapter  Google Scholar 

  29. Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials in cosmetics: recent updates. Nano 10(5):979. https://doi.org/10.3390/nano10050979

    Article  CAS  Google Scholar 

  30. He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1–21. https://doi.org/10.1016/j.jfda.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  31. Peters RJB, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P et al (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164. https://doi.org/10.1016/j.tifs.2016.06.008

    Article  CAS  Google Scholar 

  32. Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L (2020) Titanium dioxide nanoparticles: prospects and applications in medicine. Nano 10(2):387. https://doi.org/10.3390/nano10020387

    Article  CAS  Google Scholar 

  33. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183. https://doi.org/10.1021/es103316q

    Article  CAS  PubMed  Google Scholar 

  34. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Baudrit JRV (2017) Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem 5:1–26. https://doi.org/10.3389/fchem.2017.00006

    Article  CAS  Google Scholar 

  35. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109. https://doi.org/10.1039/c2ee21818f

    Article  CAS  Google Scholar 

  36. Lee SH, Jun BH (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865. https://doi.org/10.3390/ijms20040865

    Article  CAS  PubMed Central  Google Scholar 

  37. Saleem H, Zaidi SJ (2020) Sustainable use of nanomaterials in textiles and their environmental impact. Materials 13(22):2134. https://doi.org/10.3390/ma13225134

    Article  CAS  Google Scholar 

  38. De Souza TAJ, Rocha TL, Franchi LP (2018) Detection of DNA damage induced by cerium dioxide nanoparticles: from models to molecular mechanism activated. In Saquib Q, Faisal M, Al-Khedhairy A, Alatar A (eds) Cellular and molecular toxicology of nanoparticles. Advances in experimental medicine and biology, 1048, pp 215–226. https://doi.org/10.1007/978-3-319-72041-8_13

  39. Reed K, Cormack A, Kulkarni A, Mayton M, Sayle D, Klaessig F, Stadler B (2014) Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ Sci Nano 1(5):390–405. https://doi.org/10.1039/c4en00079j

    Article  CAS  Google Scholar 

  40. Singh K, Nayak V, Sarkar T, Singh RP (2020) Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 10(45):27194–27214. https://doi.org/10.1039/d0ra04736h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dhall A, Self W (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 7(8):97. https://doi.org/10.3390/antiox7080097

    Article  CAS  PubMed Central  Google Scholar 

  42. OECD (2010) OECD series on the safety of manufactured nanomaterials, No 27. List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision. ENV/JM/MONO(2010)46, OECD Publishing, Paris

    Google Scholar 

  43. OECD (2015) OECD Series on the Safety of Manufactured Nanomaterials, No. 45. Dossier on cerium oxide. ENV/JM/MONO(2015)8, OECD Publishing, Paris

    Google Scholar 

  44. OECD (2016a) Titanium dioxide: summary of the dossier. In: Series on the safety of manufactured nanomaterials. No. 73 ENV/JM/MONO, 25 OECD Environment, Health and Safety Publications, vol. 73

    Google Scholar 

  45. OECD (2017a) OECD series on the safety of manufactured nanomaterials, No. 83. silver nanoparticles: summary of the dossier. ENV/JM/MONO(2017)31. OECD Publishing, Paris

    Google Scholar 

  46. ECHA (2014) Community rolling action plan (CoRAP) update covering years 2014, 2015 and 2016. Retrieved from https://echa.europa.eu/documents/10162/13628/corap_list_2014-2016_en.pdf

  47. ECHA (2018) Community rolling action plan update covering years 2016, 2017 and 2018. Retrieved from https://echa.europa.eu/documents/10162/13628/corap_update_20172019_en.pdf/6a394595-a4e5-0e10-ec66-eabdc55ce7f6

  48. ECHA (2021a) Community rolling action plan (CoRAP) update covering the years 2021, 2022 and 2023. Retrieved from https://echa.europa.eu/documents/10162/9801478/corap_update_2021-2023_en.pdf/fdb46fb0-21a2-1ab7-3ce2-74dbe509a60f

  49. IARC (2010) IARC Monographs on the evaluation of carcinogenic risks to humans: carbon black, titanium dioxide, and talc. Vol. 93, Lyon, France. https://doi.org/10.1136/jcp.48.7.691-a

  50. Dankovic DA, Kuempel ED (2011) Occupational exposure to titanium dioxide National Institute for Occupational Safety and Health (ed.). NIOSH Current Intelligence Bulletin, 63. https://stacks.cdc.gov/view/cdc/5922

  51. Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C (2018) Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 12(4):357–374. https://doi.org/10.1080/17435390.2018.1451567

    Article  CAS  PubMed  Google Scholar 

  52. EFSA Panel on Food Additives and Flavourings, Younes M, Aquilina G, Castle L, Engel K-H, Fowler P et al (2021) Scientific opinion on the safety assessment of titanium dioxide (E171) as a food additive. EFSA J 19(5):e6585. https://doi.org/10.2903/j.efsa.2021.6585

    Article  CAS  Google Scholar 

  53. Wang S, Hunter LA, Arslan Z, Wilkerson MG, Wickliffe JK (2011) Chronic exposure to nanosized, anatase titanium dioxide is not cyto- or genotoxic to Chinese hamster ovary cells. Environ Mol Mutagen 52(8):614–622. https://doi.org/10.1002/em.20660

    Article  CAS  PubMed  Google Scholar 

  54. García-Rodríguez A, Rubio L, Vila L, Xamena N, Velázquez A, Marcos R, Hernández A (2019a) The comet assay as a tool to detect the genotoxic potential of nanomaterials. Nano 9(10):1385. https://doi.org/10.3390/nano9101385

    Article  CAS  Google Scholar 

  55. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials 6:e90. https://doi.org/10.1038/am.2013.88

    Article  CAS  Google Scholar 

  56. De Marzi L, Monaco A, De Lapuente J, Ramos D, Borras M, Gioacchino D et al (2013) Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci 14(2):3065–3077. https://doi.org/10.3390/ijms14023065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frieke Kuper C, Gröllers-Mulderij M, Maarschalkerweerd T, Meulendijks NMM, Reus A, van Acker F et al (2015) Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance. Toxicol In Vitro 29(2):389–397. https://doi.org/10.1016/j.tiv.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  58. Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int 2014:891934. https://doi.org/10.1155/2014/891934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rubio L, Annangi B, Vila L, Hernández A, Marcos R (2016b) Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol 90(2):269–278. https://doi.org/10.1007/s00204-015-1468-y

    Article  CAS  PubMed  Google Scholar 

  60. Rubio L, Marcos R, Hernández A (2018) Nanoceria acts as antioxidant in tumoral and transformed cells. Chem Biol Interact 291:7–15. https://doi.org/10.1016/j.cbi.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez-Garraus A, Azqueta A, Vettorazzi A, de Cerain AL (2020) Genotoxicity of silver nanoparticles. Nano 10(2):251. https://doi.org/10.3390/nano10020251

    Article  CAS  Google Scholar 

  62. Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK (2015) Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30(4):577–591. https://doi.org/10.1093/mutage/gev020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. García-Rodríguez A, Kazantseva L, Vila L, Rubio L, Velázquez A, Ramírez MJ et al (2019b) Micronuclei detection by flow cytometry as a high-throughput approach for the genotoxicity testing of nanomaterials. Nano 9(12):1677. https://doi.org/10.3390/nano9121677

    Article  CAS  Google Scholar 

  64. Guo X, Li Y, Yan J, Ingle T, Jones MY, Mei N et al (2016) Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 10(9):1373–1384. https://doi.org/10.1080/17435390.2016.1214764

    Article  CAS  PubMed  Google Scholar 

  65. Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, Hayashi Y et al (2013) Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222(1):55–63. https://doi.org/10.1016/j.toxlet.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  66. Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res Genet Toxicol Environ Mutagen 726(2):129–135. https://doi.org/10.1016/j.mrgentox.2011.08.008

    Article  CAS  Google Scholar 

  67. Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, Biris AS et al (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 745(1–2):4–10. https://doi.org/10.1016/j.mrgentox.2011.11.010

    Article  CAS  Google Scholar 

  68. Li Y, Doak SH, Yan J, Chen DH, Zhou M, Mittelstaedt RA et al (2017) Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis 32(1):151–159. https://doi.org/10.1093/mutage/gew040

    Article  CAS  PubMed  Google Scholar 

  69. Rosário F, Hoet P, Nogueira AJA, Santos C, Oliveira H (2018) Differential pulmonary in vitro toxicity of two small-sized polyvinylpyrrolidone-coated silver nanoparticles. J Toxicol Environ Health A 81(15):675–690. https://doi.org/10.1080/15287394.2018.1468837

    Article  CAS  PubMed  Google Scholar 

  70. Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201(1):27–33. https://doi.org/10.1016/j.toxlet.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  71. Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11. https://doi.org/10.1186/1743-8977-11-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kruszewski M, Gradzka I, Bartłomiejczyk T, Chwastowska J, Sommer S, Grzelak A et al (2013) Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219(2):151–159. https://doi.org/10.1016/j.toxlet.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  73. Mei N, Zhang Y, Chen Y, Guo X, Ding W, Ali SF et al (2012) Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen 53(6):409–419. https://doi.org/10.1002/em.21698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen PA et al (2013) Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology 313(1):38–48. https://doi.org/10.1016/j.tox.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  75. Gábelová A, El Yamani N, Alonso TI, Buliaková B, Srančíková A, Bábelová A et al (2017) Fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of iron oxide nanoparticles. Mutagenesis 32(1):193–202. https://doi.org/10.1093/mutage/gew045

    Article  CAS  PubMed  Google Scholar 

  76. OECD (2016b) Test No. 476: in vitro mammalian cell gene mutation tests using the Hprt and xprt genes. OECD guideline for the testing of chemicals, Section 4. OECD Publishing, Paris

    Google Scholar 

  77. OECD (2016c) Test No. 487: in vitro mammalian cell micronucleus test. OECD Guideline for the testing of chemicals, Section 4. OECD Publishing, Paris

    Google Scholar 

  78. Rasmussen K, Mast J, De Temmerman P-J, Verleysen E, Waegeneers N, Steen F V, … Mech A (2014) Titanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and Physico- chemical properties. JRC repository: NM-series of representative manufactured nanomaterials. Publications Office of the European Union, Luxembourg. https://doi.org/10.2788/79554

  79. Singh C, Friedrichs S, Ceccone G, Gibson N, Alstrup Jensen K, Levin M, … Rasmussen K (2014) Cerium Dioxide NM-211, NM-212, NM-213, characterisation and test item preparation. JRC repository: NM-series of representative manufactured nanomaterials. EUR 26649. Publications Office of the European Union, Luxembourg (Luxembourg). https://doi.org/10.2788/80203

  80. Nanogenotox Partners (2013) Deliverable 6: Characterisation of MNs for their clastogenic/aneugenic effects or DNA damage potentials and correlation analysis. N.J. Action 120. Retrieved from https://vdocument.in/deliverable-6-characterisation-of-manufactured-nanogenotox-intratracheal.html

  81. Jensen AK, Kembouche Y, Christiansen E, Jacobsen NR, Wallin H, Guiot C, Spalla O, Witschger O (2011) Towards a method for detecting the potential genotoxicity of nanomaterials. Final protocol for producing suitable manufactured nanomaterial exposure media Report. The generic NANOGENOTOX dispersion protocol Standard Operation Procedure ( SOP ) and background documentation. Copenhagen, Denmark

    Google Scholar 

  82. Louro H, Pinhão M, Santos J, Tavares A, Vital N, Silva MJ (2016) Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties. Toxicol Lett 262:123–134. https://doi.org/10.1016/j.toxlet.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  83. Dusinska M, Mariussen E, Rundén-Pran E, Hudecova AM, Elje E, Kazimirova A et al (2019) In vitro approaches for assessing the genotoxicity of nanomaterials. Methods Mol Biol 1894:83–122. https://doi.org/10.1007/978-1-4939-8916-4_6

    Article  CAS  PubMed  Google Scholar 

  84. Magdolenova Z, Bilaniová D, Pojana G, Fjellsbø LM, Hudecova A, Hasplova K et al (2012a) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J Environ Monit 14(2):455–464. https://doi.org/10.1039/c2em10746e

    Article  CAS  PubMed  Google Scholar 

  85. Chen T, Yan J, Li Y (2014b) Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 22(1):95–104. https://doi.org/10.1016/j.jfda.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  86. Ling C, An H, Li L, Wang J, Lu T, Wang H et al (2021) Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: a systematic review of the literature and meta-analysis. Biol Trace Elem Res 199:2057–2076. https://doi.org/10.1007/s12011-020-02311-8

    Article  CAS  PubMed  Google Scholar 

  87. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. https://doi.org/10.1186/1743-8977-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamzeh M, Sunahara GI (2013) In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol In Vitro 27(2):864–873. https://doi.org/10.1016/j.tiv.2012.12.018

    Article  CAS  PubMed  Google Scholar 

  89. Roszak J, Stepnik M, Nocuń M, Ferlińska M, Smok-Pieniazek A, Grobelny J, Tomaszewska E, Wasowicz W, Cieślak M (2013) A strategy for in vitro safety testing of nanotitania-modified textile products. J Hazard Mater 256–257:67–75. https://doi.org/10.1016/j.jhazmat.2013.04.022

  90. Kazimirova A, Baranokova M, Staruchova M, Drlickova M, Volkovova K, Dusinska M (2019) Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutat Res Genet Toxicol Environ Mutagen 843:57–65. https://doi.org/10.1016/j.mrgentox.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  91. Franchi LP, Manshian BB, de Souza TAJ, Soenen SJ, Matsubara EY, Rosolen JM, Takahashi CS (2015) Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol In Vitro 29(7):1319–1331. https://doi.org/10.1016/j.tiv.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  92. Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, Grover P (2014) Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. Int J Toxicol 33(2):86–97. https://doi.org/10.1177/1091581814522305

    Article  CAS  PubMed  Google Scholar 

  93. Wang L, Ai W, Zhai Y, Li H, Zhou K, Chen H (2015) Effects of nano-CeO2 with different nanocrystal morphologies on cytotoxicity in HepG2 cells. Int J Environ Res Public Health 12(9):10806–10819. https://doi.org/10.3390/ijerph120910806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Benameur L, Auffan M, Cassien M, Liu W, Culcasi M, Rahmouni H et al (2015) DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology 9(6):696–705. https://doi.org/10.3109/17435390.2014.968889

    Article  CAS  PubMed  Google Scholar 

  95. Ali D, Alarifi S, Alkahtani S, AlKahtane AA, Almalik A (2015) Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochem Biophys 71(3):1643–1651. https://doi.org/10.1007/s12013-014-0386-6

    Article  CAS  PubMed  Google Scholar 

  96. Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W (2010) Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21(3):035102. https://doi.org/10.1088/0957-4484/21/3/035102

    Article  CAS  PubMed  Google Scholar 

  97. Cordelli E, Keller J, Eleuteri P, Villani P, Ma-Hock L, Schulz M et al (2017) No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials. Mutagenesis 32(1):13–22. https://doi.org/10.1093/mutage/gew005

    Article  CAS  PubMed  Google Scholar 

  98. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134. https://doi.org/10.1021/nn800511k.Comparison

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hadrup N, Sharma AK, Loeschner K (2018) Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol 98:257–267. https://doi.org/10.1016/j.yrtph.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  100. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750. https://doi.org/10.1007/s00204-010-0545-5

    Article  CAS  PubMed  Google Scholar 

  101. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817. https://doi.org/10.1016/j.biomaterials.2011.08.085

    Article  CAS  PubMed  Google Scholar 

  102. De Souza TAJ, Franchi LP, Rosa LR, da Veiga MAMS, Takahashi CS (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen 795:70–83. https://doi.org/10.1016/j.mrgentox.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  103. Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U et al (2019) Particle toxicology and health – where are we? Part Fibre Toxicol 16(1):19. https://doi.org/10.1186/s12989-019-0302-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lankoff A, Arabski M, Wegierek-Ciuk A, Kruszewski M, Lisowska H, Banasik-Nowak A et al (2012) Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology 7(3):235–250. https://doi.org/10.3109/17435390.2011.649796

    Article  CAS  PubMed  Google Scholar 

  105. OECD (2017b) OECD series on testing & assessment, No. 238. Overview of the set of OECD genetic toxicology test guidelines and updates performed in 2014–2015. ENV/JM/MONO(2016)33/REV1. OECD Publishing, Paris

    Google Scholar 

  106. Lindberg HK, Falck GCM, Suhonen S, Vippola M, Vanhala E, Catalán J et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186(3):166–173. https://doi.org/10.1016/j.toxlet.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  107. Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M (2015) Can the comet assay be used reliably to detect nanoparticle-Induced genotoxicity? Environ Mol Mutagen 56(2):82–96. https://doi.org/10.1002/em.21933

    Article  CAS  PubMed  Google Scholar 

  108. Valentin-Severin I, Le Hegarat L, Lhuguenot JC, Le Bon AM, Chagnon MC (2003) Use of HepG2 cell line for direct or indirect mutagens screening: comparative investigation between comet and micronucleus assays. Mutat Res Genet Toxicol Environ Mutagen 536(1–2):79–90. https://doi.org/10.1016/S1383-5718(03)00031-7

    Article  CAS  Google Scholar 

  109. Jalili P, Gueniche N, Lanceleur R, Burel A, Lavault MT, Sieg H et al (2018) Investigation of the in vitro genotoxicity of two rutile TiO2 nanomaterials in human intestinal and hepatic cells and evaluation of their interference with toxicity assays. NanoImpact 11:69–81. https://doi.org/10.1016/j.impact.2018.02.004

    Article  Google Scholar 

  110. Gonzalez L, Sanderson BJS, Kirsch-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26(1):185–191. https://doi.org/10.1093/mutage/geq088

    Article  CAS  PubMed  Google Scholar 

  111. Magdolenova Z, Lorenzo Y, Collins A, Dusinska M (2012b) Can standard genotoxicity tests be applied to nanoparticles? J Toxicol Environ Health A 75(13–15):800–806. https://doi.org/10.1080/15287394.2012.690326

    Article  CAS  PubMed  Google Scholar 

  112. ECHA (2017a) Guidance on information requirements and chemical safety assessment. Appendix R7-1 for nanomaterials applicable to Chapter R7a Endpoint specific guidance. Version 2.0. Retrieved from https://echa.europa.eu/documents/10162/13632/appendix_r7a_nanomaterials_en.pdf

  113. ECHA (2017b) Guidance on information requirements and chemical safety assessment. Chapter R7a Endpoint specific guidance. Version 6.0. Retrieved from https://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf

  114. SCCS (Scientific Committee on Consumer Safety) (2019) Guidance on the safety assessment of nanomaterials in cosmetics, 30–31 Oct 2019, SCCS/1611/19

    Google Scholar 

  115. ECHA (2021b) Guidance on information requirements and chemical safety assessment. Appendix R7-1 for nanomaterials applicable to Chapter R7a Endpoint specific guidance. Draft (internal) Version 3.0. Retrieved from https://echa.europa.eu/documents/10162/23047722/appendix_r7a_r7c_hh_v3_msc_en.pdf/6c3a1586-8e97-2522-189d-92b61f35dbf3

Download references

Acknowledgments

We thank Iren Elisabeth Sturtzel for her excellent help with experiments. Authors also thank Professor Andrew Collins for language corrections.

This research was co-funded by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013–310584), the EC QualityNano Research Infrastructure project (Grant Agreement No: INFRA-2010-262163), through the QualityNano Transnational Access fellowships [NILU-TAF-410 and NILU-TAF-403] attributed to N. Vital and M. J. Silva and by the Portuguese Foundation for Science and Technology through ToxOmics (UIDB/00009/2020; UIDP/00009/2020). N. Vital work is also supported by the Portuguese Foundation for Science and Technology PhD Scholarship 2020.07168.BD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Dušinská or Maria João Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vital, N. et al. (2022). Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays. In: Louro, H., Silva, M.J. (eds) Nanotoxicology in Safety Assessment of Nanomaterials. Advances in Experimental Medicine and Biology, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-88071-2_14

Download citation

Publish with us

Policies and ethics