Skip to main content
Log in

Study of Circular Dichroism Modes Through Decomposition of Planar Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We extend the plasmon hybridization method from a single nanoparticle to a complex planar nanostructure, decomposing the complex nanostructure into fundamental nanoparticle building blocks. Using gammadion nanostructure as an example, we validated the theory by comparing the field profile in the gammadion’s arms under the influence of an incident circularly polarized wave. This allows us to address the origin of the plasmonics modes in the circular dichroism (CD) spectrum. The use of this hybridization method provides a simple and intuitive explanation on how conductive and inductive coupling may result from complex planar nanostructures, allowing us to study its optical properties. Using our approach, top down hybridization studies can be applied to other complex planar structures to gain further insight on the origin of the CD modes and enhance ultrasensitive sensing of chiral micro and macro molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum US, New York

    Book  Google Scholar 

  2. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876

    Article  Google Scholar 

  3. Correa DHA, Ramos CHI (2009) The use of circular dichroism spectroscopy to study protein folding, form and function. Afr J Biochem Res 3(5):164

    CAS  Google Scholar 

  4. Hendry E, Carpy T, Johnston J, Popland M, Milhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M (2010) Ultrasensitive detection and characterisation of biomolecules using superchiral fields. Nat Nanotechnol 5:783

    Article  CAS  Google Scholar 

  5. Zhao R, Zhang L, Zhou J, Koschny T, Soukoulis CM (2011) Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys Rev B 83:035105

    Article  Google Scholar 

  6. Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI (2006) Giant gyrotropy due to electromagnetic coupling. Phys Rev Lett 97:177401

    Article  CAS  Google Scholar 

  7. Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32(7):856

    Article  CAS  Google Scholar 

  8. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419

    Article  CAS  Google Scholar 

  9. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827

    Article  CAS  Google Scholar 

  10. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729

    Article  CAS  Google Scholar 

  11. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120(11):5444

    Article  CAS  Google Scholar 

  12. Bao K, Sobhani H, Nordlander P (2010) Plasmon hybridization for real metals. Chin Sci Bull 55(24):2629

    Article  CAS  Google Scholar 

  13. Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4(11):2209

    Article  CAS  Google Scholar 

  14. Lassiter JB, Azipurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212

    Article  CAS  Google Scholar 

  15. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem 49:9383

    Google Scholar 

  16. Palik ED (ed) (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  17. Rodger A, Norden B (1997) Circular dichroism and linear dichroism. Oxford University Press, Oxford

    Google Scholar 

  18. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Publishers, New York

    Google Scholar 

  19. Svirko YP, Zheludev NI (1998) Polarization of light in nonlinear optics. Wiley Press, New York

    Google Scholar 

  20. Born M (1915) The natural optical activity of liquids and gases. Phys Z 16:251

    Google Scholar 

  21. Yin X, Schaferling M, Metzger B, Giessen H (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano Lett 13(12):6238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of this research by A*STAR Joint Council Office with Grant #12302FG012. We also acknowledge the financial support from Scientific Staff Development Award, A*STAR Institute of High Performance Computing, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. Khoo.

Appendix

Appendix

Correlation of Mode m1 with Period of the Gammadion Array, a 0

The period of the gammadion array, a 0 is varied in the equation [18].

$$ {\lambda}_{\mathrm{SPP}}=\frac{n_{\mathrm{SPP}}{a}_0}{\sqrt{n^2+{m}^2}} $$
(6)

Since our structure is only fundamental, we only consider the fundamental SPP modes. For fundamental SPP modes, n = m = 1 for the mode on the gammadion. The effective localized surface plasmon is given as

$$ {n}_{\mathrm{SPP}}=\sqrt{\frac{\varepsilon_{\mathrm{Au}}{\varepsilon}_d}{\varepsilon_{\mathrm{Au}}+{\varepsilon}_d}} $$
(7)

We plot the graph of Eq. 6 with the wavelength positions of mode m1 in the CD spectra for different periods of the gammadion array. We simulate the gammadion array with periods of 850, 800, 750, 700 and 650 nm. Figure 8 shows the comparison between the model and simulation results.

Fig. 8
figure 8

Plot of the Eq. 6 and mode 1 from CD spectra

From Fig. 8, we observed that Eq. 6 and the wavelength positions of mode m1 in CD spectra match excellently.

Calculation of Potential/Interaction Energy, U Between a Transverse Dipole and a Longitudinal Dipole to Account for Conductive Coupling in a Gammadion Structure

Circularly polarized light involves the superposition of both E x and E y polarized waves, assuming that the wave propagates in the z direction. Hence, it requires the consideration of both longitudinal and transverse coupling.

We can represent the transverse dipole as a separation of positive and negative charge + q 1 and − q 1, respectively. Similarly, the longitudinal dipole can be considered as a separation of positive and negative charge + q 2 and − q 2, respectively. Hence, the interaction energy, U, can be represented as follows, whereby \( \frac{1}{4\pi {\varepsilon}_0} \) refers to the electrostatic constant. We have also defined x 1 to be the distance between − q 1 and − q 2, x 2 to be the distance between − q 1 and + q 2, x 3 to be the distance between + q 1 and − q 2 and x 4 to be the distance between + q 1 and + q 2.

figure a
$$ U=\frac{1}{4\pi {\varepsilon}_0}\left[\frac{\left(-{q}_1\right)\left(-{q}_2\right)}{x_1}+\frac{\left(-{q}_1\right){q}_2}{x_2}+\frac{q_1\left(-{q}_2\right)}{x_3}+\frac{q_1{q}_2}{x_4}\right]=\frac{q_1{q}_2}{4\pi {\varepsilon}_0}\left(\frac{1}{x_1}-\frac{1}{x_2}-\frac{1}{x_3}+\frac{1}{x_4}\right) $$

We need to obtain values for x 1, x 2, x 3 and x 4.

Using the Pythagoras theorem,

$$ \begin{array}{l}{\left({x}_1+\frac{d}{2}\right)}^2+{\left(\frac{d}{2}\right)}^2={r}^2\hfill \\ {}{x}_1=\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}-\frac{d}{2}=r\left(\sqrt{1-{\left(\frac{d}{2r}\right)}^2}-\frac{d}{2r}\right)\hfill \end{array} $$
(8)
$$ {x}_2={x}_1+d=r\left(\sqrt{1-{\left(\frac{d}{2r}\right)}^2}-\frac{d}{2r}\right)+d=r\left(\sqrt{1-{\left(\frac{d}{2r}\right)}^2}+\frac{d}{2r}\right) $$
(9)
$$ \begin{array}{l}{x_3}^2={d}^2+{x_1}^2={d}^2+{\left(\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}-\frac{d}{2}\right)}^2={d}^2+{r}^2-{\left(\frac{d}{2}\right)}^2-d\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}+{\left(\frac{d}{2}\right)}^2={d}^2+{r}^2-d\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}\hfill \\ {}{x}_3=\sqrt{d^2+{r}^2-d\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}}=r\sqrt{{\left(\frac{d}{r}\right)}^2+1-\frac{d}{r}\sqrt{1-{\left(\frac{d}{2r}\right)}^2}}\hfill \end{array} $$
(10)
$$ \begin{array}{l}{x_4}^2={d}^2+{x_2}^2={d}^2+{\left(\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}+\frac{d}{2}\right)}^2={d}^2+{r}^2-{\left(\frac{d}{2}\right)}^2+d\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}+{\left(\frac{d}{2}\right)}^2={d}^2+{r}^2+d\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}\hfill \\ {}{x}_4=\sqrt{d^2+{r}^2+d\sqrt{r^2-{\left(\frac{d}{2}\right)}^2}}=r\sqrt{{\left(\frac{d}{r}\right)}^2+1+\frac{d}{r}\sqrt{1-{\left(\frac{d}{2r}\right)}^2}}\hfill \end{array} $$
(11)

To simplify the expression, let \( x=\frac{d}{2r} \)

$$ {x}_1=r\left(\sqrt{1-{x}^2}-x\right) $$
(12)
$$ {x}_2=r\left(\sqrt{1-{x}^2}+x\right) $$
(13)
$$ {x}_3=r\sqrt{(2x)^2+1-2x\sqrt{1-{x}^2}}=r\sqrt{4{x}^2+1-2x\sqrt{1-{x}^2}} $$
(14)
$$ {x}_4 = r\sqrt{4{x}^2+1+2x\sqrt{1-{x}^2}} $$
(15)

Using Taylor series expansion,

$$ \frac{1}{x_1}\approx \frac{1}{r}\left\{1+x+\frac{3}{2}{x}^2+2{x}^3+\frac{23}{8}{x}^4+O\left({x}^5\right)\right\} $$
(16)
$$ \frac{1}{x_2}\approx \frac{1}{r}\left\{1-x+\frac{3}{2}{x}^2-2{x}^3+\frac{23}{8}{x}^4+O\left({x}^5\right)\right\} $$
(17)
$$ \frac{1}{x_3}\approx \frac{1}{r}\left\{1+x-\frac{1}{2}{x}^2-4{x}^3-\frac{49}{8}{x}^4+O\left({x}^5\right)\right\} $$
(18)
$$ \begin{array}{l}\frac{1}{x_4}\approx \frac{1}{r}\left\{1-x-\frac{1}{2}{x}^2+4{x}^3-\frac{49}{8}{x}^4+O\left({x}^5\right)\right\}\hfill \\ {}U=\frac{q_1{q}_2}{4\pi {\varepsilon}_0}\left(\frac{1}{x_1}-\frac{1}{x_2}-\frac{1}{x_3}+\frac{1}{x_4}\right)\approx \frac{q_1{q}_2}{4\pi {\varepsilon}_0r}\left(12{x}^3\right)\hfill \\ {}U\approx \frac{q_1{q}_2}{4\pi {\varepsilon}_0r}12{\left(\frac{d}{2r}\right)}^3\approx \frac{\left(\frac{3}{2}\right)d{q}_1d{q}_2d}{4\pi {\varepsilon}_0{r}^4}\approx \frac{\left(\frac{3}{2}d\right){p}_1{p}_2}{4\pi {\varepsilon}_0{r}^4}\hfill \end{array} $$
(19)

where p 1 = q 1 d and p 2 = q 2 d

p 1,2 = dipole moment of 1,2

Relation Between Energy Difference and Wavelength Difference

$$ \begin{array}{l}E=\frac{\mathrm{hc}}{\lambda}\hfill \\ {}\frac{\partial E}{\partial \lambda }=-\frac{\mathrm{hc}}{\lambda^2}\hfill \\ {}\partial \lambda =-\frac{\lambda^2}{\mathrm{hc}}\partial E\hfill \end{array} $$

When ∂E decreases, ∂λ decreases as well.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phua, W.K., Hor, Y.L., Leong, E.S.P. et al. Study of Circular Dichroism Modes Through Decomposition of Planar Nanostructures. Plasmonics 11, 449–457 (2016). https://doi.org/10.1007/s11468-015-0065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0065-5

Keywords

Navigation