Skip to main content

Receptor-Specific Radionuclide Therapy

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Nuclear medicine is a medical specialty that uses radiopharmaceuticals for diagnostic imaging or therapy. This radiopharmaceutical compound consists of a radionuclide optionally coupled to a vector which binds specifically to biological targets of interest. This product has been developed with the aim of being as selective as possible at the level of the tumor, while preserving healthy tissue as much as possible. For therapeutic applications, the β or α radiation emitted by the radionuclide is used to kill the targeted cells, so-called radionuclide therapy (RNT). For several decades, radionuclide therapy has mostly been limited to the use of iodine-131 in various thyroid diseases. In recent years, advances in the understanding of molecular mechanisms underlying cancer biology, followed by the appearance of new vectors (antibodies, peptides, small molecules) and the availability of new radionuclides, have pushed radionuclide therapy toward personalized treatment, with better therapeutic efficacy and radiation safety. In particular, the tumor microenvironment now appears as a potential target for drug delivery, including radiopharmaceuticals, alongside tumor cell membrane receptors or antigens. Several therapeutic receptor-specific radiopharmaceuticals have demonstrated their clinical usefulness in a variety of tumor types and have been or are on the verge to be granted authorization. Following the clinical success of these latter, research in that domain is very active, and the clinical pipeline appears particularly promising. Receptor-specific radionuclide therapy clearly embodies Paul Ehrlich’s concept of “magic bullet.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi Gharibkandi N, Conlon JM, Hosseinimehr SJ (2020) Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides 133:170385

    Article  CAS  Google Scholar 

  • Adams GP, Shaller CC, Chappell LL, Wu C, Horak EM, Simmons HH, Litwin S, Marks JD, Weiner LM, Brechbiel MW (2000) Delivery of the alpha-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl Med Biol 27(4):339–346

    Article  CAS  Google Scholar 

  • Ahmadi Bidakhvidi N, Goffin K, Dekervel J, Baete K, Nackaerts K, Clement P, Van Cutsem E, Verslype C, Deroose CM (2021) Peptide receptor radionuclide therapy targeting the somatostatin receptor: basic principles, clinical applications and optimization strategies. Cancers (Basel) 14:129

    Article  Google Scholar 

  • Aloj L, Attili B, Lau D, Caraco C, Lechermann LM, Mendichovszky IA, Harper I, Cheow H, Casey RT, Sala E, Gilbert FJ, Gallagher FA (2021) The emerging role of cell surface receptor and protein binding radiopharmaceuticals in cancer diagnostics and therapy. Nucl Med Biol 92:53–64

    Article  CAS  Google Scholar 

  • Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM (2017) Pretargeted imaging and therapy. J Nucl Med 58:1553–1559

    Article  CAS  Google Scholar 

  • Ambur Sankaranarayanan R, Kossatz S, Weber W, Beheshti M, Morgenroth A, Mottaghy FM (2020) Advancements in PARP1 targeted nuclear imaging and theranostic probes. J Clin Med 9:2130

    Article  Google Scholar 

  • Ansquer C, Kraeber-Bodéré F, Chatal JF (2009) Current status and perspectives in peptide receptor radiation therapy. Curr Pharm Des 15:2453–2462

    Article  CAS  Google Scholar 

  • Assadi M, Rekabpour SJ, Jafari E, Divband G, Nikkholgh B, Amini H, Kamali H, Ebrahimi S, Shakibazad N, Jokar N, Nabipour I, Ahmadzadehfar H (2021) Feasibility and therapeutic potential of 177Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: a preliminary study. Clin Nucl Med 46:e523–e530

    Article  Google Scholar 

  • Bäck T, Haraldsson B, Hultborn R, Jensen H, Johansson ME, Lindegren S, Jacobsson L (2009) Glomerular filtration rate after alpha-radioimmunotherapy with 211At-MX35-F(ab’)2: a long-term study of renal function in nude mice. Cancer Biother Radiopharm 24(6):649–658

    Google Scholar 

  • Ballal S, Yadav MP, Bal C, Sahoo RK, Tripathi M (2020) Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging 47:934–946

    Article  CAS  Google Scholar 

  • Ballal S, Yadav MP, Moon ES, Kramer VS, Roesch F, Kumari S, Bal C (2021) First-in-human results on the biodistribution, pharmacokinetics, and dosimetry of [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2. Pharmaceuticals (Basel) 14:1212

    Article  CAS  Google Scholar 

  • Baum RP, Singh A, Schuchardt C, Kulkarni HR, Klette I, Wiessalla S, Osterkamp F, Reineke U, Smerling C (2018) 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J Nucl Med 59:809–814

    Google Scholar 

  • Baum RP, Zhang J, Schuchardt C, Müller D, Mäcke H (2021a) First-in-humans study of the SSTR antagonist 177Lu-DOTA-LM3 for peptide receptor radionuclide therapy in patients with metastatic neuroendocrine neoplasms: dosimetry, safety, and efficacy. J Nucl Med 62:1571–1581

    Google Scholar 

  • Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, Mueller D, Eismant A, Almaguel F, Zboralski D, Osterkamp F, Hoehne A, Reineke U, Smerling C, Kulkarni HR (2021b) Feasibility, biodistribution and preliminary dosimetry in peptide-targeted radionuclide therapy (PTRT) of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-human results. J Nucl Med. https://doi.org/10.2967/jnumed.120.259192. Epub ahead of print

  • Benej M, Pastorekova S, Pastorek J (2014) Carbonic anhydrase IX: regulation and role in cancer. In: Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications; subcellular biochemistry. Springer, Dordrecht, pp 199–219

    Chapter  Google Scholar 

  • Bodei L, Ferrari M, Nunn A, Llull J, Cremonesi M, Martano L, Laurora G, Scardino E, Tiberini S, Bufi G, Eaton S, de Cobelli O, Paganelli G (2007) 177Lu-AMBA bombesin analogue in hormone refractory prostate cancer patients: a phase I escalation study with single-cycle administrations. Eur J Nucl Med Mol Imaging 34:S221

    Google Scholar 

  • Boonstra MC, de Geus SW, Prevoo HA, Hawinkels LJ, van de Velde CJ, Kuppen PJ, Vahrmeijer AL, Sier CF (2016) Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomark Cancer 8:119–133

    Article  CAS  Google Scholar 

  • Boss SD, Ametamey SM (2020) Development of folate receptor-targeted PET radiopharmaceuticals for tumor imaging-a bench-to-bedside journey. Cancers (Basel) 12:1508

    Article  CAS  Google Scholar 

  • Cabanillas ME, McFadden DG, Durante C (2016) Thyroid cancer. Lancet 388:2783–2795

    Article  CAS  Google Scholar 

  • Calais J (2020) FAP: the next billion dollar nuclear theranostics target? J Nucl Med 61:163–165

    Article  Google Scholar 

  • Carney B, Kossatz S, Reiner T (2017) Molecular imaging of PARP. J Nucl Med 58:1025–1030

    Article  CAS  Google Scholar 

  • Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326

    Article  CAS  Google Scholar 

  • Chakraborty D, Das A, Bal CS (2022) Tumor-targeting agents. In: Harsini S et al (eds) Nuclear medicine and immunology. Springer Nature, Cham, pp 217–236

    Chapter  Google Scholar 

  • Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  Google Scholar 

  • Ciobanasu C (2021) Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. J Drug Target 29:1063–1079

    Article  CAS  Google Scholar 

  • Collins DA, Hogenkamp HP, O’Connor MK, Naylor S, Benson LM, Hardyman TJ, Thorson LM (2000) Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clin Proc 75:568–580

    Article  CAS  Google Scholar 

  • Cordier D, Krolicki L, Morgenstern A, Merlo A (2016) Targeted radiolabeled compounds in glioma therapy. Semin Nucl Med 46:243–249

    Article  Google Scholar 

  • Corroyer-Dulmont A, Jaudet C, Frelin AM, Fantin J, Weyts K, Vallis KA, Falzone N, Sibson NR, Chérel M, Kraeber-Bodéré F, Batalla A, Bardet S, Bernaudin M, Valable S (2021) Radioimmunotherapy for brain metastases: the potential for inflammation as a target of choice. Front Oncol 11:714514

    Article  Google Scholar 

  • Delpassand ES, Tworowska I, Esfandiari R, Torgue J, Hurt J, Shafie A, Núñez R (2022) Targeted alpha-emitter therapy with 212Pb-DOTAMTATE for the treatment of metastatic SSTR-expressing neuroendocrine tumors: first-in-human, dose-escalation clinical trial. J Nucl Med jnumed.121.263230. Epub ahead of print

    Google Scholar 

  • DeNardo SJ, DeNardo GL, O’Grady LF, Macey DJ, Mills SL, Epstein AL, Peng JS, McGahan JP (1987) Treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers 2(1):49–53

    Article  CAS  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  Google Scholar 

  • Diebolder P, Mpoy C, Scott J, Huynh TT, Fields R, Spitzer D, Bandara N, Rogers BE (2021) Preclinical evaluation of an engineered single-chain fragment variable-fragment crystallizable targeting human CD44. J Nucl Med 62(1):137–143

    Article  CAS  Google Scholar 

  • Edelman MJ, Clamon G, Kahn D, Magram M, Lister-James J, Line BR (2009) Targeted radiopharmaceutical therapy for advanced lung cancer: phase I trial of rhenium Re188 P2045, a somatostatin analog. J Thorac Oncol 4:1550–1554

    Article  Google Scholar 

  • Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N (2020) Overview of radiolabeled somatostatin analogs for cancer imaging and therapy. Molecules 25:4012

    Article  CAS  Google Scholar 

  • Fani M, Nicolas GP, Wild D (2017) Somatostatin receptor antagonists for imaging and therapy. J Nucl Med 58:61S–66S

    Article  CAS  Google Scholar 

  • Ferdinandus J, Fragoso Costa P, Kessler L, Weber M, Hirmas N, Kostbade K, Bauer S, Schuler M, Ahrens M, Schildhaus HU, Rischpler C, Grafe H, Siveke JT, Herrmann K, Fendler W, Hamacher R (2021) Initial clinical experience with 90Y-FAPI-46 radioligand therapy for advanced stage solid tumors: a case series of nine patients. J Nucl Med 63:jnumed.121.262468

    Article  Google Scholar 

  • Filippi L, Bagni O, Nervi C (2020) Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer. Expert Rev Med Devices 17(8):751–758

    Article  CAS  Google Scholar 

  • Franco Machado J, Silva RD, Melo R, Correia JDG (2018) Less exploited GPCRs in precision medicine: targets for molecular imaging and theranostics. Molecules 24:49

    Article  Google Scholar 

  • Gendron LN, Zites DC, LaRochelle EPM, Gunn JR, Pogue BW, Shell TA, Shell JR (2020) Tumor targeting vitamin B12 derivatives for X-ray induced treatment of pancreatic adenocarcinoma. Photodiagn Photodyn Ther 30:101637

    Article  CAS  Google Scholar 

  • Giammarile F, Chiti A, Lassmann M, Brans B, Flux G, EANM. (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35:1039–1047

    Article  CAS  Google Scholar 

  • Gijs M, Aerts A, Impens N, Baatout S, Luxen A (2016) Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol 43(4):253–271

    Article  CAS  Google Scholar 

  • Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Mäcke HR, Reubi JC (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103:16436–16441

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Haubner R, Decristoforo C (2009) Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci (Landmark Ed) 14:872–886

    Article  CAS  Google Scholar 

  • Hennrich U, Benešová M (2020) [68Ga]Ga-DOTA-TOC: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals (Basel) 13(3):38

    Article  CAS  Google Scholar 

  • Hennrich U, Kopka K (2019) Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel) 12:114

    Article  CAS  Google Scholar 

  • Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hänscheid H, Lückerath K, Schreder M, Bluemel C, Knott M, Keller U, Schirbel A, Samnick S, Lassmann M, Kropf S, Buck AK, Einsele H, Wester HJ, Knop S (2016) First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med 57:248–251

    Article  CAS  Google Scholar 

  • Iikuni S, Ono M, Watanabe H, Shimizu Y, Sano K, Saji H (2018) Cancer radiotheranostics targeting carbonic anhydrase-IX with 111In- and 90Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics 8:2992–3006

    Article  CAS  Google Scholar 

  • Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E (2021) New frontiers in cancer imaging and therapy based on radiolabeled fibroblast activation protein inhibitors: a rational review and current progress. Pharmaceuticals (Basel) 14:1023

    Article  CAS  Google Scholar 

  • Jannetti SA, Carlucci G, Carney B, Kossatz S, Shenker L, Carter LM, Salinas B, Brand C, Sadique A, Donabedian PL, Cunanan KM, Gönen M, Ponomarev V, Zeglis BM, Souweidane MM, Lewis JS, Weber WA, Humm JL, Reiner T (2018) PARP-1-targeted radiotherapy in mouse models of glioblastoma. J Nucl Med 59:1225–1233

    Article  CAS  Google Scholar 

  • Jannetti SA, Zeglis BM, Zalutsky MR, Reiner T (2020) Poly(ADP-ribose)polymerase (PARP) inhibitors and radiation therapy. Front Pharmacol 11:170

    Article  CAS  Google Scholar 

  • Janoniene A, Petrikaite V (2020) In search of advanced tumor diagnostics and treatment: achievements and perspectives of carbonic anhydrase IX targeted delivery. Mol Pharm 17:1800–1815

    Article  CAS  Google Scholar 

  • Jimenez C, Erwin W, Chasen B (2019) Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers (Basel) 11:1018

    Article  CAS  Google Scholar 

  • Jungels C, Karfis I (2021) 131I-metaiodobenzylguanidine and peptide receptor radionuclide therapy in pheochromocytoma and paraganglioma. Curr Opin Oncol 33:33–39

    Google Scholar 

  • Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J (2021) Single- versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics 13:326

    Article  CAS  Google Scholar 

  • Kawaguchi N, Zhang TT, Nakanishi T (2019) Involvement of CXCR4 in normal and abnormal development. Cell 8:185

    Article  CAS  Google Scholar 

  • Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J (2014) The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int 14:41

    Article  Google Scholar 

  • Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, Keller U, Lapa C (2018) CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 32:503–511

    Article  CAS  Google Scholar 

  • Kneifel S, Cordier D, Good S, Ionescu MC, Ghaffari A, Hofer S, Kretzschmar M, Tolnay M, Apostolidis C, Waser B, Arnold M, Mueller-Brand J, Maecke HR, Reubi JC, Merlo A (2006) Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin Cancer Res 12:3843–3850

    Article  CAS  Google Scholar 

  • Kratochwil C, Giesel FL, Bruchertseifer F, Mier W, Apostolidis C, Boll R, Murphy K, Haberkorn U, Morgenstern A (2014) 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging 41:2106–2119

    Google Scholar 

  • Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, Haberkorn U, Giesel FL, Morgenstern A (2017) Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58:1624–1631

    Article  CAS  Google Scholar 

  • Kratochwil C, Haberkorn U, Giesel FL (2019a) Radionuclide therapy of metastatic prostate cancer. Semin Nucl Med 49:313–325

    Google Scholar 

  • Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, Adeberg S, Rathke H, Röhrich M, Winter H, Plinkert PK, Marme F, Lang M, Kauczor HU, Jäger D, Debus J, Haberkorn U, Giesel FL (2019b) 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 60:801–805

    Google Scholar 

  • Kratochwil C, Giesel FL, Rathke H, Fink R, Dendl K, Debus J, Mier W, Jäger D, Lindner T, Haberkorn U (2021) [153Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. Eur J Nucl Med Mol Imaging 48:3011–3013

    Article  Google Scholar 

  • Krolicki L, Bruchertseifer F, Kunikowska J, Koziara H, Królicki B, Jakuciński M, Pawlak D, Apostolidis C, Mirzadeh S, Rola R, Merlo A, Morgenstern A (2018) Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. Eur J Nucl Med Mol Imaging 45:1636–1644

    Article  CAS  Google Scholar 

  • Królicki L, Kunikowska J, Bruchertseifer F, Koziara H, Królicki B, Jakuciński M, Pawlak D, Rola R, Morgenstern A, Rosiak E, Merlo A (2020) 225Ac- and 213Bi-substance P analogues for glioma therapy. Semin Nucl Med 50:141–151

    Google Scholar 

  • Kuda-Wedagedara ANW, Workinger JL, Nexo E, Doyle RP, Viola-Villegas N (2017) 89Zr-cobalamin PET tracer: synthesis, cellular uptake, and use for tumor imaging. ACS Omega 2:6314–6320

    Google Scholar 

  • Kulkarni HR, Singh A, Schuchardt C, Niepsch K, Sayeg M, Leshch Y, Wester HJ, Baum RP (2016) PSMA-based radioligand therapy for metastatic castration-resistant prostate cancer: the Bad Berka experience since 2013. J Nucl Med 57:97S–104S

    Article  CAS  Google Scholar 

  • Kurth J, Krause BJ, Schwarzenböck SM, Bergner C, Hakenberg OW, Heuschkel M (2020) First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 47:123–135

    Article  CAS  Google Scholar 

  • Kuyumcu S, Kovan B, Sanli Y, Buyukkaya F, Has Simsek D, Özkan ZG, Isik EG, Ekenel M, Turkmen C (2021) Safety of fibroblast activation protein-targeted radionuclide therapy by a low-dose dosimetric approach using 177Lu-FAPI04. Clin Nucl Med 46:641–646

    Article  Google Scholar 

  • Lau J, Lin KS, Bénard F (2017) Past, present, and future: development of theranostic agents targeting carbonic anhydrase IX. Theranostics 7:4322–4339

    Article  CAS  Google Scholar 

  • Lee ST, Burvenich I, Scott AM (2019) Novel target selection for nuclear medicine studies. Semin Nucl Med 49:357–368

    Article  Google Scholar 

  • Lee H, Riad A, Martorano P, Mansfield A, Samanta M, Batra V, Mach RH, Maris JM, Pryma DA, Makvandi M (2020) PARP-1-targeted auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma. J Nucl Med 61:850–856

    Article  CAS  Google Scholar 

  • Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, Jäger D, Mier W, Haberkorn U (2018) Development of Quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59:1415–1422

    Article  CAS  Google Scholar 

  • Lindner T, Altmann A, Krämer S, Kleist C, Loktev A, Kratochwil C, Giesel F, Mier W, Marme F, Debus J, Haberkorn U (2020) Design and development of 99mTc-labeled FAPI tracers for SPECT imaging and 188Re therapy. J Nucl Med 61:1507–1513

    Article  CAS  Google Scholar 

  • Liu Y, Watabe T, Kaneda-Nakashima K, Shirakami Y, Naka S, Ooe K, Toyoshima A, Nagata K, Haberkorn U, Kratochwil C, Shinohara A, Hatazawa J, Giesel F (2021) Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Eur J Nucl Med Mol Imaging 49:871. https://doi.org/10.1007/s00259-021-05554-2. Epub ahead of print

    Article  CAS  Google Scholar 

  • Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13:256–262

    Article  CAS  Google Scholar 

  • Majkowska-Pilip A, Halik PK, Gniazdowska E (2019) The significance of NK1 receptor ligands and their application in targeted radionuclide tumour therapy. Pharmaceutics 11:443

    Article  CAS  Google Scholar 

  • Makvandi M, Lee H, Puentes LN, Reilly SW, Rathi KS, Weng CC, Chan HS, Hou C, Raman P, Martinez D, Xu K, Carlin SD, Greenberg RA, Pawel BR, Mach RH, Maris JM, Pryma DA (2019) Targeting PARP-1 with alpha-particles is potently cytotoxic to human neuroblastoma in preclinical models. Mol Cancer Ther 18:1195–1204

    Article  CAS  Google Scholar 

  • Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T (2021) Radiolabeled bombesin analogs. Cancers (Basel) 13:5766

    Article  CAS  Google Scholar 

  • Masłowska K, Halik PK, Tymecka D, Misicka A, Gniazdowska E (2021) The role of VEGF receptors as molecular target in nuclear medicine for cancer diagnosis and combination therapy. Cancers (Basel) 13:1072

    Article  Google Scholar 

  • Maurer S, Herhaus P, Lippenmeyer R, Hänscheid H, Kircher M, Schirbel A, Maurer HC, Buck AK, Wester HJ, Einsele H, Grigoleit GU, Keller U, Lapa C (2019) Side effects of CXC-chemokine receptor 4-directed endoradiotherapy with pentixather before hematopoietic stem cell transplantation. J Nucl Med 60:1399–1405

    Article  CAS  Google Scholar 

  • Millul J, Bassi G, Mock J, Elsayed A, Pellegrino C, Zana A, Dakhel Plaza S, Nadal L, Gloger A, Schmidt E, Biancofiore I, Donckele EJ, Samain F, Neri D, Cazzamalli S (2021) An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc Natl Acad Sci U S A 118:e2101852118

    Article  CAS  Google Scholar 

  • Muller C (2012) Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Des 1:1058–1083

    Article  Google Scholar 

  • Müller C, Schibli R (2013) Prospects in folate receptor-targeted radionuclide therapy. Front Oncol 3:249

    Article  Google Scholar 

  • Müller C, Guzik P, Siwowska K, Cohrs S, Schmid RM, Schibli R (2018) Combining albumin-binding properties and interaction with pemetrexed to improve the tissue distribution of radiofolates. Molecules 23:1465

    Article  Google Scholar 

  • Ohshima Y, Sudo H, Watanabe S, Nagatsu K, Tsuji AB, Sakashita T, Ito YM, Yoshinaga K, Higashi T, Ishioka NS (2018) Antitumor effects of radionuclide treatment using α-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur J Nucl Med Mol Imaging 45:999–1010

    Article  CAS  Google Scholar 

  • Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester HJ (2020) A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Theranostics 10:8264–8280

    Article  CAS  Google Scholar 

  • Pirovano G, Jannetti SA, Carter LM, Sadique A, Kossatz S, Guru N, De Souza D, França P, Maeda M, Zeglis BM, Lewis JS, Humm JL, Reiner T (2020) Targeted brain tumor radiotherapy using an auger emitter. Clin Cancer Res 26:2871–2881

    Article  CAS  Google Scholar 

  • Poltavets V, Kochetkova M, Pitson SM, Samuel MS (2018) The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol 8:431

    Article  Google Scholar 

  • Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schäfers M, Essler M, Baum RP, Kulkarni HR, Schmidt M, Drzezga A, Bartenstein P, Pfestroff A, Luster M, Lützen U, Marx M, Prasad V, Brenner W, Heinzel A, Mottaghy FM, Ruf J, Meyer PT, Heuschkel M, Eveslage M, Bögemann M, Fendler WP, Krause BJ (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90

    Article  CAS  Google Scholar 

  • Rathke H, Fuxius S, Giesel FL, Lindner T, Debus J, Haberkorn U, Kratochwil C (2021) Two tumors, one target: preliminary experience with 90Y-FAPI therapy in a patient with metastasized breast and colorectal cancer. Clin Nucl Med 46:842–844

    Article  Google Scholar 

  • Reidy-Lagunes D, Pandit-Taskar N, O’Donoghue JA, Krebs S, Staton KD, Lyashchenko SK, Lewis JS, Raj N, Gönen M, Lohrmann C, Bodei L, Weber WA (2019) Phase I trial of well-differentiated neuroendocrine tumors (NETs) with radiolabeled somatostatin antagonist 177Lu-satoreotide tetraxetan. Clin Cancer Res 25:6939–6947

    Article  Google Scholar 

  • Reubi JC, Waser B, Schaer JC, Laissue JA (2001) Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28:836–846

    Article  CAS  Google Scholar 

  • Rottenburger C, Nicolas GP, McDougall L, Kaul F, Cachovan M, Vija AH, Schibli R, Geistlich S, Schumann A, Rau T, Glatz K, Behe M, Christ ER, Wild D (2020) Cholecystokinin 2 receptor agonist 177Lu-PP-F11N for radionuclide therapy of medullary thyroid carcinoma: results of the Lumed Phase 0a Study. J Nucl Med 61:520–526

    Article  CAS  Google Scholar 

  • Russell-Jones G, McTavish K, McEwan J, Rice J, Nowotnik D (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98:1625–1633

    Article  CAS  Google Scholar 

  • Sanli Y, Simsek DH, Sanli O, Subramaniam RM, Kendi AT (2021) 177Lu-PSMA therapy in metastatic castration-resistant prostate cancer. Biomedicine 9:430

    Google Scholar 

  • Schottelius M, Osl T, Poschenrieder A, Hoffmann F, Beykan S, Hänscheid H, Schirbel A, Buck AK, Kropf S, Schwaiger M, Keller U, Lassmann M, Wester HJ (2017) [177Lu]pentixather: comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics 7:2350–2362

    Article  CAS  Google Scholar 

  • Sgouros G, Bodei L, McDevitt MR, Nedrow JR (2020) Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 19:589–608

    Article  CAS  Google Scholar 

  • Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    CAS  Google Scholar 

  • Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R (2018) Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules 23:1045

    Article  Google Scholar 

  • Sisson JC, Shapiro B, Hutchinson RJ, Shulkin BL, Zempel S (1996) Survival of patients with neuroblastoma treated with 125-I MIBG. Am J Clin Oncol 19:144–148

    Article  CAS  Google Scholar 

  • Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740

    Article  CAS  Google Scholar 

  • Strosberg JR, Caplin ME, Kunz PL, Ruszniewski PB, Bodei L, Hendifar A, Mittra E, Wolin EM, Yao JC, Pavel ME, Grande E, Van Cutsem E, Seregni E, Duarte H, Gericke G, Bartalotta A, Mariani MF, Demange A, Mutevelic S, Krenning EP (2021) NETTER-1 investigators. 177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol 22:1752–1763

    Article  CAS  Google Scholar 

  • Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–195

    Article  CAS  Google Scholar 

  • Supuran CT (2016) Structure and function of carbonic anhydrases. Biochem J 473:2023–2032

    Article  CAS  Google Scholar 

  • Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandström M, Rosik D, Carlsson J, Lundqvist H, Wennborg A, Nilsson FY (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67(6):2773–2782

    Article  CAS  Google Scholar 

  • Vallabhajosula S, Nikolopoulou A (2011) Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin Nucl Med 41:324–333

    Article  Google Scholar 

  • Varmira K, Hosseinimehr SJ, Noaparast Z, Abedi SM (2014) An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers. J Drug Target 22(2):116–122

    Article  CAS  Google Scholar 

  • Volkert WA, Hoffman TJ (1999) Therapeutic radiopharmaceuticals. Chem Rev 99:2269–2292

    Article  CAS  Google Scholar 

  • Werner RA, Kircher S, Higuchi T, Kircher M, Schirbel A, Wester HJ, Buck AK, Pomper MG, Rowe SP, Lapa C (2019) CXCR4-directed imaging in solid tumors. Front Oncol 9:770

    Article  Google Scholar 

  • Wieland DM, Swanson DP, Brown LE, Beierwaltes WH (1979) Imaging the adrenal medulla with an I-131-labeled antiadrenergic agent. J Nucl Med 20:155–158

    CAS  Google Scholar 

  • Wild D, Fani M, Behe M, Brink I, Rivier JE, Reubi JC, Maecke HR, Weber WA (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417

    Article  CAS  Google Scholar 

  • Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, Fischer R, Rivier JE, Reubi JC, Maecke HR, Weber WA (2014) Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med 55:1248–1252

    Article  CAS  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    Article  CAS  Google Scholar 

  • Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53:6811–6824

    Article  CAS  Google Scholar 

  • Zhong Y, Wu P, He J, Zhong L, Zhao Y (2020) Advances of aptamer-based clinical applications for the diagnosis and therapy of cancer. Discov Med 29(158):169–180

    Google Scholar 

  • Zhuravlev F (2021) Theranostic radiopharmaceuticals targeting cancer-associated fibroblasts. Curr Radiopharm 14:374–393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Lepareur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lepareur, N., Bourgeois, M. (2022). Receptor-Specific Radionuclide Therapy. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_303-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_303-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics