Skip to main content

In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials

  • Protocol
  • First Online:
Nanotoxicity

Abstract

Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations. Typically various in vitro assays are performed in the first tier. It is not very likely that NMs may induce as yet unknown types of genotoxic damage beyond what is already known for chemicals. Thus, principles of genotoxicity testing as established for chemicals should be applicable to NMs as well. However, established test guidelines (i.e., OECD TG) may require adaptations for NM testing, as currently under discussion at the OECD. This chapter gives an overview of genotoxicity testing of NMs in vitro based on experiences from various research projects. We recommend a combination of a mammalian gene mutation assay (at either Tk or HPRT locus), the in vitro comet assay, and the cytokinesis-block micronucleus assay, which are discussed in detail here. In addition we also include the Cell Transformation Assay (CTA) as a promising novel test for predicting NM-induced cell transformation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Committee ES (2011) Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J 9(9):2379. https://doi.org/10.2903/j.efsa.2011.2379

    Article  CAS  Google Scholar 

  2. Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tahti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85(5):367–485. https://doi.org/10.1007/s00204-011-0693-2

    Article  CAS  PubMed  Google Scholar 

  3. Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Muller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Benthem J, Vanparys P, White P (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 628(1):31–55. https://doi.org/10.1016/j.mrgentox.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  4. Oesch F, Landsiedel R (2012) Genotoxicity investigations on nanomaterials. Arch Toxicol 86(7):985–994. https://doi.org/10.1007/s00204-012-0838-y

    Article  CAS  PubMed  Google Scholar 

  5. Pfuhler S, Elespuru R, Aardema MJ, Doak SH, Maria Donner E, Honma M, Kirsch-Volders M, Landsiedel R, Manjanatha M, Singer T, Kim JH (2013) Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. Environ Mol Mutagen 54(4):229–239. https://doi.org/10.1002/em.21770

    Article  CAS  PubMed  Google Scholar 

  6. Warheit DB, Donner EM (2010) Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines. Nanotoxicology 4:409–413. https://doi.org/10.3109/17435390.2010.485704

    Article  CAS  PubMed  Google Scholar 

  7. OECD (2014) Genotoxicity of manufactured nanomaterials: report of the OECD expert meeting (ENV/JM/MONO(2014)34). http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2014)34&doclanguage=en

  8. ECHA (2017) Appendix R7–1 for nanomaterials applicable to Chapter R7a—Endpoint specific guidance, v. 2.0, May 2017. https://echa.europa.eu/documents/10162/13632/appendix_r7a_nanomaterials_en.pdf

  9. Donaldson K, Poland CA, Schins RP (2010) Possible genotoxic mechanisms of nanoparticles: criteria for improved test strategies. Nanotoxicology 4:414–420. https://doi.org/10.3109/17435390.2010.482751

    Article  CAS  PubMed  Google Scholar 

  10. Sood A, Salih S, Roh D, Lacharme-Lora L, Parry M, Hardiman B, Keehan R, Grummer R, Winterhager E, Gokhale PJ, Andrews PW, Abbott C, Forbes K, Westwood M, Aplin JD, Ingham E, Papageorgiou I, Berry M, Liu J, Dick AD, Garland RJ, Williams N, Singh R, Simon AK, Lewis M, Ham J, Roger L, Baird DM, Crompton LA, Caldwell MA, Swalwell H, Birch-Machin M, Lopez-Castejon G, Randall A, Lin H, Suleiman MS, Evans WH, Newson R, Case CP (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6(12):824–833. https://doi.org/10.1038/nnano.2011.188

    Article  CAS  PubMed  Google Scholar 

  11. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278. https://doi.org/10.3109/17435390.2013.773464

    Article  CAS  PubMed  Google Scholar 

  12. Doak SH, Dusinska M (2017) NanoGenotoxicology: present and the future. Mutagenesis 32(1):1–4. https://doi.org/10.1093/mutage/gew066

    Article  CAS  PubMed  Google Scholar 

  13. Sayes CM, Reed KL, Subramoney S, Abrams L, Warheit DB (2009) Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials. J Nanopart Res 11(2):421–431. https://doi.org/10.1007/s11051-008-9471-3

    Article  CAS  Google Scholar 

  14. Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 170(2):211–224

    Article  CAS  PubMed  Google Scholar 

  15. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86(7):1123–1136. https://doi.org/10.1007/s00204-012-0837-z

    Article  CAS  PubMed  Google Scholar 

  16. Ponti J, Kinser-Ovaskainen A, Norlen H, Altmeyer S, Andreoli C, Bogni A, Chevillard S, De Angelis I, Chung S-T, Eom I, al. e (2014) Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials. JRC Sci Policy Rep (JRC92910). doi:https://doi.org/10.2788/406937

  17. Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216. https://doi.org/10.1016/j.toxlet.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  18. Locatelli E, Broggi F, Ponti J, Marmorato P, Franchini F, Lena S, Franchini MC (2012) Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv Healthc Mater 1(3):342–347. https://doi.org/10.1002/adhm.201100047

    Article  CAS  PubMed  Google Scholar 

  19. El Yamani N, Collins AR, Runden-Pran E, Fjellsbo LM, Shaposhnikov S, Zienolddiny S, Dusinska M (2017) In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis 32(1):117–126. https://doi.org/10.1093/mutage/gew060

    Article  CAS  PubMed  Google Scholar 

  20. De Angelis I, Barone F, Zijno A, Bizzarri L, Russo MT, Pozzi R, Franchini F, Giudetti G, Uboldi C, Ponti J, Rossi F, De Berardis B (2013) Comparative study of ZnO and TiO(2) nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology 7(8):1361–1372. https://doi.org/10.3109/17435390.2012.741724

    Article  CAS  PubMed  Google Scholar 

  21. Fenoglio I, Ponti J, Alloa E, Ghiazza M, Corazzari I, Capomaccio R, Rembges D, Oliaro-Bosso S, Rossi F (2013) Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes. Nanoscale 5(14):6567–6576. https://doi.org/10.1039/c3nr01191g

    Article  CAS  PubMed  Google Scholar 

  22. Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F (2012) Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res 745(1–2):11–20. https://doi.org/10.1016/j.mrgentox.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  23. Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony Forming Efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 197(1):29–37. https://doi.org/10.1016/j.toxlet.2010.04.018

    Article  CAS  PubMed  Google Scholar 

  24. Haase A, Dommershausen N, Schulz M, Landsiedel R, Reichardt P, Krause BC, Tentschert J, Luch A (2017) Genotoxicity testing of different surface-functionalized SiO2, ZrO2 and silver nanomaterials in 3D human bronchial models. Arch Toxicol 91(12):3991–4007. https://doi.org/10.1007/s00204-017-2015-9

    Article  CAS  PubMed  Google Scholar 

  25. Riebeling C, Piret J-P, Trouiller B, Nelissen I, Saout C, Toussaint O, Haase A (2018) A guide to nanosafety testing: Considerations on cytotoxicity testing in different cell models. NanoImpact 10:1–10. https://doi.org/10.1016/j.impact.2017.11.004

    Article  Google Scholar 

  26. Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, Young SH, Salisbury JL, Porter DW, Benkovic SA, McCawley M, Keane MJ, Mastovich JT, Bunker KL, Cena LG, Sparrow MC, Sturgeon JL, Dinu CZ, Sargent LM (2014) Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol 11:6. https://doi.org/10.1186/1743-8977-11-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. OECD (1997) Test no. 471: bacterial reverse mutation test. OECD, Paris

    Book  Google Scholar 

  28. Doak SH, Manshian B, Jenkins GJ, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745(1–2):104–111. https://doi.org/10.1016/j.mrgentox.2011.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628(2):99–106. https://doi.org/10.1016/j.mrgentox.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  30. Huk A, Izak-Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dusinska M (2014) Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 11:65. https://doi.org/10.1186/s12989-014-0065-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huk A, Izak-Nau E, El Yamani N, Uggerud H, Vadset M, Zasonska B, Duschl A, Dusinska M (2015) Impact of nanosilver on various DNA lesions and HPRT gene mutations—effects of charge and surface coating. Part Fibre Toxicol 12:25. https://doi.org/10.1186/s12989-015-0100-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gabelova A, El Yamani N, Alonso TI, Buliakova B, Srancikova A, Babelova A, Pran ER, Fjellsbo LM, Elje E, Yazdani M, Silva MJ, Dusinska M (2017) Fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of iron oxide nanoparticles. Mutagenesis 32(1):193–202. https://doi.org/10.1093/mutage/gew045

    Article  CAS  PubMed  Google Scholar 

  33. OECD. Test no. 476: in vitro mammalian cell gene mutation test. OECD, Paris

    Google Scholar 

  34. OECD. Test no. 490: in vitro mammalian cell gene mutation tests using the thymidine kinase gene. OECD, Paris

    Google Scholar 

  35. Moore MM, Honma M, Clements J, Awogi T, Bolcsfoldi G, Cole J, Gollapudi B, Harrington-Brock K, Mitchell A, Muster W, Myhr B, O'Donovan M, Ouldelhkim MC, San R, Shimada H, Stankowski LF Jr (2000) Mouse lymphoma thymidine kinase locus gene mutation assay: international workshop on genotoxicity test procedures workgroup report. Environ Mol Mutagen 35(3):185–190

    Article  CAS  PubMed  Google Scholar 

  36. Moore MM, Honma M, Clements J, Bolcsfoldi G, Burlinson B, Cifone M, Clarke J, Delongchamp R, Durward R, Fellows M, Gollapudi B, Hou S, Jenkinson P, Lloyd M, Majeska J, Myhr B, O'Donovan M, Omori T, Riach C, San R, Stankowski LF Jr, Thakur AK, Van Goethem F, Wakuri S, Yoshimura I (2006) Mouse lymphoma thymidine kinase gene mutation assay: follow-up meeting of the international workshop on genotoxicity testing—Aberdeen, Scotland, 2003—assay acceptance criteria, positive controls, and data evaluation. Environ Mol Mutagen 47(1):1–5. https://doi.org/10.1002/em.20159

    Article  CAS  PubMed  Google Scholar 

  37. Cheng TF, Patton GW, Muldoon-Jacobs K (2013) Can the L5178Y Tk+/− mouse lymphoma assay detect epigenetic silencing? Food and chemical toxicology: an international journal published for the. British Industrial Biological Research Association 59:187–190. https://doi.org/10.1016/j.fct.2013.06.007

    Article  CAS  Google Scholar 

  38. Clements J (2000) The mouse lymphoma assay. Mutat Res 455(1–2):97–110

    Article  CAS  PubMed  Google Scholar 

  39. Cowie H, Magdolenova Z, Saunders M, Drlickova M, Correia Carreira S, Halamoda Kenzaoi B, Gombau L, Guadagnini R, Lorenzo Y, Walker L, Fjellsbo LM, Huk A, Rinna A, Tran L, Volkovova K, Boland S, Juillerat-Jeanneret L, Marano F, Collins AR, Dusinska M (2015) Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology 9(Suppl 1):57–65. https://doi.org/10.3109/17435390.2014.940407

    Article  CAS  PubMed  Google Scholar 

  40. Collins A, El Yamani N, Dusinska M (2017) Sensitive detection of DNA oxidation damage induced by nanomaterials. Free Radic Biol Med 107:69–76. https://doi.org/10.1016/j.freeradbiomed.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  41. Dusinska M (1996) Detection of oxidised purines and UV induced photoproducts in DNA of single cells, by inclusion of lesion-specific enzymes in the comet assay. Alternat Lab Anim 24:405–411

    Google Scholar 

  42. OECD. Test no. 489: in vivo mammalian alkaline comet assay. OECD, Paris

    Google Scholar 

  43. Aardema MJ, Barnett BC, Khambatta Z, Reisinger K, Ouedraogo-Arras G, Faquet B, Ginestet AC, Mun GC, Dahl EL, Hewitt NJ, Corvi R, Curren RD (2010) International prevalidation studies of the EpiDerm 3D human reconstructed skin micronucleus (RSMN) assay: transferability and reproducibility. Mutat Res 701(2):123–131. https://doi.org/10.1016/j.mrgentox.2010.05.017

    Article  CAS  PubMed  Google Scholar 

  44. Reus AA, Reisinger K, Downs TR, Carr GJ, Zeller A, Corvi R, Krul CA, Pfuhler S (2013) Comet assay in reconstructed 3D human epidermal skin models—investigation of intra- and inter-laboratory reproducibility with coded chemicals. Mutagenesis 28(6):709–720. https://doi.org/10.1093/mutage/get051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Collins AR, Dusinska M, Gedik CM, Stetina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104(Suppl 3):465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Magdolenova Z, Lorenzo Y, Collins A, Dusinska M (2012) Can standard genotoxicity tests be applied to nanoparticles? J Toxicol Environ Health A 75(13–15):800–806. https://doi.org/10.1080/15287394.2012.690326

    Article  CAS  PubMed  Google Scholar 

  47. Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M (2015) Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environ Mol Mutagen 56(2):82–96. https://doi.org/10.1002/em.21933

    Article  CAS  PubMed  Google Scholar 

  48. Azqueta A, Dusinska M (2015) The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet 6:239. https://doi.org/10.3389/fgene.2015.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karlsson HL (2010) The comet assay in nanotoxicology research. Anal Bioanal Chem 398(2):651–666. https://doi.org/10.1007/s00216-010-3977-0

    Article  CAS  PubMed  Google Scholar 

  50. Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, Estrela-Lopis I, Cimpan MR, Ibrahim M, Cimpan E, Ostermann M, Sauter A, Yamani NE, Shaposhnikov S, Chevillard S, Paget V, Grall R, Delic J, de-Cerio FG, Suarez-Merino B, Fessard V, Hogeveen KN, Fjellsbo LM, Pran ER, Brzicova T, Topinka J, Silva MJ, Leite PE, Ribeiro AR, Granjeiro JM, Grafstrom R, Prina-Mello A, Dusinska M (2017) High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(1). https://doi.org/10.1002/wnan.1413

    Google Scholar 

  51. Final Report NanoGenoTox (2013) https://www.anses.fr/en/content/nanogenotox-final-report

  52. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(1–2):81–95

    Article  CAS  PubMed  Google Scholar 

  53. OECD. Test no. 487: in vitro mammalian cell micronucleus test. OECD, Paris

    Google Scholar 

  54. Fenech M, Morley A (1985) Solutions to the kinetic problem in the micronucleus assay. Cytobios 43(172–173):233–246

    CAS  PubMed  Google Scholar 

  55. Gonzalez L, Sanderson BJ, Kirsch-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26(1):185–191. https://doi.org/10.1093/mutage/geq088

    Article  CAS  PubMed  Google Scholar 

  56. Dahl EL, Curren R, Barnett BC, Khambatta Z, Reisinger K, Ouedraogo G, Faquet B, Ginestet AC, Mun G, Hewitt NJ, Carr G, Pfuhler S, Aardema MJ (2011) The reconstructed skin micronucleus assay (RSMN) in EpiDerm: detailed protocol and harmonized scoring atlas. Mutat Res 720(1–2):42–52. https://doi.org/10.1016/j.mrgentox.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  57. Wolf T, Niehaus-Rolf C, Banduhn N, Eschrich D, Scheel J, Luepke NP (2008) The hen’s egg test for micronucleus induction (HET-MN): novel analyses with a series of well-characterized substances support the further evaluation of the test system. Mutat Res 650(2):150–164. https://doi.org/10.1016/j.mrgentox.2007.11.009

    Article  CAS  PubMed  Google Scholar 

  58. Hothorn LA, Reisinger K, Wolf T, Poth A, Fieblinger D, Liebsch M, Pirow R (2013) Statistical analysis of the hen's egg test for micronucleus induction (HET-MN assay). Mutat Res 757(1):68–78. https://doi.org/10.1016/j.mrgentox.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  59. Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, Runden-Pran E, Smolkova B (2017) Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food and chemical toxicology : an international journal published for the British Industrial. Biol Res Assoc 109(Pt 1):797–811. https://doi.org/10.1016/j.fct.2017.08.030

    Article  CAS  Google Scholar 

  60. Sasaki K, Mizusawa H, Ishidate M (1988) Isolation and characterization of ras-transfected BALB/3T3 clone showing morphological transformation by 12-O-tetradecanoyl-phorbol-13-acetate. Jpn J Cancer Res 79(8):921–930

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sasaki K, Umeda M, Sakai A, Yamazaki S, Tanaka N (2015) Transformation assay in Bhas 42 cells: a model using initiated cells to study mechanisms of carcinogenesis and predict carcinogenic potential of chemicals. J Environ Sci Health C Environ Carcinogen Ecotoxicol Rev 33(1):1–35. https://doi.org/10.1080/10590501.2014.967058

    Article  CAS  Google Scholar 

  62. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22(5):1304–1309. https://doi.org/10.1093/humrep/dem011

    Article  CAS  PubMed  Google Scholar 

  63. Lloyd M, Kidd D (2012) The mouse lymphoma assay. In: Parry JM, Parry EM (eds) Genetic toxicology: principles and methods. Humana, New York, NY, pp 35–54

    Chapter  Google Scholar 

  64. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23(3):171–182. https://doi.org/10.1093/mutage/gen015

    Article  CAS  PubMed  Google Scholar 

  65. Bright J, Aylott M, Bate S, Geys H, Jarvis P, Saul J, Vonk R (2011) Recommendations on the statistical analysis of the comet assay. Pharm Stat 10(6):485–493. https://doi.org/10.1002/pst.530

    Article  PubMed  Google Scholar 

  66. Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24(4):285–293. https://doi.org/10.1093/mutage/gep010

    Article  CAS  PubMed  Google Scholar 

  67. Prasad RY, Wallace K, Daniel KM, Tennant AH, Zucker RM, Strickland J, Dreher K, Kligerman AD, Blackman CF, Demarini DM (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7(3):1929–1942. https://doi.org/10.1021/nn302280n

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Doak SH, Yan J, Chen DH, Zhou M, Mittelstaedt RA, Chen Y, Li C, Chen T (2017) Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis 32(1):151–159. https://doi.org/10.1093/mutage/gew040

    Article  CAS  PubMed  Google Scholar 

  69. Elhajouji A, Cunha M, Kirsch-Volders M (1998) Spindle poisons can induce polyploidy by mitotic slippage and micronucleate mononucleates in the cytokinesis-block assay. Mutagenesis 13(2):193–198

    Article  CAS  PubMed  Google Scholar 

  70. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534(1–2):65–75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Dusinska or Andrea Haase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dusinska, M. et al. (2019). In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics