Skip to main content

Tumor-Targeting Agents

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

Monoclonal antibodies are specific molecules with a high affinity for the cell surface proteins. Long circulation time in blood makes them unsuitable for imaging as well as therapy. The process of protein engineering improves antibody’s pharmacokinetics retaining the property of affinity and specificity. Using a single-chain variable fragment as the building block, imaging with antibody variants provides high-contrast, good-quality images using single-photon emission computed tomography (SPECT) and positron emission tomography (PET) scanners. Selective antibody targeting using therapeutic radionuclide is a promising approach for cancer therapy. The success of radioimmunotherapy is limited by prolonged exposure of bone marrow. In vivo pretargeting approach improves tumor targeting properties for imaging as well as treatment. To address the limitations of severe immune-related adverse effects of monoclonal antibodies, new peptide-based immune checkpoint inhibitors with potent antitumor activity but a shorter pharmacokinetics profile developed. Among the newer constructs, development of aptamers is on the way. These oligonucleotide molecules can be crafted to many complex shapes and act as a scaffold for molecular interaction with protein and small molecular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeVita VT Jr, Hellman S, Rosenberg SA, editors. Biologic therapy of cancer. 2nd ed. Philadelphia, PA: J.B. Lippincott; 1995. p. 295–327.

    Google Scholar 

  2. Oldham RK. Biologicals and biological response modifiers: the fourth modality of cancer treatment. Cancer Treat Rep. 1984;68:221–32.

    CAS  PubMed  Google Scholar 

  3. Eberhard A, Kahlert S, Goede V, et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60:1388–93.

    CAS  PubMed  Google Scholar 

  4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    CAS  PubMed  Google Scholar 

  5. Yeo TK, Dvorak HF. Tumor stroma. In: Colvin R, Bhan A, McCluskey R, editors. Diagnostic immunopathology. New York: Raven Press; 1995. p. 485–697.

    Google Scholar 

  6. Fidler IJ, Kim SJ, Langley RR. The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem. 2007;101:927–36.

    CAS  PubMed  Google Scholar 

  7. Hojjat-Farsangi M. Small molecule inhibitors: suitable drugs for targeted-based cancer therapy. Am J Leuk Res. 2017;1:1005.

    Google Scholar 

  8. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1:118–29.

    CAS  PubMed  Google Scholar 

  9. Huston JS, George AJ. Engineered antibodies take center stage. Hum Antibodies. 2001;10:127–42.

    CAS  PubMed  Google Scholar 

  10. Park JW, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8:1172–81.

    CAS  PubMed  Google Scholar 

  11. Senter PD, Springer CJ. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv Drug Deliv Rev. 2001;53:247–64.

    CAS  PubMed  Google Scholar 

  12. Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–7.

    CAS  PubMed  Google Scholar 

  13. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.

    CAS  PubMed  Google Scholar 

  14. Allen TM, Hansen CB, Stuart DD. In: Lasic DD, Papahadjopoulos D, editors. Medical applications of liposomes. 1st ed. Amsterdam: Elsevier Science; 1998. p. 297–323.

    Google Scholar 

  15. Leder P. The genetics of antibody diversity. Sci Am. 1980;243:102–15.

    Google Scholar 

  16. Gessner JE, Heiken H, Tamm A, et al. The IgG Fc receptor family. Ann Hematol. 1998;76:231–48.

    CAS  PubMed  Google Scholar 

  17. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    PubMed  Google Scholar 

  18. Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J Immunother. 1994;15:42–52.

    CAS  Google Scholar 

  19. Waller M, Curry N, Mallory J. Immunochemical and serological studies of enzymatically fractionated human IgG globulins. I. Hydrolysis with pepsin, papain, ficin and bromelin. Immunochemistry. 1968;5:577–83.

    CAS  PubMed  Google Scholar 

  20. Morrison SL, Johnson MJ, Herzenberg LA, et al. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81:6851–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–5.

    CAS  PubMed  Google Scholar 

  22. Foon KA, Yang XD, Weiner LM, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys. 2004;58(3):984–90.

    CAS  PubMed  Google Scholar 

  23. Moroney SPA. Modern antibody technology: the impact on drug development. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA; 2005. p. 49–70.

    Google Scholar 

  24. Green LL, Hardy MC, Maynard-Currie CE, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet. 1994;7:13–21.

    CAS  PubMed  Google Scholar 

  25. Lane DM, Eagle KF, Begent RH, et al. Radioimmunotherapy of metastatic colorectal tumors with iodine-131-labeled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab)2 antibodies. Br J Cancer. 1994;70:521–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Colcher D, Bird R, Roselli M, et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst. 1990;82:1191–7.

    CAS  PubMed  Google Scholar 

  27. Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther. 2005;5:111–24.

    CAS  PubMed  Google Scholar 

  28. Gainkam LO, Huang L, Caveliers V, et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med. 2008;49:788–95.

    CAS  PubMed  Google Scholar 

  29. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science. 1988;242:423–6.

    CAS  PubMed  Google Scholar 

  30. Almog O, Benhar I, Vasmatzis G, et al. Crystal structure of the disulfide-stabilized Fv fragment of anticancer antibody B1: conformational influence of an engineered disulfide bond. Proteins. 1998;31:128–38.

    CAS  PubMed  Google Scholar 

  31. Rajagopal V, Pastan I, Kreitman RJ. A form of anti-Tac(Fv), which is both single-chain and disulfide stabilized: comparison with its single-chain and disulfide-stabilized homologs. Protein Eng. 1997;10:1453–9.

    CAS  PubMed  Google Scholar 

  32. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90:6444–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu S, Shively L, Raubitschek A, et al. Mini body: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996;56:3055–61.

    CAS  PubMed  Google Scholar 

  34. Oldham RK. Monoclonal antibodies in cancer therapy. J Clin Oncol. 1983;1:582–90.

    CAS  PubMed  Google Scholar 

  35. Dillman RO. Monoclonal antibodies in the treatment of cancer. Crit Rev Oncol Hematol. 1984;1:357–86.

    CAS  PubMed  Google Scholar 

  36. Sears CL, Kaper JB. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbial Rev. 1996;60:167–215.

    CAS  Google Scholar 

  37. Schindler J, Sausville EA, Messmann R, et al. The toxicity of deglycosylated ricin A chain containing immunotoxins in patients with non-Hodgkin’s lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials. Clin Cancer Res. 2001;7:255–8.

    CAS  PubMed  Google Scholar 

  38. Jurcic JG. Antibody therapy for residual disease in acute myelogenous leukemia. Crit Rev Oncol Hematol. 2001;38:37–45.

    CAS  PubMed  Google Scholar 

  39. Scartozzi M, et al. Aflibercept, a new way to Target angiogenesis in the second-line treatment of metastatic colorectal cancer (mCRC). Target Oncol. 2016;11:489–500.

    PubMed  Google Scholar 

  40. Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002a;20:2453–246.

    CAS  PubMed  Google Scholar 

  41. Davis TA, Kaminski MS, Leonard JP, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004;10:7792–8.

    CAS  PubMed  Google Scholar 

  42. Yadav MP, Singla S, Thakral P, et al. Dosimetric analysis of 177Lu-DOTA-rituximab in patients with relapsed/refractory non-Hodgkin’s lymphoma. Nucl Med Commun. 2016;37(7):735–42.

    CAS  PubMed  Google Scholar 

  43. Thakral P, Singla S, Vashist A, et al. Preliminary experience with yttrium-90-labelled rituximab (chimeric anti CD-20 antibody) patients with relapsed and refractory B cell non-Hodgkin’s lymphoma. Curr Radiopharm. 2016;9(2):160–8.

    CAS  PubMed  Google Scholar 

  44. Barbet J, et al. Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm. 1999;14:153–66.

    CAS  PubMed  Google Scholar 

  45. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein post-translational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl. 2005;44:7342–72.

    CAS  PubMed  Google Scholar 

  46. Cohen P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem. 2001;268:5001–10.

    CAS  PubMed  Google Scholar 

  47. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. Structural and functional diversity of the microbial kinome. PLoS Biol. 2007;5:e17.

    PubMed  PubMed Central  Google Scholar 

  48. Lahiry P, Torkamani A, Schork NJ, Hegele RA. Kinase mutations in human disease: interpreting genotype-phenotype relationships. Nat Rev Genet. 2010;11:60–74.

    CAS  PubMed  Google Scholar 

  49. Engelman JA. Targeting PI3K signaling in cancer: opportunities, challenges, and limitations. Nat Rev Cancer. 2009;9:550–62.

    CAS  PubMed  Google Scholar 

  50. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as a drug target in human cancer. J Clin Oncol. 2010;28:1075–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.

    CAS  PubMed  Google Scholar 

  52. Nolen B, Taylor S, Ghosh G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell. 2004;15:661–75.

    CAS  PubMed  Google Scholar 

  53. Motzer RJ, Hoosen S, Bello CL, et al. Sunitinib malate for the treatment of solid tumors: a review of current clinical data. Expert Opin Investig Drugs. 2006;15:553–61.

    CAS  PubMed  Google Scholar 

  54. Kokhaei P, Jadidi-Niaragh F, SotoodehJahromi A, et al. Ibrutinib-A double-edged sword in cancer autoimmune disorders. J Drug Target. 2016;24(5):373–85.

    CAS  PubMed  Google Scholar 

  55. Roskoski R Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res. 2016;103:26–48.

    CAS  PubMed  Google Scholar 

  56. Carles F, Bourg S, Meyer C, et al. PKIDB: a curated, annotated, and updated database of protein kinase inhibitors in clinical trials. Molecules. 2018;23(4):E908. https://doi.org/10.3390/molecules23040908.

    Article  CAS  PubMed  Google Scholar 

  57. Myers SH, Brunton VG, Unciti-Broceta A. AXL inhibitors in cancer: a medicinal chemistry perspective. J Med Chem. 2016;59:3593–608.

    CAS  PubMed  Google Scholar 

  58. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively nonselective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3:353–9.

    CAS  PubMed  Google Scholar 

  59. King AJ, Arnone MR, Bleam MR, et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One. 2013;8:e67583.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Balhorn R, Hok S, Burke PA, et al. Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res. 2007;13:5621s–8s.

    CAS  PubMed  Google Scholar 

  61. DeNardo GL, Hok S, Van Natarajan A, et al. Characteristics of dimeric (bis) bidentate selective high-affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin’s lymphoma. Int J Oncol. 2007a;31:729–40.

    CAS  PubMed  Google Scholar 

  62. D’Mello F, Partidos CD, Steward MW, et al. Definition of the primary structure of hepatitis B virus (HBV) pre-S hepatocyte binding domain using random peptide libraries. Virology. 1997;237:319–26.

    PubMed  Google Scholar 

  63. Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science. 1996;273:458–64.

    CAS  PubMed  Google Scholar 

  64. Mariani G, Erba PA, Signore A. Receptor-mediated tumor targeting radiolabeled peptides: there is more to it than somatostatin analogs. J Nucl Med. 2006;47:1904–7.

    CAS  PubMed  Google Scholar 

  65. Fani M, Maecke HR. Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging. 2012b;39:S11–30.

    PubMed  Google Scholar 

  66. Kaltsas GA, Papadogias D, Makras P, et al. Treatment of advanced neuroendocrine tumors with radiolabelled somatostatin analogs. Endocr Relat Cancer. 2005;12:683–99.

    CAS  PubMed  Google Scholar 

  67. Norenberg JP, Krenning BJ, Konings IR, et al. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res. 2006;12:897–903.

    CAS  PubMed  Google Scholar 

  68. Miederer M, Henriksen G, Alke A, et al. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy neuroendocrine tumors. Clin Cancer Res. 2008;14:3555–61.

    CAS  PubMed  Google Scholar 

  69. Sokoloff RL, Norton KC, Gasior CL, et al. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid, and urine. Prostate. 2000;43:150–7.

    CAS  PubMed  Google Scholar 

  70. Bostwick DG, Pacelli A, Blute M, et al. Prostate-specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61.

    CAS  PubMed  Google Scholar 

  71. Kahn D, Williams RD, Manyak MJ, et al. 111Indium-capromab pendetide in evaluating patients with residual or recurrent prostate cancer after radical prostatectomy. The ProstaScint study group. J Urol. 1998a;159:2041–6.

    CAS  PubMed  Google Scholar 

  72. Smith-Jones PM, Vallabhajosula S, Navarro V, et al. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med. 2003;44:610–7.

    CAS  PubMed  Google Scholar 

  73. Mease RC, Foss CA, Pomper MG. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem. 2013;13:951–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barrett JA, Coleman RE, Goldsmith SJ, et al. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54:380–7.

    CAS  PubMed  Google Scholar 

  75. Eder M, Neels O, Müller M, et al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals (Basel). 2014;7:779–96.

    CAS  Google Scholar 

  76. Cho SY, Gage KL, Mease RC, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.

    CAS  PubMed  Google Scholar 

  77. Zechmann CM, Afshar-Oromieh A, Armor T, et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85–90.

    CAS  PubMed  Google Scholar 

  79. Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-targeted alpha radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.

    CAS  PubMed  Google Scholar 

  80. Sathekge M, Knoesen O, Meckel M, et al. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1099–100.

    PubMed  PubMed Central  Google Scholar 

  81. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anticancer drug delivery. J Control Release. 2010;148:135–46.

    CAS  PubMed  Google Scholar 

  82. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    CAS  PubMed  Google Scholar 

  83. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.

    CAS  PubMed  Google Scholar 

  84. Sapra P, Allen TM. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res. 2004;10:2530–7.

    CAS  PubMed  Google Scholar 

  85. Choi KY, Saravanakumar G, Park JH, et al. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces. 2012;99:82–94.

    CAS  PubMed  Google Scholar 

  86. Na K, Bum Lee T, Park KH, et al. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anticancer drug delivery system. Eur J Pharm Sci. 2003;18:165–73.

    CAS  PubMed  Google Scholar 

  87. Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31:1111–37.

    CAS  PubMed  Google Scholar 

  88. Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007;2:14–21.

    Google Scholar 

  89. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9:537–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang BT, Lai WY, Chang YC, et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther. 2017;8:520–8.

    CAS  Google Scholar 

  91. Dhar S, Gu FX, Langer R, et al. Targeted delivery of 3441 cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-3442 PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105:17356–61.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, D., Das, A., Bal, C.S. (2022). Tumor-Targeting Agents. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics