Skip to main content

Chiral Plasmonics

  • Chapter
  • First Online:
Plasmon-enhanced light-matter interactions

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 31))

  • 1261 Accesses

Abstract

Chirality is a geometric feature, corresponding to the structures that cannot be brought to coincide with their mirror images. To discriminate the object chirality is critical and significant in many areas such as life science, chemistry and physics. Chiral plasmonic from two aspects including chiral near-fields and chiroptical effects in far-fields of nanostructures will be discussed. Chiral near-fields can be characterized by the optical chirality density. Chiroptical effects in far-fields can be analyzed by the transmission matrix. As for far-field chiroptical effects, circular birefringence (CB), circular dichroism (CD) and asymmetric transmission (AT) are frequently discussed. Additional, chiral biomolecules can change some characteristics of chiral nanostructures and thus can be used for chiral sensing. The sensor is easy to implement and is non-invasive to the analyte. Therefore, chiral plasmons have good application prospects in ultra-sensitive chiral molecular sensing. Plasmonic chirality is still evolving, and many phenomena and challenges remain undiscovered, such as circularly polarized luminescence, nonlinear chiral effects, chiral selective hot electron transfer, ultrafast detection, and chiral quantum optics. The research on plasmonic chirality plays a vital role in the future development of science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson, W., & Kelvin, B. (2010). Lecture Xi. In Baltimore lectures on molecular dynamics and the wave theory of light (pp. 122–134). Cambridge University Press.

    Chapter  MATH  Google Scholar 

  2. Hutt, A. J., & Tan, S. C. (1996). Drug chirality and its clinical significance. Drugs, 52(Suppl 5), 1–12.

    Article  Google Scholar 

  3. Sharma, V., et al. (2009). Structural origin of circularly polarized iridescence in jeweled beetles. Science, 325(5939), 449–451.

    Article  ADS  Google Scholar 

  4. Vignolini, S., et al. (2013). Analysing photonic structures in plants. Journal of the Royal Society Interface, 10(87), 20130394.

    Article  Google Scholar 

  5. Coric, I., & List, B. (2012). Asymmetric spiroacetalization catalysed by confined Bronsted acids. Nature, 483(7389), 315–319.

    Article  ADS  Google Scholar 

  6. Du, W., et al. (2019). Chiral plasmonics and enhanced chiral light-matter interactions. Science China Physics, Mechanics & Astronomy, 63(4), 1–11.

    Article  Google Scholar 

  7. Collins, J. T., et al. (2017). Chirality and chiroptical effects in metal nanostructures: Fundamentals and current trends. Advanced Optical Materials, 5(16), 1700182.

    Article  Google Scholar 

  8. Yoo, S., & Park, Q. H. (2019). Metamaterials and chiral sensing: A review of fundamentals and applications. Nanophotonics, 8(2), 249–261.

    Article  Google Scholar 

  9. Luo, Y., et al. (2017). Plasmonic chiral nanostructures: Chiroptical effects and applications. Advanced Optical Materials, 5(16), 1700040.

    Article  Google Scholar 

  10. Hentschel, M., et al. (2017). Chiral plasmonics. Science Advances, 3(5), e1602735.

    Article  ADS  Google Scholar 

  11. Schäferling, M., et al. (2012). Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Physical Review X, 2(3), 031010.

    Article  ADS  Google Scholar 

  12. Pfeiffer, C., et al. (2014). High performance bianisotropic metasurfaces: Asymmetric transmission of light. Physical Review Letters, 113(2), 023902.

    Article  ADS  Google Scholar 

  13. Gansel, J. K., et al. (2010). Gold helix photonic metamaterials: A numerical parameter study. Optics Express, 18(2), 1059–1069.

    Article  ADS  Google Scholar 

  14. Wang, Y., et al. (2016). Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays. Optics Express, 24(15), 16425–16433.

    Article  ADS  Google Scholar 

  15. Tang, Y., & Cohen, A. E. (2011). Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science, 332(6027), 333–336.

    Article  ADS  Google Scholar 

  16. Tang, Y., & Cohen, A. E. (2010). Optical chirality and its interaction with matter. Physical Review Letters, 104(16), 163901.

    Article  ADS  Google Scholar 

  17. Lipkin, D. M. (1964). Existence of a new conservation law in electromagnetic theory. Journal of Mathematical Physics, 5(5), 696–700.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schäferling, M., et al. (2016). Reducing the complexity: Enantioselective chiral near-fields by diagonal slit and mirror configuration. ACS Photonics, 3(6), 1076–1084.

    Article  Google Scholar 

  19. Schaeferling, M., Yin, X., & Giessen, H. (2012). Formation of chiral fields in a symmetric environment. Optics Express, 20(24), 26326–26336.

    Article  ADS  Google Scholar 

  20. Meinzer, N., Hendry, E., & Barnes, W. L. (2013). Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Physical Review B, 88(4), 041407.

    Article  ADS  Google Scholar 

  21. Hendry, E., et al. (2012). Chiral electromagnetic fields generated by arrays of nanoslits. Nano Letters, 12(7), 3640–3644.

    Article  ADS  Google Scholar 

  22. Davis, T. J., & Hendry, E. (2013). Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Physical Review B, 87(8), 085405.

    Article  ADS  Google Scholar 

  23. Tretyakov, S. A., et al. (1996). Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data. IEEE Transactions on Antennas and Propagation, 44, 1006–1014.

    Article  ADS  Google Scholar 

  24. Rockstuhl, C., et al. (2009). Optical activity in chiral media composed of three-dimensional metallic meta-atoms. Physical Review B, 79(3), 035321.

    Article  ADS  Google Scholar 

  25. Gansel, J. K., et al. (2009). Gold helix photonic metamaterial as broadband circular polarizer. Science, 325(5947), 1513–1515.

    Article  ADS  Google Scholar 

  26. Schäferling, M., et al. (2014). Helical Plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics, 1(6), 530–537.

    Article  Google Scholar 

  27. Rui, G., et al. (2019). Symmetric meta-absorber-induced superchirality. Advanced Optical Materials, 7(21), 1901038.

    Article  Google Scholar 

  28. Decker, M., et al. (2007). Circular dichroism of planar chiral magnetic metamaterials. Optics Letters, 32(7), 856–858.

    Article  ADS  Google Scholar 

  29. Zu, S., Bao, Y., & Fang, Z. (2016). Planar plasmonic chiral nanostructures. Nanoscale, 8(7), 3900–3905.

    Article  ADS  Google Scholar 

  30. Papakostas, A., et al. (2003). Optical manifestations of planar chirality. Physical Review Letters, 90(10), 107404.

    Article  ADS  Google Scholar 

  31. Kuwata-Gonokami, M., et al. (2005). Giant optical activity in quasi-two-dimensional planar nanostructures. Physical Review Letters, 95(22), 227401.

    Article  ADS  Google Scholar 

  32. Horrer, A., et al. (2020). Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Letters, 20(1), 509–516.

    Article  ADS  Google Scholar 

  33. Eftekhari, F., & Davis, T. J. (2012). Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances. Physical Review B, 86(7), 075428.

    Article  ADS  Google Scholar 

  34. van de Groep, J., & Polman, A. (2013). Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Optics Express, 21(22), 26285–26302.

    Article  ADS  Google Scholar 

  35. Staude, I., et al. (2013). Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon Nanodisks. ACS Nano, 7(9), 7824–7832.

    Article  Google Scholar 

  36. Mohammadi, E., et al. (2019). Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures. ACS Photonics, 6(8), 1939–1946.

    Article  Google Scholar 

  37. García-Etxarri, A., & Dionne, J. A. (2013). Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Physical Review B, 87(23), 235409.

    Article  ADS  Google Scholar 

  38. Butakov, N. A., & Schuller, J. A. (2016). Designing multipolar resonances in dielectric metamaterials. Scientific Reports, 6, 38487.

    Article  ADS  Google Scholar 

  39. Bakker, R. M., et al. (2015). Magnetic and electric hotspots with silicon nanodimers. Nano Letters, 15(3), 2137–2142.

    Article  ADS  Google Scholar 

  40. Evlyukhin, A. B., Reinhardt, C., & Chichkov, B. N. (2011). Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Physical Review B, 84(23), 235429.

    Article  ADS  Google Scholar 

  41. Solomon, M. L., et al. (2018). Enantiospecific optical enhancement of chiral sensing and separation with dielectric Metasurfaces. ACS Photonics, 6(1), 43–49.

    Article  Google Scholar 

  42. Takechi, H., et al. (2011). Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods. Molecules, 16(5), 3636–3647.

    Article  Google Scholar 

  43. Helgert, C., et al. (2011). Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Letters, 11(10), 4400–4404.

    Article  ADS  Google Scholar 

  44. Esposito, M., et al. (2015). Tailoring chiro-optical effects by helical nanowire arrangement. Nanoscale, 7(43), 18081–18088.

    Article  ADS  Google Scholar 

  45. Singh, R., et al. (2009). Terahertz metamaterial with asymmetric transmission. Physical Review B, 80(15), 153104.

    Article  ADS  Google Scholar 

  46. Song, K., et al. (2013). A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials. Applied Physics Letters, 103(10), 101908.

    Article  ADS  Google Scholar 

  47. Plum, E., Fedotov, V. A., & Zheludev, N. I. (2009). Planar metamaterial with transmission and reflection that depend on the direction of incidence. Applied Physics Letters, 94(13), 131901.

    Article  ADS  Google Scholar 

  48. Fedotov, V. A., et al. (2007). Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Letters, 7(7), 1996–1999.

    Article  ADS  Google Scholar 

  49. Li, Z., et al. (2016). Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces. Optics Letters, 41(13), 3142–3145.

    Article  ADS  Google Scholar 

  50. Han, J., et al. (2011). An ultrathin twist-structure polarization transformer based on fish-scale metallic wires. Applied Physics Letters, 98(15), 151908.

    Article  ADS  Google Scholar 

  51. Gansel, J. K., et al. (2012). Tapered gold-helix metamaterials as improved circular polarizers. Applied Physics Letters, 100(10), 101109.

    Article  ADS  Google Scholar 

  52. Pan, C., et al. (2014). Broadband asymmetric transmission of optical waves from spiral plasmonic metamaterials. Applied Physics Letters, 104(12), 121112.

    Article  ADS  Google Scholar 

  53. Wang, Y., et al. (2016). Direct and indirect coupling mechanisms in a chiral plasmonic system. Journal of Physics D: Applied Physics, 49(40), 405104.

    Article  Google Scholar 

  54. Bai, Y., et al. (2018). Asymmetric transmission of a planar metamaterial induced by symmetry breaking. Journal of Physics. Condensed Matter, 30(11), 114001.

    Article  ADS  Google Scholar 

  55. Bai, Y., et al. (2018). Splitting an asymmetric transmission peak by introducing magnetic-dipole oscillation on gold film. Optical Materials Express, 8(9), 2743.

    Article  ADS  Google Scholar 

  56. Aba, T., et al. (2018). Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice. Optics Express, 26(2), 1199–1205.

    Article  ADS  Google Scholar 

  57. Hu, Z., et al. (2019). Plasmonic circular dichroism of gold nanoparticle based nanostructures. Advanced Optical Materials, 7(10), 1801590.

    Article  Google Scholar 

  58. Kraust, J. (1949). The helical antenna*. Proceedings of the IEEE, 37, 263–272.

    Google Scholar 

  59. Esposito, M., et al. (2014). Nanoscale 3D chiral Plasmonic helices with circular dichroism at visible frequencies. ACS Photonics, 2(1), 105–114.

    Article  Google Scholar 

  60. Wang, T., et al. (2017). Circular dichroism of a tilted U-shaped nanostructure. Optics Letters, 42(14), 2842–2845.

    Article  ADS  Google Scholar 

  61. He, Y., et al. (2014). Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Letters, 14(4), 1976–1981.

    Article  ADS  Google Scholar 

  62. Wang, Y., et al. (2016). Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness. Optics Express, 24(3), 2307–2317.

    Article  ADS  Google Scholar 

  63. Ullah, H., et al. (2020). Giant circular dichroism of chiral L-shaped nanostructure coupled with achiral nanorod: Anomalous behavior of multipolar and dipolar resonant modes. Nanotechnology, 31(27), 275205.

    Article  Google Scholar 

  64. Tang, B., et al. (2017). Chiral-selective Plasmonic Metasurface absorbers operating at visible frequencies. IEEE Photonics Technology Letters, 29(3), 295–298.

    Article  ADS  Google Scholar 

  65. Yang, Z.-J., et al. (2016). Enhanced chiral response from the Fabry–Perot cavity coupled meta-surfaces. Chinese Physics B, 25(8), 084201.

    Article  ADS  Google Scholar 

  66. Li, J., et al. (2015). Nanoplasmonic sensors with various photonic coupling effects for detecting different targets. The Journal of Physical Chemistry C, 119(52), 29116–29122.

    Article  Google Scholar 

  67. Bai, Y., et al. (2020). Increasing the circular dichroism of the planar chiral nanostructure by inducing coupling between the coverage layer and the planar nanostructure. Optics Express, 28(14), 20563–20572.

    Article  ADS  Google Scholar 

  68. Decker, M., et al. (2009). Strong optical activity from twisted-cross photonic metamaterials. Optics Letters, 34(16), 2501–2503.

    Article  ADS  Google Scholar 

  69. Decker, M., et al. (2010). Twisted split-ring-resonator photonic metamaterial with huge optical activity. Optics Letters, 35(10), 1593–1595.

    Article  ADS  Google Scholar 

  70. Wang, Y., et al. (2019). Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure. Optics Express, 27(23), 33869–33879.

    Article  ADS  Google Scholar 

  71. Narushima, T., & Okamoto, H. (2013). Circular dichroism nano-imaging of two-dimensional chiral metal nanostructures. Physical Chemistry Chemical Physics, 15(33), 13805–13809.

    Article  Google Scholar 

  72. Phua, W. K., et al. (2015). Study of circular dichroism modes through decomposition of planar nanostructures. Plasmonics, 11(2), 449–457.

    Article  Google Scholar 

  73. Zhao, Y., et al. (2017). Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 8, 14180.

    Article  ADS  Google Scholar 

  74. Wu, X., et al. (2013). Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. Journal of the American Chemical Society, 135(49), 18629–18636.

    Article  Google Scholar 

  75. Tullius, R., et al. (2015). “Superchiral” spectroscopy: Detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. Journal of the American Chemical Society, 137(26), 8380–8383.

    Article  Google Scholar 

  76. Qu, Y., et al. (2020). Chiral near-fields induced by plasmonic chiral conic nanoshell metallic nanostructure for sensitive biomolecule detection. The Journal of Physical Chemistry C, 124(25), 13912–13919.

    Article  Google Scholar 

  77. Kumar, J., & Liz-Marzán, L. M. (2019). Recent advances in chiral plasmonics – Towards biomedical applications. Bulletin of the Chemical Society of Japan, 92(1), 30–37.

    Article  Google Scholar 

  78. Hendry, E., et al. (2010). Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology, 5(11), 783–787.

    Article  ADS  Google Scholar 

  79. Ben-Moshe, A., et al. (2013). Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chemical Society Reviews, 42(16), 7028–7041.

    Article  Google Scholar 

  80. Wang, Y., et al. (2017). Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures. Carbon, 120, 203–208.

    Article  Google Scholar 

  81. Govorov, A. O. (2011). Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries. The Journal of Physical Chemistry C, 115(16), 7914–7923.

    Article  Google Scholar 

  82. Abudukelimu, A., et al. (2019). The causality of circular dichroism inducement by isotropic and anisotropic chiral molecules. Journal of Physics D: Applied Physics, 52(30), 305306.

    Article  Google Scholar 

  83. Bochenkov, V. E., & Shabatina, T. I. (2018). Chiral plasmonic biosensors. Biosensors (Basel), 8(4), 120.

    Article  Google Scholar 

  84. Nesterov, M. L., et al. (2016). The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics, 3(4), 578–583.

    Article  MathSciNet  Google Scholar 

  85. Le Ru, E. C., & Etchegoin, P. G. (2013). Quantifying SERS enhancements. MRS Bulletin, 38(8), 631–640.

    Article  Google Scholar 

  86. Vestler, D., et al. (2018). Circular dichroism enhancement in plasmonic nanorod metamaterials. Optics Express, 26(14), 17841–17848.

    Article  ADS  Google Scholar 

  87. Lu, F., et al. (2013). Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Letters, 13(7), 3145–3151.

    Article  ADS  Google Scholar 

  88. Yao, Y., et al. (2014). Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Letters, 14(1), 214–219.

    Article  ADS  Google Scholar 

  89. Liu, T., Yi, Z., & Xiao, S. (2017). Active control of near-field coupling in a terahertz metal-graphene metamaterial. IEEE Photonics Technology Letters, 29(22), 1998–2001.

    Article  ADS  Google Scholar 

  90. Zhou, Y., et al. (2018). Tunable low loss 1D surface plasmons in InAs nanowires. Advanced Materials, 30(35), e1802551.

    Article  Google Scholar 

  91. Yin, X., et al. (2015). Active chiral plasmonics. Nano Letters, 15(7), 4255–4260.

    Article  ADS  Google Scholar 

  92. Tian, X., et al. (2018). Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping. Nanoscale, 10(14), 6288–6293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyue Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z. (2022). Chiral Plasmonics. In: Yu, P., Xu, H., Wang, Z.M. (eds) Plasmon-enhanced light-matter interactions. Lecture Notes in Nanoscale Science and Technology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-87544-2_1

Download citation

Publish with us

Policies and ethics