Skip to main content
Log in

Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cerium oxide nanoparticles (CeO2-NP) present two different oxidation states what can suppose an auto-regenerative redox cycle. Potential applications of CeO2-NP to quench reactive oxygen species (ROS) in biological systems are currently being investigated. In this context, CeO2-NP may represent a novel agent to protect cells and tissues against oxidative damage by its regenerative free radical-scavenging properties. In this study, we have used a human epithelial lung cell line, BEAS-2B, as a model to study the possible antioxidant and anti-genotoxic effect of CeO2-NP in a pulmonary-like system. We have assessed the protective effect of CeO2-NP pre-treatment in front of a well-defined oxidative stress-inducing agent (KBrO3). Different endpoints like toxicity, intracellular ROS induction, genotoxicity and DNA oxidative damage (comet assay), and gene expression alterations have been evaluated. The obtained results confirmed the antioxidant properties of CeO2-NP. Thus, its pre-treatment significantly reduced the intracellular production of ROS induced by KBrO3. Similarly, a reduction in the levels of DNA oxidative damage, as measured with the comet assay complemented with formamidopyrimidine DNA glycosylase enzyme, was also observed. Pre-treatment of BEAS-2B cells with CeO2-NP (at 2.5 µg/mL) slightly increased the viability of cells treated with KBrO3 as well as down-regulated the expression of the Ho1 and Sod2 genes involved in the oxidative Nrf2 pathway. Our finding would support the potential usefulness of CeO2-NP as a pharmacological agent to be used against diseases caused by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Annangi B, Bach J, Vales G, Rubio L, Marcos R, Hernández A (2014) Long-term exposures to low doses of cobalt nanoparticles induce cell-transformation enhanced by oxidative damage. Nanotoxicology 2014:1–10. doi:10.3109/17435390.900582

    Google Scholar 

  • Arya A, Sethy NK, Singh SK, Das M, Bhargava K (2013) Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomed 8:4507–4520

    Google Scholar 

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Engl 48:2308–2312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker CH (2013) Harnessing cerium oxide nanoparticles to protect normal tissue from radiation damage. Transl Cancer Res 2:343–358

    CAS  Google Scholar 

  • Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J (2013) Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res 154:156–166

    Article  CAS  PubMed  Google Scholar 

  • Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19

    Article  CAS  PubMed  Google Scholar 

  • Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231

    Article  CAS  PubMed  Google Scholar 

  • Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and up regulation of superoxide dismutase 2. Nanomedicine 6:698–705

    Article  CAS  PubMed  Google Scholar 

  • Corma A, Atienzar P, García H, Chane-Ching JY (2004) Hierarchically meso structured doped CeO2 with potential for solar-cell use. Nat Mater 3:394–397

    Article  CAS  PubMed  Google Scholar 

  • Crosby LM, Hyder KS, DeAngelo AB, Kepler TB, Gaskill B, Benavides GR, Yoon L, Morgan KT (2000) Morphologic analysis correlates with gene expression changes in cultured F344 rat mesothelial cells. Toxicol Appl Pharmacol 169:205–221

    Article  CAS  PubMed  Google Scholar 

  • Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    Article  CAS  PubMed  Google Scholar 

  • Delker D, Hatch G, Allen J, Crissman B, George M, Geter D, Kilburn S, Moore T, Nelson G, Roop B, Slade R, Swank A, Ward W, DeAngelo A (2006) Molecular biomarkers of oxidative stress associated with bromate carcinogenicity. Toxicology 221:158–165

    Article  CAS  PubMed  Google Scholar 

  • Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77–83

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 498:239–247

    Article  Google Scholar 

  • Fresquet F, Pourageaud F, Leblais V, Brandes RP, Savineau JP, Marthan R, Muller B (2006) Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148:714–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70:257–265

    Article  PubMed  Google Scholar 

  • Health Effect Institute (HEI) (2001) Evaluation of human health risk for cerium added to diesel fuel. Comunication vol 9

  • Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856

    Article  CAS  PubMed  Google Scholar 

  • Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, McGinnis J, Seal S (2008) Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60:33–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong L, Cai X, Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF (2011) Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 42:514–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, Grover P (2014) Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. Int J Toxicol 33:86–97

    Article  CAS  PubMed  Google Scholar 

  • Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Limonciel A, Wilmes A, Aschauer L, Radford R, Bloch KM, McMorrow T, Pfaller W, van Delft JH, Slattery C, Ryan MP, Lock EA, Jennings P (2012) Oxidative stress induced by potassium bromate exposure results in altered tight junction protein expression in renal proximal tubule cells. Arch Toxicol 86:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491

    Article  CAS  PubMed  Google Scholar 

  • Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29:3561–3573

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Pandey AK (2014) Induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Res Int 2014:ID891934

  • Mussá T, Rodríguez-Cariño C, Sánchez-Chardi A, Baratelli M, Costa-Hurtado M, Fraile L, Dominguez J, Aragon V, Montoya M (2012) Differential interactions of virulent and nonvirulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells. Vet Res 43:80

    Article  PubMed Central  PubMed  Google Scholar 

  • Nanogenotox (2011) http://www.nanogenotox.eu/files/PDF/Deliverables/nanogenotox%20deliverable%203_wp4_%20dispersion%20protocol.pdf

  • Narayanan KB, Park HH (2013) Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv Colloid Interface Sci 201–202:30–42

    Article  PubMed  Google Scholar 

  • Niu J, Wang K, Kolattukudy PE (2011) Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther 338:53–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ould-Moussa N, Safi M, Guedeau-Boudeville MA, Montero D, Conjeaud H, Berret JF (2014) In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology 8:799–811

    CAS  PubMed  Google Scholar 

  • Park EJ, Choi J, Park YK, Park K (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100

    Article  CAS  PubMed  Google Scholar 

  • Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb) 46:2736–2738

    Article  CAS  Google Scholar 

  • Saeidnia S, Abdollahi M (2013) Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol 273:442–455

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–1820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strawn ET, Cohen CA, Rzigalinski BA (2006) Cerium oxide nanoparticles increase lifespan and protect against free radical-mediated toxicity. FASEB 20:A1356

    Google Scholar 

  • Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–3024

    Article  CAS  PubMed  Google Scholar 

  • Tagawa Y, Hiramatsu N, Kasai A, Hayakawa K, Okamura M, Yao J, Kitamura M (2008) Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic Biol Med 45:50–59

    Article  CAS  PubMed  Google Scholar 

  • Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  PubMed  Google Scholar 

  • Wason MS, Zhao J (2013) Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am J Transl Res 5:126–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9:558–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng X, Zhang X, Wang X, Wang S, Wu S (2005) Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation. Appl Catal A 295:142–149

    Article  CAS  Google Scholar 

  • Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AY, Spivak NY, Tretyakov YD (2011) UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol B 102:32–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation has been supported in part the Generalitat de Catalunya (CIRIT, 2014SGR-202), Barcelona (Spain). L. Rubio and L. Vila were supported by postgraduate fellowships from the Universidad Autònoma de Barcelona and Generalitat de Catalunya, respectively. B. Annangi was supported by a postdoctoral fellowship from the Universitat Autònoma de Barcelona (UAB).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Marcos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio, L., Annangi, B., Vila, L. et al. Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol 90, 269–278 (2016). https://doi.org/10.1007/s00204-015-1468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1468-y

Keywords

Navigation