Skip to main content

Dosimetric Principles of Targeted Radiotherapy and Radioimmunotherapy

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

The use of radioisotopes in therapy represents a field of application that is constantly increasing. Therapy applications in nuclear medicine are expected to reach 40% of clinical activity in the 2020–2030 decade. Radionuclide therapy can be delineated into two main categories. The first approach uses the inherent biodistribution properties of the radionuclide, whereby it naturally accumulates in cancerous tissue. For example, radium-223 is a calcium-mimetic isotope incorporated in sites of increased bone turnover and osteoblastic activity. The second approach prefers the conjugation of the radionuclide to vectors such as monoclonal antibodies (mAbs), peptides, or small molecules to target tumor-associated antigens, allowing the possibility to treat a wide range of neoplastic pathologies. In principle, as is proper practice for therapeutic regimes with ionizing radiation, a dosimetric approach should be performed to optimize and personalize the treatment. The dosimetry of the lesion may be more effective in order to adapt and maximize the beneficial effects of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruland OS. Cancer therapy with radiolabeled antibodies. An overview. Acta Oncol. 1995;34(8):1085–94.

    Article  CAS  Google Scholar 

  2. Jurcic JG, Scheinberg DA. Radioimmunotherapy of hematological cancer: problems and progress. Clin Cancer Res. 1995;1(12):1439–46.

    CAS  PubMed  Google Scholar 

  3. Kairemo KJ. Radioimmunotherapy of solid cancers: a review. Acta Oncol. 1996;35(3):343–55. https://doi.org/10.3109/02841869609101651.

    Article  CAS  PubMed  Google Scholar 

  4. Wilder RB, DeNardo GL, DeNardo SJ. Radioimmunotherapy: recent results and future directions. J Clin Oncol. 1996;14(4):1383–400. https://doi.org/10.1200/jco.1996.14.4.1383.

    Article  CAS  PubMed  Google Scholar 

  5. Cremonesi M, Ferrari M, Chinol M, Stabin MG, Grana C, Prisco G, et al. Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients. Eur J Nucl Med. 1999;26(2):110–20.

    Article  CAS  Google Scholar 

  6. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60. https://doi.org/10.1016/j.canlet.2011.12.012.

    Article  CAS  PubMed  Google Scholar 

  7. Pouget JP, Georgakilas AG, Ravanat JL. Targeted and off-target (Bystander and Abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal. 2018;29(15):1447–87. https://doi.org/10.1089/ars.2017.7267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang CY, Pourgholami MH, Allen BJ. Optimizing radioimmunoconjugate delivery in the treatment of solid tumor. Cancer Treat Rev. 2012;38(7):854–60. https://doi.org/10.1016/j.ctrv.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  9. Oosterwijk E, Bander NH, Divgi CR, Welt S, Wakka JC, Finn RD, et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol. 1993;11(4):738–50. https://doi.org/10.1200/jco.1993.11.4.738.

    Article  CAS  PubMed  Google Scholar 

  10. Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst. 1989;81(8):570–6. https://doi.org/10.1093/jnci/81.8.570.

    Article  CAS  PubMed  Google Scholar 

  11. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992;52(19):5144–53.

    CAS  PubMed  Google Scholar 

  12. Yorke ED, Williams LE, Demidecki AJ, Heidorn DB, Roberson PL, Wessels BW. Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry and three-dimensional dose calculations. Med Phys. 1993;20(2 Pt 2):543–50. https://doi.org/10.1118/1.597050.

    Article  CAS  PubMed  Google Scholar 

  13. Humm JL, Macklis RM, Lu XQ, Yang Y, Bump K, Beresford B, et al. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs. Phys Med Biol. 1995;40(1):163–80. https://doi.org/10.1088/0031-9155/40/1/014.

    Article  CAS  PubMed  Google Scholar 

  14. Goddu SM, Rao DV, Howell RW. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. J Nucl Med. 1994;35(3):521–30.

    CAS  PubMed  Google Scholar 

  15. Ballangrud AM, Yang WH, Charlton DE, McDevitt MR, Hamacher KA, Panageas KS, et al. Response of LNCaP spheroids after treatment with an alpha-particle emitter (213Bi)-labeled anti-prostate-specific membrane antigen antibody (J591). Cancer Res. 2001;61(5):2008–14.

    CAS  PubMed  Google Scholar 

  16. Song H, Hedayati M, Hobbs RF, Shao C, Bruchertseifer F, Morgenstern A, et al. Targeting aberrant DNA double-strand break repair in triple-negative breast cancer with alpha-particle emitter radiolabeled anti-EGFR antibody. Mol Cancer Ther. 2013;12(10):2043–54. https://doi.org/10.1158/1535-7163.Mct-13-0108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barendsen GW, Beusker TL. Effects of different ionizing radiations on human cells in tissue culture. I. Irradiation techniques and dosimetry. Radiat Res. 1960;13:832–40.

    Article  CAS  Google Scholar 

  18. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50(3):477–84. https://doi.org/10.2967/jnumed.108.056036.

    Article  CAS  PubMed  Google Scholar 

  19. Howell RW, Wessels BW, Loevinger R, Watson EE, Bolch WE, Brill AB, et al. The MIRD perspective 1999. Medical Internal Radiation Dose Committee. J Nucl Med. 1999;40(1):3s–10s.

    CAS  PubMed  Google Scholar 

  20. Hobbs RF, Song H, Huso DL, Sundel MH, Sgouros G. A nephron-based model of the kidneys for macro-to-micro alpha-particle dosimetry. Phys Med Biol. 2012;57(13):4403–24. https://doi.org/10.1088/0031-9155/57/13/4403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hobbs RF, Song H, Watchman CJ, Bolch WE, Aksnes AK, Ramdahl T, et al. A bone marrow toxicity model for (2)(2)(3)Ra alpha-emitter radiopharmaceutical therapy. Phys Med Biol. 2012;57(10):3207–22. https://doi.org/10.1088/0031-9155/57/10/3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McDevitt MR, Barendswaard E, Ma D, Lai L, Curcio MJ, Sgouros G, et al. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000;60(21):6095–100.

    CAS  PubMed  Google Scholar 

  23. Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58(10):1624–31. https://doi.org/10.2967/jnumed.117.191395.

    Article  CAS  PubMed  Google Scholar 

  24. Lassmann M, Hanscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12. https://doi.org/10.1007/s00259-008-0761-x.

    Article  PubMed  Google Scholar 

  25. Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol. 1992;10(12):1889–96. https://doi.org/10.1200/jco.1992.10.12.1889.

    Article  CAS  PubMed  Google Scholar 

  26. Matthay KK, DeSantes K, Hasegawa B, Huberty J, Hattner RS, Ablin A, et al. Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol. 1998;16(1):229–36. https://doi.org/10.1200/jco.1998.16.1.229.

    Article  CAS  PubMed  Google Scholar 

  27. Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med. 2001;42(11):1713–21.

    CAS  PubMed  Google Scholar 

  28. Monsieurs M, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for 131I-MIBG therapy for neuroendocrine tumours based on 123I-MIBG scans. Eur J Nucl Med Mol Imaging. 2002;29(12):1581–7. https://doi.org/10.1007/s00259-002-0973-4.

    Article  CAS  PubMed  Google Scholar 

  29. Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA. Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol. 2002;47(17):3211–23. https://doi.org/10.1088/0031-9155/47/17/311.

    Article  PubMed  Google Scholar 

  30. Sundlov A, Sjogreen-Gleisner K, Svensson J, Ljungberg M, Olsson T, Bernhardt P, et al. Individualised (177)Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol Imaging. 2017;44(9):1480–9. https://doi.org/10.1007/s00259-017-3678-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garske-Román U, Sandstrom M, Fross Baron K, Lundin L, Hellman P, Welin S, et al. Prospective observational study of (177)Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45(6):970–88. https://doi.org/10.1007/s00259-018-3945-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bergsma H, Konijnenberg MW, Kam BL, Teunissen JJ, Kooij PP, de Herder WW, et al. Subacute haematotoxicity after PRRT with (177)Lu-DOTA-octreotate: prognostic factors, incidence and course. Eur J Nucl Med Mol Imaging. 2016;43(3):453–63. https://doi.org/10.1007/s00259-015-3193-4.

    Article  CAS  PubMed  Google Scholar 

  33. Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging. 2009;36(7):1138–46. https://doi.org/10.1007/s00259-009-1072-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging. 2011;38(7):1270–80. https://doi.org/10.1007/s00259-011-1744-x.

    Article  CAS  PubMed  Google Scholar 

  35. Hartmann H, Oehme L, Kotzerke J. 86Y-DOTATOC uptake in red marrow is not routinely visible. Eur J Nucl Med Mol Imaging. 2011;38(7):1384–5. https://doi.org/10.1007/s00259-011-1825-x.

    Article  PubMed  Google Scholar 

  36. Ilan E, Sandstrom M, Wassberg C, Sundin A, Garske-Roman U, Eriksson B, et al. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56(2):177–82. https://doi.org/10.2967/jnumed.114.148437.

    Article  CAS  PubMed  Google Scholar 

  37. Gleisner KS, Brolin G, Sundlov A, Mjekiqi E, Ostlund K, Tennvall J, et al. Long-term retention of 177Lu/177mLu-DOTATATE in patients investigated by gamma-spectrometry and gamma-camera imaging. J Nucl Med. 2015;56(7):976–84. https://doi.org/10.2967/jnumed.115.155390.

    Article  CAS  PubMed  Google Scholar 

  38. Fabbri C, Bartolomei M, Mattone V, Casi M, De Lauro F, Bartolini N, et al. (90)Y-PET/CT imaging quantification for dosimetry in peptide receptor radionuclide therapy: analysis and corrections of the impairing factors. Cancer Biother Radiopharm. 2015;30(5):200–10. https://doi.org/10.1089/cbr.2015.1819.

    Article  CAS  PubMed  Google Scholar 

  39. Cremonesi M, Ferrari M, Grana CM, Vanazzi A, Stabin M, Bartolomei M, et al. High-dose radioimmunotherapy with 90Y-ibritumomab tiuxetan: comparative dosimetric study for tailored treatment. J Nucl Med. 2007;48(11):1871–9. https://doi.org/10.2967/jnumed.107.044016.

    Article  PubMed  Google Scholar 

  40. Chiesa C, Botta F, Coliva A, Maccauro M, Devizzi L, Guidetti A, et al. Absorbed dose and biologically effective dose in patients with high-risk non-Hodgkin’s lymphoma treated with high-activity myeloablative 90Y-ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2009;36(11):1745–57. https://doi.org/10.1007/s00259-009-1141-x.

    Article  CAS  PubMed  Google Scholar 

  41. Pacilio M, Betti M, Cicone F, Del Mastro C, Montani L, Chiacchiararelli L, et al. A theoretical dose-escalation study based on biological effective dose in radioimmunotherapy with (90)Y-ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2010;37(5):862–73. https://doi.org/10.1007/s00259-009-1333-4.

    Article  CAS  PubMed  Google Scholar 

  42. Arico D, Grana CM, Vanazzi A, Ferrari M, Mallia A, Sansovini M, et al. The role of dosimetry in the high activity 90Y-ibritumomab tiuxetan regimens: two cases of abnormal biodistribution. Cancer Biother Radiopharm. 2009;24(2):271–5. https://doi.org/10.1089/cbr.2008.0541.

    Article  CAS  PubMed  Google Scholar 

  43. Chittenden SJ, Hindorf C, Parker CC, Lewington VJ, Pratt BE, Johnson B, et al. A phase 1, open-label study of the biodistribution, pharmacokinetics, and dosimetry of 223Ra-dichloride in patients with hormone-refractory prostate cancer and skeletal metastases. J Nucl Med. 2015;56(9):1304–9. https://doi.org/10.2967/jnumed.115.157123.

    Article  CAS  PubMed  Google Scholar 

  44. Murray I, Chittenden SJ, Denis-Bacelar AM, Hindorf C, Parker CC, Chua S, et al. The potential of (223)Ra and (18)F-fluoride imaging to predict bone lesion response to treatment with (223)Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(11):1832–44. https://doi.org/10.1007/s00259-017-3744-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hindorf C, Chittenden S, Aksnes AK, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl Med Commun. 2012;33(7):726–32. https://doi.org/10.1097/MNM.0b013e328353bb6e.

    Article  CAS  PubMed  Google Scholar 

  46. Pacilio M, Ventroni G, De Vincentis G, Cassano B, Pellegrini R, Di Castro E, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting (223)Ra-dichloride. Eur J Nucl Med Mol Imaging. 2016;43(1):21–33. https://doi.org/10.1007/s00259-015-3150-2.

    Article  CAS  PubMed  Google Scholar 

  47. Pacilio M, Ventroni G, Cassano B, Ialongo P, Lorenzon L, Di Castro E, et al. A case report of image-based dosimetry of bone metastases with Alpharadin ((223)Ra-dichloride) therapy: inter-fraction variability of absorbed dose and follow-up. Ann Nucl Med. 2016;30(2):163–8. https://doi.org/10.1007/s12149-015-1044-9.

    Article  PubMed  Google Scholar 

  48. Pacilio M, Cassano B, Chiesa C, Giancola S, Ferrari M, Pettinato C, et al. The Italian multicentre dosimetric study for lesion dosimetry in (223)Ra therapy of bone metastases: calibration protocol of gamma cameras and patient eligibility criteria. Phys Med. 2016;32(12):1731–7. https://doi.org/10.1016/j.ejmp.2016.09.013.

    Article  PubMed  Google Scholar 

  49. Pacilio M, Cassano B, Pellegrini R, Di Castro E, Zorz A, De Vincentis G, et al. Gamma camera calibrations for the Italian multicentre study for lesion dosimetry in (223)Ra therapy of bone metastases. Phys Med. 2017;41:117–23. https://doi.org/10.1016/j.ejmp.2017.04.019.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Vincentis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Vincentis, G., Frantellizzi, V., Pacilio, M. (2022). Dosimetric Principles of Targeted Radiotherapy and Radioimmunotherapy. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics