Skip to main content

Patellofemoral Biomechanics

  • Chapter
  • First Online:
The Patellofemoral Joint

Abstract

The patellofemoral joint is a complex joint with multiple articulating surfaces and stabilizing forces. Pain and dysfunction of the patellofemoral joint are extremely common orthopedic complaints. The patella articulates with the trochlea of the distal femur, and is stabilized primarily by the medial patellofemoral ligament during early flexion, and the bony anatomy later in flexion. The stresses across the joint are dependent on the contact area between the patella and femur which change during normal joint movement, as well as the forces applied by the quadriceps. Various knee-patellofemoral pathologies can alter these forces and contact stress between surfaces creating instability and different loading conditions produced by the joint forces. It is important to understand the biomechanics and kinematics of the knee joint under different scenarios to properly treat patients with these complaints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–82.

    Article  CAS  PubMed  Google Scholar 

  2. Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. A two-year prospective study. Am J Sports Med. 2000;28(4):480–9.

    Article  CAS  PubMed  Google Scholar 

  3. Callaghan MJ, Oldham JA. Quadriceps atrophy: to what extent does it exist in patellofemoral pain syndrome? Br J Sports Med. 2004;38(3):295–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dvir Z, Shklar A, Halperin N, Robinson D, Weissman I, Ben-Shoshan I. Concentric and eccentric torque variations of the quadriceps femoris in patellofemoral pain syndrome. Clin Biomech (Bristol, Avon). 1990;5(2):68–72.

    Article  CAS  Google Scholar 

  5. Kaya D, Citaker S, Kerimoglu U, et al. Women with patellofemoral pain syndrome have quadriceps femoris volume and strength deficiency. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):242–7.

    Article  PubMed  Google Scholar 

  6. Chester R, Smith TO, Sweeting D, Dixon J, Wood S, Song F. The relative timing of VMO and VL in the aetiology of anterior knee pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2008;9:64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Voight ML, Wieder DL. Comparative reflex response times of vastus medialis obliquus and vastus lateralis in normal subjects and subjects with extensor mechanism dysfunction. An electromyographic study. Am J Sports Med. 1991;19(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  8. Witvrouw E, Sneyers C, Lysens R, Victor J, Bellemans J. Reflex response times of vastus medialis oblique and vastus lateralis in normal subjects and in subjects with patellofemoral pain syndrome. J Orthop Sports Phys Ther. 1996;24(3):160–5.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson DR, McWalter EJ, Johnston JD. The measurement of joint mechanics and their role in osteoarthritis genesis and progression. Rheum Dis Clin North Am. 2008;34(3):605–22.

    Article  PubMed  Google Scholar 

  10. Baquie P, Brukner P. Injuries presenting to an Australian sports medicine centre: a 12-month study. Clin J Sport Med. 1997;7(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  11. Lankhorst NE, Bierma-Zeinstra SM, van Middelkoop M. Factors associated with patellofemoral pain syndrome: a systematic review. Br J Sports Med. 2013;47(4):193–206.

    Article  PubMed  Google Scholar 

  12. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blond L, Hansen L. Patellofemoral pain syndrome in athletes: a 5.7-year retrospective follow-up study of 250 athletes. Acta Orthop Belg. 1998;64(4):393–400.

    CAS  PubMed  Google Scholar 

  14. Kannus P, Aho H, Jarvinen M, Niittymaki S. Computerized recording of visits to an outpatient sports clinic. Am J Sports Med. 1987;15(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  15. Thijs Y, Van Tiggelen D, Roosen P, De Clercq D, Witvrouw E. A prospective study on gait-related intrinsic risk factors for patellofemoral pain. Clin J Sport Med. 2007;17(6):437–45.

    Article  PubMed  Google Scholar 

  16. DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. Am J Sports Med. 1986;14(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  17. Stracciolini A, Casciano R, Levey Friedman H, Stein CJ, Meehan WP 3rd, Micheli LJ. Pediatric sports injuries: a comparison of males versus females. Am J Sports Med. 2014;42(4):965–72.

    Article  PubMed  Google Scholar 

  18. Reider B, Marshall JL, Koslin B, Ring B, Girgis FG. The anterior aspect of the knee joint. J Bone Joint Surg Am. 1981;63(3):351–6.

    Article  CAS  PubMed  Google Scholar 

  19. Tria AJ Jr, Palumbo RC, Alicea JA. Conservative care for patellofemoral pain. Orthop Clin North Am. 1992;23(4):545–54.

    Article  PubMed  Google Scholar 

  20. Panni AS, Cerciello S, Maffulli N, Di Cesare M, Servien E, Neyret P. Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc. 2011;19(4):663–70.

    Article  PubMed  Google Scholar 

  21. Dejour D, Saggin P. The sulcus deepening trochleoplasty—the Lyon’s procedure. Int Orthop. 2010;34(2):311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grelsamer RP, Proctor CS, Bazos AN. Evaluation of patellar shape in the sagittal plane. A clinical analysis. Am J Sports Med. 1994;22(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kwak SD, Colman WW, Ateshian GA, Grelsamer RP, Henry JH, Mow VC. Anatomy of the human patellofemoral joint articular cartilage: surface curvature analysis. J Orthop Res. 1997;15(3):468–72.

    Article  CAS  PubMed  Google Scholar 

  24. Cohen ZA, Henry JH, McCarthy DM, Mow VC, Ateshian GA. Computer simulations of patellofemoral joint surgery. Patient-specific models for tuberosity transfer. Am J Sports Med. 2003;31(1):87–98.

    Article  PubMed  Google Scholar 

  25. Strauss EJ, Galos DK. The evaluation and management of cartilage lesions affecting the patellofemoral joint. Curr Rev Musculoskelet Med. 2013;6(2):141–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Froimson MI, Ratcliffe A, Gardner TR, Mow VC. Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthritis Cartilage. 1997;5(6):377–86.

    Article  CAS  PubMed  Google Scholar 

  27. Ateshian GA, Kwak SD, Soslowsky LJ, Mow VC. A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. J Biomech. 1994;27(1):111–24.

    Article  CAS  PubMed  Google Scholar 

  28. Raimondo RA, Ahmad CS, Blankevoort L, April EW, Grelsamer RP, Henry JH. Patellar stabilization: a quantitative evaluation of the vastus medialis obliquus muscle. Orthopedics. 1998;21(7):791–5.

    Article  CAS  PubMed  Google Scholar 

  29. Farahmand F, Senavongse W, Amis AA. Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. J Orthop Res. 1998;16(1):136–43.

    Article  CAS  PubMed  Google Scholar 

  30. Placella G, Tei M, Sebastiani E, et al. Anatomy of the medial patello-femoral ligament: a systematic review of the last 20 years literature. Musculoskelet Surg. 2015;99(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  31. Aragao JA, Reis FP, de Vasconcelos DP, Feitosa VL, Nunes MA. Metric measurements and attachment levels of the medial patellofemoral ligament: an anatomical study in cadavers. Clinics (Sao Paulo). 2008;63(4):541–4.

    Article  Google Scholar 

  32. Hinckel BB, Gobbi RG, Demange MK, et al. Medial patellofemoral ligament, medial patellotibial ligament, and medial patellomeniscal ligament: anatomic, histologic, radiographic, and biomechanical study. Arthroscopy. 2017;33(10):1862–73.

    Article  PubMed  Google Scholar 

  33. Steensen RN, Dopirak RM, McDonald WG 3rd. The anatomy and isometry of the medial patellofemoral ligament: implications for reconstruction. Am J Sports Med. 2004;32(6):1509–13.

    Article  PubMed  Google Scholar 

  34. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  35. Nomura E, Inoue M, Osada N. Anatomical analysis of the medial patellofemoral ligament of the knee, especially the femoral attachment. Knee Surg Sports Traumatol Arthrosc. 2005;13(7):510–5.

    Article  PubMed  Google Scholar 

  36. Conlan T, Garth WP Jr, Lemons JE. Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg Am. 1993;75(5):682–93.

    Article  CAS  PubMed  Google Scholar 

  37. Hautamaa PV, Fithian DC, Kaufman KR, Daniel DM, Pohlmeyer AM. Medial soft tissue restraints in lateral patellar instability and repair. Clin Orthop Relat Res. 1998;(349):174–182.

    Google Scholar 

  38. Yeung M, Leblanc MC, Ayeni OR, et al. Indications for medial patellofemoral ligament reconstruction: a systematic review. J Knee Surg. 2016;29(7):543–54.

    Article  PubMed  Google Scholar 

  39. Victor J, Wong P, Witvrouw E, Sloten JV, Bellemans J. How isometric are the medial patellofemoral, superficial medial collateral, and lateral collateral ligaments of the knee? Am J Sports Med. 2009;37(10):2028–36.

    Article  PubMed  Google Scholar 

  40. Stephen J, Ephgrave C, Ball S, Church S. Current concepts in the management of patellofemoral pain— the role of alignment. Knee. 2020;27(2):280–6.

    Article  PubMed  Google Scholar 

  41. Philippot R, Boyer B, Testa R, Farizon F, Moyen B. The role of the medial ligamentous structures on patellar tracking during knee flexion. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):331–6.

    Article  CAS  PubMed  Google Scholar 

  42. Gu W, Pandy M. Direct validation of human knee-joint contact mechanics derived from subject-specific finite-element models of the tibiofemoral and patellofemoral joints. J Biomech Eng. 2020;142(7):071001.

    Article  PubMed  Google Scholar 

  43. Fulkerson JP, Gossling HR. Anatomy of the knee joint lateral retinaculum. Clin Orthop Relat Res. 1980;(153):183–188.

    Google Scholar 

  44. Capkin S, Zeybek G, Ergur I, Kosay C, Kiray A. An anatomic study of the lateral patellofemoral ligament. Acta Orthop Traumatol Turc. 2017;51(1):73–6.

    Article  PubMed  Google Scholar 

  45. Merican AM, Sanghavi S, Iranpour F, Amis AA. The structural properties of the lateral retinaculum and capsular complex of the knee. J Biomech. 2009;42(14):2323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ishibashi Y, Okamura Y, Otsuka H, Tsuda E, Toh S. Lateral patellar retinaculum tension in patellar instability. Clin Orthop Relat Res. 2002;(397):362–369.

    Google Scholar 

  47. Bedi H, Marzo J. The biomechanics of medial patellofemoral ligament repair followed by lateral retinacular release. Am J Sports Med. 2010;38(7):1462–7.

    Article  PubMed  Google Scholar 

  48. Scapinelli R. Blood supply of the human patella. Its relation to ischaemic necrosis after fracture. J Bone Joint Surg Br. 1967;49(3):563–70.

    Article  CAS  PubMed  Google Scholar 

  49. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop Relat Res. 1979;(144):9–15.

    Google Scholar 

  50. Schindler OS, Scott WN. Basic kinematics and biomechanics of the patello-femoral joint. Part 1: the native patella. Acta Orthop Belg. 2011;77(4):421–31.

    PubMed  Google Scholar 

  51. Aglietti P, Insall JN, Cerulli G. Patellar pain and incongruence. I: measurements of incongruence. Clin Orthop Relat Res. 1983;(176):217–224.

    Google Scholar 

  52. Grelsamer RP, Dubey A, Weinstein CH. Men and women have similar Q angles: a clinical and trigonometric evaluation. J Bone Joint Surg Br. 2005;87(11):1498–501.

    Article  CAS  PubMed  Google Scholar 

  53. Hsu RW, Himeno S, Coventry MB, Chao EY. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res. 1990;(255):215–227.

    Google Scholar 

  54. Skalley TC, Terry GC, Teitge RA. The quantitative measurement of normal passive medial and lateral patellar motion limits. Am J Sports Med. 1993;21(5):728–32.

    Article  CAS  PubMed  Google Scholar 

  55. Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med. 1992;20(2):208–11.

    Article  CAS  PubMed  Google Scholar 

  56. Johnson LL, van Dyk GE, Green JR 3rd, et al. Clinical assessment of asymptomatic knees: comparison of men and women. Arthroscopy. 1998;14(4):347–59.

    Article  CAS  PubMed  Google Scholar 

  57. Sojbjerg JO, Lauritzen J, Hvid I, Boe S. Arthroscopic determination of patellofemoral malalignment. Clin Orthop Relat Res. 1987;(215):243–247.

    Google Scholar 

  58. Post WR. Clinical evaluation of patients with patellofemoral disorders. Arthroscopy. 1999;15(8):841–51.

    Article  CAS  PubMed  Google Scholar 

  59. Post WR. Anterior knee pain: diagnosis and treatment. J Am Acad Orthop Surg. 2005;13(8):534–43.

    Article  PubMed  Google Scholar 

  60. Fox AJ, Wanivenhaus F, Rodeo SA. The basic science of the patella: structure, composition, and function. J Knee Surg. 2012;25(2):127–41.

    Article  PubMed  Google Scholar 

  61. Sanchis-Alfonso V. How to deal with chronic patellar instability: what does the literature tell us? Sports Health. 2016;8(1):86–90.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Staubli HU, Durrenmatt U, Porcellini B, Rauschning W. Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br. 1999;81(3):452–8.

    Article  CAS  PubMed  Google Scholar 

  63. Tecklenburg K, Dejour D, Hoser C, Fink C. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  64. Huberti HH, Hayes WC, Stone JL, Shybut GT. Force ratios in the quadriceps tendon and ligamentum patellae. J Orthop Res. 1984;2(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  65. Elias JJ, Cech JA, Weinstein DM, Cosgrea AJ. Reducing the lateral force acting on the patella does not consistently decrease patellofemoral pressures. Am J Sports Med. 2004;32(5):1202–8.

    Article  PubMed  Google Scholar 

  66. Desio SM, Burks RT, Bachus KN. Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med. 1998;26(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  67. Feller JA, Amis AA, Andrish JT, Arendt EA, Erasmus PJ, Powers CM. Surgical biomechanics of the patellofemoral joint. Arthroscopy. 2007;23(5):542–53.

    Article  PubMed  Google Scholar 

  68. Lorenz A, Muller O, Kohler P, Wunschel M, Wulker N, Leichtle UG. The influence of asymmetric quadriceps loading on patellar tracking—an in vitro study. Knee. 2012;19(6):818–22.

    Article  PubMed  Google Scholar 

  69. Wilson NA, Sheehan FT. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components. J Biomech. 2009;42(12):1891–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pal S, Besier TF, Gold GE, Fredericson M, Delp SL, Beaupre GS. Patellofemoral cartilage stresses are most sensitive to variations in vastus medialis muscle forces. Comput Methods Biomech Biomed Engin. 2019;22(2):206–16.

    Article  PubMed  Google Scholar 

  71. Sakai N, Luo ZP, Rand JA, An KN. The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech (Bristol, Avon). 2000;15(5):335–9.

    Article  CAS  Google Scholar 

  72. Amis AA, Senavongse W, Bull AM. Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res. 2006;24(12):2201–11.

    Article  PubMed  Google Scholar 

  73. Cheung RT, Mok NW, Chung PY, Ng GY. Non-invasive measurement of the patellofemoral movements during knee extension-flexion: a validation study. Knee. 2013;20(3):213–7.

    Article  PubMed  Google Scholar 

  74. Nha KW, Papannagari R, Gill TJ, et al. In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res. 2008;26(8):1067–74.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Suzuki T, Hosseini A, Li JS, Gill TJ, Li G. In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending. J Biomech. 2012;45(14):2432–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yao J, Yang B, Niu W, et al. In vivo measurements of patellar tracking and finite helical axis using a static magnetic resonance based methodology. Med Eng Phys. 2014;36(12):1611–7.

    Article  PubMed  Google Scholar 

  77. Yu Z, Yao J, Wang X, et al. Research methods and Progress of patellofemoral joint kinematics: a review. J Healthc Eng. 2019;2019:9159267.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cohen ZA, Mow VC, Henry JH, Levine WN, Ateshian GA. Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage. Osteoarthritis Cartilage. 2003;11(8):569–79.

    Article  CAS  PubMed  Google Scholar 

  79. Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am. 1984;66(5):715–24.

    Article  CAS  PubMed  Google Scholar 

  80. Balcarek P, Jung K, Frosch KH, Sturmer KM. Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med. 2011;39(8):1756–61.

    Article  PubMed  Google Scholar 

  81. Arendt EA. Core strengthening. Instr Course Lect. 2007;56:379–84.

    PubMed  Google Scholar 

  82. Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17(1):38–42.

    Article  PubMed  Google Scholar 

  83. Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13(5):316–25.

    Article  PubMed  Google Scholar 

  84. Souza RB, Draper CE, Fredericson M, Powers CM. Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis. J Orthop Sports Phys Ther. 2010;40(5):277–85.

    Article  PubMed  Google Scholar 

  85. Bolgla LA, Malone TR, Umberger BR, Uhl TL. Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2008;38(1):12–8.

    Article  PubMed  Google Scholar 

  86. Piva SR, Goodnite EA, Childs JD. Strength around the hip and flexibility of soft tissues in individuals with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2005;35(12):793–801.

    Article  PubMed  Google Scholar 

  87. Dolak KL, Silkman C, Medina McKeon J, Hosey RG, Lattermann C, Uhl TL. Hip strengthening prior to functional exercises reduces pain sooner than quadriceps strengthening in females with patellofemoral pain syndrome: a randomized clinical trial. J Orthop Sports Phys Ther. 2011;41(8):560–70.

    Article  PubMed  Google Scholar 

  88. Fukuda TY, Melo WP, Zaffalon BM, et al. Hip posterolateral musculature strengthening in sedentary women with patellofemoral pain syndrome: a randomized controlled clinical trial with 1-year follow-up. J Orthop Sports Phys Ther. 2012;42(10):823–30.

    Article  PubMed  Google Scholar 

  89. Fukuda TY, Rossetto FM, Magalhaes E, Bryk FF, Lucareli PR, de Almeida Aparecida Carvalho N. Short-term effects of hip abductors and lateral rotators strengthening in females with patellofemoral pain syndrome: a randomized controlled clinical trial. J Orthop Sports Phys Ther. 2010;40(11):736–42.

    Article  PubMed  Google Scholar 

  90. Khayambashi K, Mohammadkhani Z, Ghaznavi K, Lyle MA, Powers CM. The effects of isolated hip abductor and external rotator muscle strengthening on pain, health status, and hip strength in females with patellofemoral pain: a randomized controlled trial. J Orthop Sports Phys Ther. 2012;42(1):22–9.

    Article  PubMed  Google Scholar 

  91. Nakagawa TH, Muniz TB, Baldon Rde M, Dias Maciel C, de Menezes Reiff RB, Serrao FV. The effect of additional strengthening of hip abductor and lateral rotator muscles in patellofemoral pain syndrome: a randomized controlled pilot study. Clin Rehabil. 2008;22(12):1051–60.

    Article  PubMed  Google Scholar 

  92. Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the joint undertaking to monitor and prevent ACL injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):2108–16.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–34.

    Article  PubMed  Google Scholar 

  94. Liebensteiner MC, Ressler J, Seitlinger G, Djurdjevic T, El Attal R, Ferlic PW. High femoral anteversion is related to femoral trochlea dysplasia. Arthroscopy. 2016;32(11):2295–9.

    Article  PubMed  Google Scholar 

  95. Tiberio D. The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model. J Orthop Sports Phys Ther. 1987;9(4):160–5.

    Article  CAS  PubMed  Google Scholar 

  96. Neal BS, Griffiths IB, Dowling GJ, et al. Foot posture as a risk factor for lower limb overuse injury: a systematic review and meta-analysis. J Foot Ankle Res. 2014;7(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101(1):101–4.

    Article  CAS  PubMed  Google Scholar 

  98. Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg Br. 1977;59(2):241–2.

    Article  CAS  PubMed  Google Scholar 

  99. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. [Patella infera. Apropos of 128 cases]. Rev Chir Orthop Reparatrice Appar Mot. 1982;68(5):317–325.

    Google Scholar 

  100. Geenen E, Molenaers G, Martens M. Patella alta in patellofemoral instability. Acta Orthop Belg. 1989;55(3):387–93.

    CAS  PubMed  Google Scholar 

  101. Neyret P, Robinson AH, Le Coultre B, Lapra C, Chambat P. Patellar tendon length—the factor in patellar instability? Knee. 2002;9(1):3–6.

    Article  PubMed  Google Scholar 

  102. Simmons E, Jr., Cameron JC. Patella alta and recurrent dislocation of the patella. Clin Orthop Relat Res. 1992;(274):265–269.

    Google Scholar 

  103. Belkin NS, Meyers KN, Redler LH, Maher S, Nguyen JT, Shubin Stein BE. Medial patellofemoral ligament isometry in the setting of patella alta. Arthroscopy. 2020;36(12):3031–6.

    Article  PubMed  Google Scholar 

  104. Lancourt JE, Cristini JA. Patella alta and patella infera. Their etiological role in patellar dislocation, chondromalacia, and apophysitis of the tibial tubercle. J Bone Joint Surg Am. 1975;57(8):1112–5.

    Article  CAS  PubMed  Google Scholar 

  105. Bertollo N, Pelletier MH, Walsh WR. Relationship between patellar tendon shortening and in vitro kinematics in the ovine stifle joint. Proc Inst Mech Eng H. 2013;227(4):438–47.

    Article  PubMed  Google Scholar 

  106. Meyer SA, Brown TD, Pedersen DR, Albright JP. Retropatellar contact stress in simulated patella infera. Am J Knee Surg. 1997;10(3):129–38.

    CAS  PubMed  Google Scholar 

  107. Upadhyay N, Vollans SR, Seedhom BB, Soames RW. Effect of patellar tendon shortening on tracking of the patella. Am J Sports Med. 2005;33(10):1565–74.

    Article  PubMed  Google Scholar 

  108. Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br. 1976;58(3):287–90.

    Article  CAS  PubMed  Google Scholar 

  109. White BJ, Sherman OH. Patellofemoral instability. Bull NYU Hosp Jt Dis. 2009;67(1):22–9.

    PubMed  Google Scholar 

  110. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints—part I: tibial surface of the knee. J Biomech Eng. 1983;105(3):216–25.

    Article  CAS  PubMed  Google Scholar 

  111. Ahmed AM, Burke DL, Hyder A. Force analysis of the patellar mechanism. J Orthop Res. 1987;5(1):69–85.

    Article  CAS  PubMed  Google Scholar 

  112. Retaillaud JL, Darmana R, Devallet P, Mansat M, Morucci JP. [Experimental biomechanical study of the advancement of tibial tuberosity]. Rev Chir Orthop Reparatrice Appar Mot. 1989;75(8):513–523.

    Google Scholar 

  113. Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints—part II: retropatellar surface. J Biomech Eng. 1983;105(3):226–36.

    Article  CAS  PubMed  Google Scholar 

  114. Hehne HJ. Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res. 1990;(258):73–85.

    Google Scholar 

  115. Matthews LS, Sonstegard DA, Henke JA. Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand. 1977;48(5):511–6.

    Article  CAS  PubMed  Google Scholar 

  116. Bellemans J. Biomechanics of anterior knee pain. Knee. 2003;10(2):123–6.

    Article  CAS  PubMed  Google Scholar 

  117. Salsich GB, Ward SR, Terk MR, Powers CM. In vivo assessment of patellofemoral joint contact area in individuals who are pain free. Clin Orthop Relat Res. 2003;(417):277–284.

    Google Scholar 

  118. Ward SR, Powers CM. The influence of patella alta on patellofemoral joint stress during normal and fast walking. Clin Biomech (Bristol, Avon). 2004;19(10):1040–7.

    Article  Google Scholar 

  119. Ward SR, Terk MR, Powers CM. Influence of patella alta on knee extensor mechanics. J Biomech. 2005;38(12):2415–22.

    Article  PubMed  Google Scholar 

  120. Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am. 2007;89(8):1749–55.

    PubMed  Google Scholar 

  121. Hinterwimmer S, von Eisenhart-Rothe R, Siebert M, Welsch F, Vogl T, Graichen H. Patella kinematics and patello-femoral contact areas in patients with genu varum and mild osteoarthritis. Clin Biomech (Bristol, Avon). 2004;19(7):704–10.

    Article  CAS  Google Scholar 

  122. Ho KY, Keyak JH, Powers CM. Comparison of patella bone strain between females with and without patellofemoral pain: a finite element analysis study. J Biomech. 2014;47(1):230–6.

    Article  PubMed  Google Scholar 

  123. Kuroda R, Kambic H, Valdevit A, Andrish JT. Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med. 2001;29(4):403–9.

    Article  CAS  PubMed  Google Scholar 

  124. Lee TQ, Sandusky MD, Adeli A, McMahon PJ. Effects of simulated vastus medialis strength variation on patellofemoral joint biomechanics in human cadaver knees. J Rehabil Res Dev. 2002;39(3):429–38.

    PubMed  Google Scholar 

  125. Schindler OS. Basic kinematics and biomechanics of the patellofemoral joint part 2: the patella in total knee arthroplasty. Acta Orthop Belg. 2012;78(1):11–29.

    PubMed  Google Scholar 

  126. Akbarshahi M, Fernandez JW, Schache AG, Pandy MG. Subject-specific evaluation of patellofemoral joint biomechanics during functional activity. Med Eng Phys. 2014;36(9):1122–33.

    Article  PubMed  Google Scholar 

  127. Van Haver A, De Roo K, De Beule M, et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med. 2015;43(6):1354–61.

    Article  PubMed  Google Scholar 

  128. Cohen ZA, Roglic H, Grelsamer RP, et al. Patellofemoral stresses during open and closed kinetic chain exercises. An analysis using computer simulation. Am J Sports Med. 2001;29(4):480–7.

    Article  CAS  PubMed  Google Scholar 

  129. Ho KY, French T, Klein B, Lee Y. Patellofemoral joint stress during incline and decline running. Phys Ther Sport. 2018;34:136–40.

    Article  PubMed  Google Scholar 

  130. Dos Santos AF, Nakagawa TH, Serrao FV, Ferber R. Patellofemoral joint stress measured across three different running techniques. Gait Posture. 2019;68:37–43.

    Article  PubMed  Google Scholar 

  131. Pollard JP, Porter WL, Redfern MS. Forces and moments on the knee during kneeling and squatting. J Appl Biomech. 2011;27(3):233–41.

    Article  PubMed  Google Scholar 

  132. Kernozek TW, Gheidi N, Zellmer M, Hove J, Heinert BL, Torry MR. Effects of anterior knee displacement during squatting on patellofemoral joint stress. J Sport Rehabil. 2018;27(3):237–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Amirouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayo, B.C., Amirouche, F., Koh, J.L. (2022). Patellofemoral Biomechanics. In: Koh, J.L., Kuroda, R., Espregueira-Mendes, J., Gobbi, A. (eds) The Patellofemoral Joint. Springer, Cham. https://doi.org/10.1007/978-3-030-81545-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81545-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81544-8

  • Online ISBN: 978-3-030-81545-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics