Skip to main content

Intra-Tumor Cell Heterogeneity: Different Immune Responses for Different Cells

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Background: The ongoing acquisition of genetic alterations in individual cancer cells leads to the emergence of genetically distinct tumor subclones. In concert with selective forces imposed on cancer cells by environmental factors, this drives tumor evolution. The stochastic nature of genetic events and the cellular adaption in response to external signals induces the formation of biologicallyheterogeneous tumor subclones. This intra-tumor cell heterogeneity (ITH) underlies the intrinsic (primary) and acquired (secondary) resistance to therapy that is commonly observed in patients with cancer and represents a major challenge for cancer (immuno-) therapy. Here we review the multiple dimensions of ITH, its impact on therapy resistance and existing approaches to overcome this still underappreciated therapeutic challenge.

Methods: A selective literature review was performed using PubMed (keywords: “intratumor heterogeneity”; “tumor heterogeneity”).

Results: ITH is a multilevel phenomenon that far exceeds genetic variation between tumor subclones alone. The tumor cells’ macro- and microenvironment contribute to epigenetic and metabolic alterations and induce phenotypic diversity between cancer cells of single lesions and of different tissue sites. Importantly, ITH and anti-tumor immune responses mutually influence each other. The immune system reduces ITH by eliminating immunogenic tumor subclones, while ITH, on the other hand, blunts spontaneous anti-tumor immune responses. ITH is associated with poorer responses to immunotherapy and poorer overall survival, highlighting the need for new therapeutic approaches to improve patient outcomes. While there are promising strategies aimed at reducing ITH, these have yet to prove their usefulness for the treatment of tumors with pronounced ITH.

Conclusions: ITH is increasingly recognized as a major therapeutic challenge in patients with cancer. A better understanding and improved assessment of ITH will enable the prediction of therapy resistance and guide the development of new, more effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R et al (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545(7655):446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M et al (2021) Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 39(6):866–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhmetzyanova I, Aaron T, Galbo P, Tikhonova A, Dolgalev I, Tanaka M et al (2021) Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα. Blood Adv 5(18):3592–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro JA, Sinha A, Kislinger T, Boutros PC (2014) Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat Methods 11(11):1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J et al (2017) Evolution of neoantigen landscape during immune checkpoint blockade in non–small cell lung cancer. Cancer Discovery. 7(3):264–276

    Article  CAS  PubMed  Google Scholar 

  • Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X et al (2009) Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 69(1):369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C et al (2016) Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med 22(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Arnone M, Konantz M, Hanns P, Paczulla Stanger AM, Bertels S, Godavarthy PS et al (2020) Acute myeloid leukemia stem cells: the challenges of phenotypic heterogeneity. Cancers (Basel) 12(12):3742. https://doi.org/10.3390/cancers12123742. PMID 33322769. https://pubmed.ncbi.nlm.nih.gov/33322769/

  • Bakker ER, Hoekstra E, Franken PF, Helvensteijn W, van Deurzen CH, van Veelen W et al (2013) β-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer. Oncogene 32(38):4579–4585

    Article  CAS  PubMed  Google Scholar 

  • Bareiss PM, Paczulla A, Wang H, Schairer R, Wiehr S, Kohlhofer U et al (2013) SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res 73(17):5544–5555

    Article  CAS  PubMed  Google Scholar 

  • Bayik D, Lathia JD (2021) Cancer stem cell–immune cell crosstalk in tumour progression. Nat Rev Cancer 21(8):526–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett RL, Bele A, Small EC, Will CM, Nabet B, Oyer JA et al (2019) A mutation in histone H2B represents a new class of oncogenic driver. Cancer Discovery 9(10):1438–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilich T, Nelde A, Bichmann L, Roerden M, Salih HR, Kowalewski DJ et al (2019) The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 133(6):550–565

    Article  CAS  PubMed  Google Scholar 

  • Bilich T, Nelde A, Bauer J, Walz S, Roerden M, Salih HR et al (2020) Mass spectrometry-based identification of a B-cell maturation antigen-derived T-cell epitope for antigen-specific immunotherapy of multiple myeloma. Blood Cancer J 10(2):1–10

    Article  Google Scholar 

  • Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JR, McGranahan N (2021) Genetic and non-genetic clonal diversity in cancer evolution. Nat Rev Cancer 21(6):379–392

    Article  CAS  PubMed  Google Scholar 

  • Bochner BR (2003) New technologies to assess genotype–phenotype relationships. Nat Rev Genet 4(4):309–314

    Article  CAS  PubMed  Google Scholar 

  • Boesch M, Sopper S, Zeimet AG, Reimer D, Gastl G, Ludewig B et al (2016) Heterogeneity of cancer stem cells: rationale for targeting the stem cell niche. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1866(2):276–289

    Article  CAS  Google Scholar 

  • Bozkus CC, Roudko V, Finnigan JP, Mascarenhas J, Hoffman R, Iancu-Rubin C et al (2019) Immune checkpoint blockade enhances shared neoantigen-induced T-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms. Cancer Discovery 9(9):1192–1207

    Article  CAS  PubMed Central  Google Scholar 

  • Brocks D, Assenov Y, Minner S, Bogatyrova O, Simon R, Koop C et al (2014) Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep 8(3):798–806

    Article  CAS  PubMed  Google Scholar 

  • Burger ML, Cruz AM, Crossland GE, Gaglia G, Ritch CC, Blatt SE, et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell 2021;184(19):4996-5014. e26.

    Google Scholar 

  • Carter B, Zhao K (2021) The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22(4):235–250

    Article  CAS  PubMed  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38(9):1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM et al (2021) Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. (595.7868 (2021): 578-584.)

    Google Scholar 

  • Caswell DR, Swanton C (2017) The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Med 15(1):1–9

    Article  Google Scholar 

  • Chao M, Seita J, Weissman I, editors. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harbor symposia on quantitative biology; 2008: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Chatterjee A, Rodger EJ, Eccles MR (2018) Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 51:149–159. https://doi.org/10.1016/j.semcancer.2017.08.004. Epub 2017 Aug 12. PMID: 28807546

  • Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  PubMed  Google Scholar 

  • Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34

    Article  CAS  PubMed  Google Scholar 

  • Darvin P, Toor SM, Nair VS, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11

    Article  PubMed  Google Scholar 

  • Darwin C (1876) The origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray publishing, London, UK

    Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  • de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L et al (2014) Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346(6206):251–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar AG et al (2021) Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184(8):2239–54. e39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A (2016) Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 15(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Cui H, editors (2019) Epigenetic modulation of metabolism in glioblastoma. Seminars in cancer biology. Elsevier. PMID 30205139. https://pubmed.ncbi.nlm.nih.gov/30205139/

  • Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20(2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Duong E, Fessenden TB, Lutz E, Dinter T, Yim L, Blatt S, et al (2022) Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity. PMID 34800368. https://pubmed.ncbi.nlm.nih.gov/34800368/

  • DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482(7385):405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH et al (2016) Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537(7621):539–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engblom C, Pfirschke C, Pittet MJ (2016) The role of myeloid cells in cancer therapies. Nat Rev Cancer 16(7):447–462

    Article  CAS  PubMed  Google Scholar 

  • Fang D, Gan H, Lee J-H, Han J, Wang Z, Riester SM et al (2016) The histone H3. 3K36M mutation reprograms the epigenome of chondroblastomas. Science 352(6291):1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faubert B, Solmonson A, DeBerardinis RJ (2020) Metabolic reprogramming and cancer progression. Science 368(6487):eaaw5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP, Fallin MD (2015) Epigenetics at the crossroads of genes and the environment. JAMA 314(11):1129–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP, Koldobskiy MA, Göndör A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17(5):284–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu T, Dai L-J, Wu S-Y, Xiao Y, Ma D, Jiang Y-Z et al (2021) Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 14(1):1–25

    Article  Google Scholar 

  • Galbo PM, Zang X, Zheng D (2021) Implication of cancer associated fibroblast subtypes on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res 27(9):2636–2647. https://doi.org/10.1158/1078-0432.CCR-20-4226. Epub 2021 Feb 23. PMID: 33622705. https://pubmed.ncbi.nlm.nih.gov/33622705/

  • Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218

    Article  CAS  PubMed  Google Scholar 

  • Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghilas S, Mielke LA (2021) Dendritic cells shape TCF1+ CD8+ progenitor T cell heterogeneity. Trends Immunol 42(12):1063–1065. https://doi.org/10.1016/j.it.2021.10.013. Epub 2021 Nov 10. PMID 34774417. https://pubmed.ncbi.nlm.nih.gov/34774417/

  • Goel A, Mathupala SP, Pedersen PL (2003) Glucose metabolism in cancer: evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 278(17):15333–15340

    Article  CAS  PubMed  Google Scholar 

  • Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL et al (2017) Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46(3):504–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T et al (2021) Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature:1–6

    Google Scholar 

  • Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Peng Y, Gao A, Du C, Herman JG (2019) Epigenetic heterogeneity in cancer. Biomarker Res 7(1):1–19

    Article  Google Scholar 

  • Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discovery 12(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hinohara K, Wu H-J, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN et al (2018) KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell 34(6):939–53.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton BL, Fessenden TB, Spranger S (2019) Tissue site and the cancer immunity cycle. Trends Cancer 5(10):593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton BL, Morgan DM, Momin N, Zagorulya M, Torres-Mejia E, Bhandarkar V et al (2021) Lack of CD8+ T cell effector differentiation during priming mediates checkpoint blockade resistance in non–small cell lung cancer. Science Immunol 6(64):eabi8800

    Article  CAS  Google Scholar 

  • Hu X, Estecio MR, Chen R, Reuben A, Wang L, Fujimoto J et al (2021) Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat Commun 12(1):1–13

    Google Scholar 

  • Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TB, Veeriah S et al (2017) Tracking the evolution of non–small-cell lung cancer. N Engl J Med 376(22):2109–2121

    Article  CAS  PubMed  Google Scholar 

  • Junttila MR, De Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  • Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26(17):2813

    Article  PubMed  Google Scholar 

  • Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598

    Article  CAS  PubMed  Google Scholar 

  • Kim J, DeBerardinis RJ (2019) Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab 30(3):434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima M, Harada T, Fukazawa T, Kurihara S, Saeki I, Takahashi S et al (2021) Single-cell DNA and RNA sequencing of circulating tumor cells. Sci Rep 11(1):22864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS et al (2016) STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res 76(5):999–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AM et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548

    Article  CAS  PubMed  Google Scholar 

  • Lai C, Coltart G, Shapanis A, Healy C, Alabdulkareem A, Selvendran S et al (2021) CD8+ CD103+ tissue-resident memory T cells convey reduced protective immunity in cutaneous squamous cell carcinoma. J Immunother Cancer 9(1):e001807. https://doi.org/10.1136/jitc-2020-001807. PMID 33479027. https://pubmed.ncbi.nlm.nih.gov/33479027/

  • Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z (2018) Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol 20(12):1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leick KM, Pinczewski J, Mauldin IS, Young SJ, Deacon DH, Woods AN et al (2019) Patterns of immune-cell infiltration in murine models of melanoma: roles of antigen and tissue site in creating inflamed tumors. Cancer Immunol Immunother 68(7):1121–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE et al (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20(2):233–46. e7

    Article  CAS  PubMed  Google Scholar 

  • Lin D-C, Mayakonda A, Dinh HQ, Huang P, Lin L, Liu X et al (2017) Genomic and epigenomic heterogeneity of hepatocellular carcinoma. Cancer Res 77(9):2255–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodish H, Berk A, Kaiser CA, Kaiser C, Krieger M, Scott MP et al (2008) Molecular cell biology. Macmillan, W. H. Freeman and Company (Macmillan Higher Education), New York City, NY, USA

    Google Scholar 

  • Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352(6287):844–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida K (2018) Pluripotency transcription factors and metabolic reprogramming of mitochondria in tumor-initiating stem-like cells. Antioxid Redox Signal 28(11):1080–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32(1):303–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1805(1):105–117

    Article  CAS  Google Scholar 

  • Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334

    Article  CAS  PubMed  Google Scholar 

  • Marusyk A, Janiszewska M, Polyak K (2020) Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell 37(4):471–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K et al (2017) Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancer 9(7):91

    Article  Google Scholar 

  • McDonald K-A, Kawaguchi T, Qi Q, Peng X, Asaoka M, Young J et al (2019) Tumor heterogeneity correlates with less immune response and worse survival in breast cancer patients. Ann Surg Oncol 26(7):2191–2199

    Article  PubMed  PubMed Central  Google Scholar 

  • McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TB, Wilson GA et al (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171(6):1259–71. e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ et al (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359(6377):801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A et al (2019) Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A 116(18):9020–9029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208(10):1949–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobs SP, Kopf M (2021) Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol 42(6):495–507. https://doi.org/10.1016/j.it.2021.04.007. Epub 2021 May 7. PMID 33972166. https://pubmed.ncbi.nlm.nih.gov/33972166/

  • Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih I-M, Vogelstein B et al (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci 99(25):16226–16231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Masugi Y, Abe T, Yamazaki K, Ueno A, Fujii-Nishimura Y et al (2021) Three distinct stroma types in human pancreatic cancer identified by image analysis of fibroblast subpopulations and collagen. Clin Cancer Res 27(1):107–119

    Article  CAS  PubMed  Google Scholar 

  • Paczulla AM, Rothfelder K, Raffel S, Konantz M, Steinbacher J, Wang H et al (2019) Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 572(7768):254–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paguirigan AL, Smith J, Meshinchi S, Carroll M, Maley C, Radich JP (2015) Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med 7(281):281re2-re2

    Article  Google Scholar 

  • Pastore A, Gaiti F, Lu SX, Brand RM, Kulm S, Chaligne R et al (2019) Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nat Commun 10(1):1–11

    Article  CAS  Google Scholar 

  • Pietras K, Östman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331

    Article  CAS  PubMed  Google Scholar 

  • Pietrobon V, Marincola FM (2021) Hypoxia and the phenomenon of immune exclusion. J Transl Med 19(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S et al (2017) Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene 36(11):1573–1584

    Article  CAS  PubMed  Google Scholar 

  • Raghavan S, Winter PS, Navia AW, Williams HL, DenAdel A, Lowder KE et al (2021) Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184(25):6119–37.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16(2):85–97

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues J, Heinrich MA, Teixeira LM, Prakash J (2021) 3D in vitro model (R) evolution: unveiling tumor–stroma interactions. Trends cancer 7(3):249–264

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal R, Cadieux EL, Salgado R, Al Bakir M, Moore DA, Hiley CT et al (2019) Neoantigen-directed immune escape in lung cancer evolution. Nature 567(7749):479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross-Innes CS, Becq J, Warren A, Cheetham RK, Northen H, O'Donovan M et al (2015) Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat Genet 47(9):1038–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S et al (2019) Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366(6472):1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359(6382):1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P, Trautmann A et al (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122(3):899–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarfò I, Maus MV (2017) Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott AC, Dündar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M et al (2019) TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571(7764):270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218

    Article  CAS  PubMed  Google Scholar 

  • Shen J-C, Rideout WM III, Jones PA (1992) High frequency mutagenesis by a DNA methyltransferase. Cell 71(7):1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F et al (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64(24):9167–9171

    Article  CAS  PubMed  Google Scholar 

  • Silva JV, Freitas MJ, Fardilha M (2020) Tissue-specific cell signaling. Springer, Springer Nature Switzerland AG 2020. https://link.springer.com/book/10.1007/978-3-030-44436-5#bibliographic-information

  • Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT et al (2015) Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia 17(8):671–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E et al (2016) Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discovery 6(6):630–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S (2016) Tumor heterogeneity and tumor immunity: a chicken-and-egg problem. Trends Immunol 37(6):349–351

    Article  CAS  PubMed  Google Scholar 

  • Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  • Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thommen DS, Schumacher TN (2018) T cell dysfunction in cancer. Cancer Cell 33(4):547–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veglia F, Sanseviero E, Gabrilovich DI (2021) Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 21(8):485–498. https://doi.org/10.1038/s41577-020-00490-y. Epub 2021 Feb 1. PMID 33526920. https://pubmed.ncbi.nlm.nih.gov/33526920/

  • Vendramin R, Litchfield K, Swanton C (2021) Cancer evolution: Darwin and beyond. EMBO J 40(18):e108389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl GM, Spike BT (2017) Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. npj Breast Cancer 3(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM et al (2017) Prominent oncogenic roles of EVI1 in breast carcinoma. Cancer Res 77(8):2148–2160

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (2013) The biology of cancer. Garland Science, Taylor & Francis Group, New York City, NY, USA

    Google Scholar 

  • Weisberg SP, Ural BB, Farber DL (2021) Tissue-specific immunity for a changing world. Cell 184(6):1517–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Classification of Tumours (2019) Classification of Tumours Editorial Board, 5th edn. World Health Organization

    Google Scholar 

  • Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K et al (2019) UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell 179(1):219–35. e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X-J, Xu J, Gu Z-H, Pan C-M, Lu G, Shen Y et al (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43(4):309–315

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Lee K-W, Srivastava RM, Kuo F, Krishna C, Chowell D et al (2019) Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med 25(5):767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P et al (2015) Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 21(7):751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo LI, Liu DW, Le Vu S, Bronson RT, Wu H, Yuan J (2006) Pten deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Res 66(4):1929–1939

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y (2016) Spatial heterogeneity in the tumor microenvironment. Cold Spring Harbor Perspect Med 6(8):a026583

    Article  Google Scholar 

  • Zelenay S, van der Veen AG, Böttcher Jan P, Snelgrove Kathryn J, Rogers N, Acton Sophie E et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162(6):1257–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Cheng F, Zhao Z (2017) Tissue-specific signaling networks rewired by major somatic mutations in human cancer revealed by proteome-wide discovery. Cancer Res 77(11):2810–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucman-Rossi J, Jeannot E, Van Nhieu JT, Scoazec JY, Guettier C, Rebouissou S et al (2006) Genotype–phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43(3):515–524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Malte Roerden receives funding from Deutsche Forschungsgemeinschaft (Grant RO 6575/1-1).

Claudia Lengerke receives funding from the European Research Council (ERC CoG Hemstem 866548), The Wilhelm Sander Foundation (2019.042.1), the Deutsche Konsortium für Translationale Krebsforschung (DKTK, RiskY-AML Grant), the Swiss National Science Foundation (179239), and the Deutsche Krebshilfe (Arming NK Cells against AML).

All manuscript figures were created with BioRender.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lengerke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roerden, M., Lengerke, C. (2022). Intra-Tumor Cell Heterogeneity: Different Immune Responses for Different Cells. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics