Skip to main content

Detoxification of Heavy Metals Using Marine Metal Resistant Bacteria: A New Method for the Bioremediation of Contaminated Alkaline Environments

  • Chapter
  • First Online:
Innovations in Biotechnology for a Sustainable Future

Abstract

Metal toxicity is of massive environmental concern because of their bioaccumulation and non-biodegradability in nature and they were endlessly released into the aquatic systems from natural and anthropic sources like domestic and industrial sewage discharges, farming, mining, navigation traffic, electronic waste, and climate change events such as floods. Heavy metals contamination is one of the major issues in the aquatic environments. The heavy metal toxicity is higher as a result of enormous release of waste from industrial, agricultural, chemical, domestic, and technological sources, thereby contaminating the water, soil, and air. Any metal which has a relatively high density as well as toxicity at lower dose is known as “heavy metal.” The important heavy metals are Pb, Hg, Cd, Cr, Cu, Zn, Mn, Ni, Ag, etc. The heavy metals are included in the group of inorganic compounds, therefore, they are not biodegradable and persistent and move into aquatic food chains. Expulsion of metals by microorganisms is a troublesome mechanism that depends on the chemistry of the metal ions, cell wall composition of microorganisms, cell physiology, and physicochemical factors such as pH, temperature, ionic strength, and metal concentration. Microbial response to a specific heavy metal is very important in exploiting them in the remediation of metal-contaminated sites. The biosorption process by microorganisms is one of the important methods in the bioremediation of heavy metals. The bacterial cell walls are effectual metal chelating agents and the bacteria consist of polysaccharide slime layers which readily offer amino, carboxyl, phosphate, and sulfate groups for the binding of metals. Over the past several decades, numerous physical and chemical methods were employed to remove metals from environment as they are high-priced, inefficient, and labor intensive. The research on bioremediation or biosorption-based remediation techniques in the past several years found that bioremediation is a natural process and economical. Several conventional technologies such as precipitation, oxidation, reduction, adsorption, filtration, flocculation, sedimentation, osmosis, ion exchange, and biosorption were employed in treating the wastewater contaminated with heavy metals. Among the accessible techniques, biosorption plays a key role in the elimination of heavy metals due to excellent adsorbability, eco-friendliness, cost-effectiveness, and easy availability of biosorbents. Different biosorbents such as bacteria, fungi, yeasts as well as agricultural products have been applied for the biosorption purposes. The bacteria are extensively used as biosorbents due to their small size, ubiquity, and capability to grow in controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakre, I., Næss, S., Kjellevold, M., Markhus, M. W., Alvheim, A. R., & Dalane, J. (2019). New data on nutrient composition in large selection of commercially available seafood products and its impact on micronutrient intake. Food & Nutrition Research, 63, 3573.

    Article  CAS  Google Scholar 

  • Abadi, D. R. V., Dobaradaran, S., Nabipour, I., Lamani, X., & Ravanipour, M. (2014). Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf. Environmental Science and Pollution Research, 22(9), 6670–6678.

    Article  PubMed  CAS  Google Scholar 

  • Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: a review. International Journal of Chemical Sciences, 3(4), 74–102.

    Google Scholar 

  • Abdel-Hameid, N. A. H. (2009). A protective effect of calcium carbonate against arsenic toxicity of the Nile catfish, Clarias gariepinus. Turkish Journal of Fisheries and Aquatic Sciences, 9, 2.

    Article  Google Scholar 

  • Abd-Elnaby, H., Abou-Elela, G. M., & El-Sersy, N. A. (2011). Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. African Journal of Biotechnology, 10, 3412–3423.

    Article  CAS  Google Scholar 

  • Afshan, S., Ali, S., Ameen, U. S., Farid, M., Bharwana, S. A., Hannan, F., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences, 2(1), 74–79.

    CAS  Google Scholar 

  • Ahmed, N. F., Sadek, K. M., Soliman, M. K., Khalil, R. H., Khafaga, A. F., Ajarem, J. S., Maodaa, S. N., & Allam, A. A. (2020). Moringa oleifera leaf extract repairs the oxidative misbalance following sub-chronic exposure to sodium fluoride in nile tilapia Oreochromis niloticus. Animals, 10, 626.

    Article  PubMed Central  Google Scholar 

  • Akhtar, A., Wang, S. X., Ghali, L., Bell, C., & Wen, X. (2017). Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. Journal of Biomedical Materials Research, 31(3), 177–188.

    Google Scholar 

  • Aksoy, E., Salazar, J., & Koiwa, H. (2014). Cadmium determinant 1 is a putative heavy-metal transporter in Arabidopsis thaliana. The FASEB Journal, 28(617), 4.

    Google Scholar 

  • Al-Garni, S. M. (2005). Biosorption of lead by gram-ve capsulated and non-capsulated bacteria. Watermark, 31(3), 345–350.

    CAS  Google Scholar 

  • Ali, H., & Khan, E. (2018). Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environmental Chemistry Letters, 16, 903–917.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 6730305.

    Article  Google Scholar 

  • Allen, P., Yoke, S., & Keong, W. M. (1988). Acute effects of mercury chloride on intracellular CSH level and mercury distribution in the fish Oreochromis aureus. Bulletin of Environmental Contamination and Toxicology, 40, 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Amini, Z., Pazooki, J., Abtahi, B., & Shokri, M. R. (2013). Bioaccumulation of Zn and Cu in Chasar bathybius (Gobiidae) tissue and its nematode parasite Dichelyne minutus, southeast of the Caspian Sea, Iran. Indian Journal of Geo-Marine Sciences, 42, 196–200.

    CAS  Google Scholar 

  • Amoozegar, M. A., Ghazanfari, N., Didari, M. (2012). Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide producing halophilic bacterium. Progress in Biological Sciences2, 1–11.

    Google Scholar 

  • Andres, J., & Bertin, P. (2016). The microbial genomics of arsenic. FEMS Microbiology Reviews, 40, 299–322.

    Article  CAS  PubMed  Google Scholar 

  • Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9, 660–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ATSDR. (2017). Case studies in environmental medicine (CSEM) lead toxicity. Retrieved November 27, 2017, from https://www.atsdr.cdc.gov/csem/lead/docs/CSEM-Lead_toxicity_508.pdf

  • Authman, M. M., Zaki, M. S., Khallaf, E. A., & Abbas, H. H. (2015). Use of fish as bio-indicator of the effects of heavy metals pollution. Journal of Aquaculture Research & Development, 6, 1–13.

    Article  CAS  Google Scholar 

  • Ayyat, M. S., Ayyat, A. M., Naiel, M. A., & Al-Sagheer, A. A. (2020). Reversal effects of some safe dietary supplements on lead contaminated diet induced impaired growth and associated parameters in Nile tilapia. Aquaculture, 515, 734580.

    Article  CAS  Google Scholar 

  • Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 4(1), 37–59.

    Article  Google Scholar 

  • Bafana, A., Krishnamurthi, K., Patil, M., & Chakrabarti, T. (2010). Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. Journal of Hazardous Materials, 177, 481–486.

    Article  CAS  PubMed  Google Scholar 

  • Bagnyukova, T. V., Lushchak, O. V., Storey, K. B., & Lushchak, V. I. (2007). Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23 C. Journal of Thermal Biology, 32, 227–234.

    Article  CAS  Google Scholar 

  • Balasubramanian, T. (2012). Heavy metal contamination and risk assessment in the marine environment of Arabian Sea, along the southwest coast of India. American Journal of Chemistry, 2, 191–208.

    Article  CAS  Google Scholar 

  • Banerjee, N., Banerjee, S., Sen, R., Bandyopadhyay, A., Sarma, N., Majumder, P., Das, J. K., Chatterjee, M., Kabir, S. N., & Giri, A. K. (2009). Chronic arsenic exposure impairs macrophage functions in the exposed individuals. Journal of Clinical Immunology, 29, 582–594.

    Article  CAS  PubMed  Google Scholar 

  • Baraldi, M., Zanoli, P., Tascedda, F., Blom, J. M. C., & Brunello, N. (2002). Cognitive deficits and changes in gene expression of NMDA receptors after prenatal methylmercury exposure. Environmental Health Perspectives, 110, 855–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barange, M., Field, J. G., Harris, R. P., Eileen, E., Hofmann, E. E., Perry, R. I., & Werner, F. (2010). Marine ecosystems and global change (p. 464). Oxford University Press.

    Book  Google Scholar 

  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47, 693–794.

    Article  CAS  Google Scholar 

  • Begam, M., & Sengupta, M. (2015). Immunomodulation of intestinal macrophages by mercury involves oxidative damage and rise of pro-in flammatory cytokine release in the fresh water fish Channa punctatus Bloch. Fish & Shellfish Immunology, 45, 378–385.

    Article  CAS  Google Scholar 

  • Beveridge, T. J. (1989). Role of cellular design in bacterial metal accumulation and mineralization. Annual Review of Microbiology, 43, 147–171.

    Article  CAS  PubMed  Google Scholar 

  • Beveridge, T. J., & Fyfe, W. S. (1985). Metal fixation by bacterial cell walls. Canadian Journal of Earth Sciences, 22, 1892–1898.

    Article  Google Scholar 

  • Bhakta, J. N., Munekage, Y., Ohnishi, K., Jana, B., & Balcazar, J. (2014). Isolation and characterization of cadmium-and arsenic-absorbing bacteria for bioremediation. Water, Air, and Soil Pollution, 225, 1–10.

    Article  CAS  Google Scholar 

  • Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M. Q. (2012). Journal of Applied Microbiology, 112, 1193–1206.

    Article  CAS  PubMed  Google Scholar 

  • Bhupander, K., Mukherjee, D. P., Sanjay, K., Meenu, M., Dev, P., Singh, S. K., & Sharma, C. S. (2011). Bioaccumulation of heavy metals in muscle tissue of fishes from selected aquaculture ponds in East Kolkata Wetlands. Annals of Biological Research, 2(5), 125–134.

    Google Scholar 

  • Binish, M. B., Sruthy, S., & Mahesh, M. (2015). Effect of heavy metals (Pb, Cd, Cu) on the growth of sulphate reduction associated bacterium Clostridium bifermentans isolated from Cochin estuary, Southwest coast of India. IJMS, 5, 1–5.

    Google Scholar 

  • Biswas, J. K., Banerjee, A., Sarkar, B., Sarkar, D., Sarkar, S. K., Rai, M., & Vithanage, M. (2020). Exploration of an extracellular polymeric substance from earthworm gut bacterium (Bacillus licheniformis) for bioflocculation and heavy metal removal potential. Applied Sciences, 10, 349.

    Article  CAS  Google Scholar 

  • Boffetta, P., Merler, E., & Vainio, H. (1993). Carcinogenicity of mercury and mercury compounds. Scandinavian Journal of Work, Environment and Health, 19, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Bojorquez, C., Frias Espericueta, M. G., & Voltolina, D. (2016). Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Revista Internacional de Contaminación Ambiental, 32, 407–412.

    Article  CAS  Google Scholar 

  • Bose-O’Reilly, S., McCarty, K. M., Steckling, N., & Lettmeier, B. (2010). Mercury exposure and children’s health. Current Problems in Pediatric and Adolescent Health Care, 40, 186–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boylan, H. M., Cain, R. D., & Kingston, H. S. (2003). A new method to assess mercury emissions: A study of three coal-fired electric-generating power station configurations. Journal of the Air & Waste Management Association, 53, 1318–1325.

    Article  CAS  Google Scholar 

  • Brininstool, M. (2017). Mineral commodity summaries 2017. U.S. Geological Survey, Reston. Retrieved February 9, 2017, from https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198–207.

    Article  CAS  PubMed  Google Scholar 

  • Burger, J., Jeitner, C., & Gochfeld, M. (2011). Locational differences in mercury and selenium levels in 19 species of saltwater fish from New Jersey. Journal of Toxicology and Environmental Health, 74, 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Canstein, V. H., Li, Y., Timmis, K. N., Deckwer, W. D., & Wagner-Dobler, I. (1999). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environmental Microbiology, 65, 52795284.

    Google Scholar 

  • Castoldi, A. F., Coccini, T., Ceccatelli, S., & Manzo, L. (2001). Neurotoxicity and molecular effects of methylmercury. Brain Research Bulletin, 55, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Castro-González, M., & Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention. (2017). What do parents need to know to protect their children? Retrieved May 17, 2017, from https://www.cdc.gov/nceh/lead/acclpp/blood_lead_levels.htm

  • Centers for Disease Control and Prevention (CDC). (2002). Managing elevated blood lead levels among young children: Recommendations from the advisory committee on childhood lead poisoning prevention, Atlanta.

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2016). Standard surveillance definitions and classifications. Retrieved November 18, 2016, from https://www.cdc.gov/nceh/lead/data/definitions.htm

  • Centers for Disease Control and Prevention (CDC). (2018). Screening young children for lead poisoning: Guidance for state and local public health officials. Retrieved October 2, 2018, from https://www.cdc.gov/nceh/lead/publications/screening.htm

  • Chang, J. S., & Law, W. S. (1998). Development of microbial mercury detoxification process using a mercury-hyper resistant strain of Pseudomonas aeruginosa PU21. Biotechnology and Bioengineering, 57, 462470.

    Article  Google Scholar 

  • Chen, C., & Wang, J. (2007). Response of Saccharomyces cerevisiae to lead ion stress. Applied Microbiology and Biotechnology, 74, 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q. Y., Brocato, J., Laulicht, F., & Costa, M. (2017). Mechanisms of nickel carcinogenesis. In A. Mudipalli & J. T. Zelikoff (Eds.), Essential and non-essential metals. Molecular and integrative toxicology (pp. 181–197). Springer International Publishing AG.

    Chapter  Google Scholar 

  • Chien, M. F., Lin, K. H., Chang, J. E., Huang, C. C., Endo, G., & Suzuki, S. (2010). Interdisciplinary studies on environmental chemistry—biological responses to contaminants. In N. Hamamura, S. Suzuki, S. Mendo, C. M. Barroso, H. Iwata, & S. Tanabe (Eds.), Distribution of mercury resistance determinants in a highly mercury polluted area in Taiwan (p. 3136). TERRAPUB.

    Google Scholar 

  • Chiou, H., Hsueh, Y., & Liaw, K. F. (1995). Incidence of internal cancers and ingested inorganic As: A seven-year follow-up study in Taiwan. Cancer Research, 55, 1296–1300.

    CAS  PubMed  Google Scholar 

  • Chiroma, T. M., Ebewele, R. O., & Hymore, F. K. (2014). Comparative assessment of heavy metal levels in soil, vegetables and urban grey water used for irrigation in Yola and Kano. International Refereed Journal of Engineering and Science, 3(2), 1–9.

    Google Scholar 

  • Chovanova, K., Sladekova, D., & Kmet, V. (2004). Identification and characterization of eight cadmium resistant bacterial. Biologia, 59(6), 817–827.

    CAS  Google Scholar 

  • Concórdio-Reis, P., & Freitas, F. (2019). Environmental applications: Biopolymer sorbents for heavy metal removal. In Encyclopedia of polymer applications (pp. 1069–1086). CRC Press.

    Google Scholar 

  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146, 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Crompton, T. R. (2000). Battery reference book (pp. 2–4). Newnes.

    Google Scholar 

  • Dash, H. R., & Das, S. (2012). Bioremediation of mercury and importance of bacterial mer genes. International Biodeterioration and Biodegradation, 75, 207213.

    Article  CAS  Google Scholar 

  • Datta, S., Ghosh, D., Saha, D. R., Bhattacharaya, S., & Mazumder, S. (2009). Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus. Aquatic Toxicology, 92, 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, P. W., Myers, G. J., & Weiss, B. (2004). Mercury exposure and child development outcomes. Pediatrics, 113, 1023–1029.

    Article  PubMed  Google Scholar 

  • Demey, H., Vincent, T., & Guibal, E. (2018). A novel algal-based sorbent for heavy metal removal. Chemical Engineering Journal, 332, 582–595.

    Article  CAS  Google Scholar 

  • Demir, A., & Arisoy, M. (2007). Biological and chemical removal of Cr (VI) from waste water: Cost and benefit analysis. Journal of Hazardous Materials, 147, 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Deng, X., & Jia, P. (2011). Construction and characterization of a photosynthetic bacterium genetically engineered for Hg21 uptake. Bioresource Technology, 102, 30833088.

    Article  CAS  Google Scholar 

  • DiGioacchino, M., Petrarca, C., Perrone, A., Farina, M., Sabbioni, E., Hartung T., Martino, S., Esposito, D. L., Lotti, L. V., Mariani-Costantini, R. (2008). Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells. Science of the Total Environment, 392, 50–58.

    Google Scholar 

  • Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., & Lade, H. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212.

    Article  Google Scholar 

  • Dong, Q., Fang, J., Huang, F., & Cai, K. (2019). Silicon amendment reduces soil Cd availability and Cd uptake of two pennisetum species. International Journal of Environmental Research and Public Health, 16, 1624.

    Article  CAS  PubMed Central  Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology, 47, 4967–4983.

    Article  CAS  Google Scholar 

  • Edwards, M., Johnson, L., Mauer, C., Barber, R., & Hall, J. (2014). Regional specific groundwater arsenic levels and neuropsychological functioning: a crosssectional study. International Journal of Environmental Health Research, 24, 546–557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrlich, H. L. (1997). Microbes and metals. Applied Microbiology and Biotechnology, 48, 687–692.

    Article  CAS  Google Scholar 

  • Ehya, F., & Marbouti, Z. (2016). Hydrochemistry and contamination of groundwater resources in the Behbahan plain, SW Iran. Environment and Earth Science, 2016, 75–45.

    Google Scholar 

  • El Nemr, A., El-Said, G. F., Khaled, A., & Ragab, S. (2016). Distribution and ecological risk assessment of some heavy metals in coastal surface sediments along the Red Sea, Egypt. International Journal of Sediment Research, 31, 164–172.

    Article  Google Scholar 

  • Engström, K., Vahter, M., & Johansson, G. (2010). Chronic exposure to cadmium and arsenic strongly influences concentrations of 8-oxo-7,8-dihydro-2′- deoxyguanosine in urine. Free Radical Biology & Medicine, 48, 1211–1217.

    Article  CAS  Google Scholar 

  • Epstein, E. (2002). Health issues related to beneficial use of biosolids. In: 16th annual residuals and biosolids management conference of the water environment federation (p. 9)

    Google Scholar 

  • Escudero-Lourdes, C., Wu, T., Camarillo, J. M., & Gandolfi, A. J. (2012). Interleukin-8 (IL-8) over- production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]- induced malignant transformation of urothelial cells. Toxicology and Applied Pharmacology, 258(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  • European Chemicals Agency (ECHA). (2018). Annex 1–background document in support of the committee for risk assessment (RAC) for evaluation of limit values for nickel and its compounds in the workplace; ECHA/RAC/A77-0-0000001412-86-189/F (pp. 1–211). European Chemicals Agency.

    Google Scholar 

  • Fella-Temzi, S., Yalaoui-Guellal, D., Rodriguez-Carvajal, M. A., Belhadi, D., Madani, K., & Kaci, Y. (2018). Removal of lead by exopolysaccharides from Paenibacillus peoriae strainTS7 isolated from rhizosphere of durum wheat. Biocatalysis and Agricultural Biotechnology, 16, 425–432.

    Article  Google Scholar 

  • Feng, J., Shi, Q., Wang, X., Wei, M., Yang, F., & Xu, H. (2010). Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123, 521–530.

    Article  CAS  Google Scholar 

  • Fielder, R., & Dale, E. (1983). Cadmium and its compounds. HM Stationery Office.

    Google Scholar 

  • Fjeld, E., Haugen, T. O., & Vøllestaed, L. A. (1998). Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Science of the Total Environment, 213, 247–254.

    Article  CAS  Google Scholar 

  • Flegal, A. R. (1986). Lead in tropical marine systems: A review. Science of the Total Environment, 58, 1–8.

    Article  CAS  Google Scholar 

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flora, S. J. S. (2015). Arsenic toxicology. In S. J. S. Flora (Ed.), Handbook of arsenic toxicology. Elsevier Inc.

    Google Scholar 

  • Flora, S. J. S., Flora, G. J. S., & Saxena, G. (2006). Environmental occurrence, health effects and management of lead poisoning. In S. B. Cascas & J. Sordo (Eds.), Lead: Chemistry, analytical aspects, environmental impacts and health effects (pp. 158–228). Elsevier Publication.

    Chapter  Google Scholar 

  • Franco, J. L., Braga, H., Stringari, J., Missau, F. C., Posser, T., Mendes, B. G., Leal, R., Dos Santos, A. R. S., Dafre, A. L., & Pizzolatti, M. G. (2007). Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: Protective effects of quercetin. Chemical Research in Toxicology, 20, 1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Frith, J. (2013). Arsenic – the “poison of kings” and the “saviour of syphilis”. JMVH, 21(4), 11–17.

    Google Scholar 

  • Garcia, J. C., Martinez, D. S. T., Alves, O. L., Leonardo, A. F. G., & Barbieri, E. (2015). Ecotoxicological effects of carbofuran and oxidized multiwalled carbon nanotubes on the freshwater fish Nile tilapia: Nanotubes enhance pesticide ecotoxicity. Ecotoxicology and Environmental Safety, 111, 131–137.

    Article  CAS  Google Scholar 

  • García-Navarro, J. A., Franco, L., & Romero, D. (2017). Differences in the accumulation and tissue distribution of Pb, Cd, and Cu in Mediterranean mussels (Mytilus galloprovincialis) exposed to single, binary, and ternary metal mixtures. Environmental Science and Pollution Research, 24, 6599–6610.

    Article  PubMed  CAS  Google Scholar 

  • Gati, G., Pop, C., Brudasca, F., Gurzãu, A. E., & Spînu, M. (2016). The ecological risk of heavy metals in sediment from the Danube delta. Ecotoxicology, 25, 688–696.

    Article  CAS  PubMed  Google Scholar 

  • Gautam, P. K., Gautam, R. K., Chattopadhyaya, M. C., Banerjee, S., Chattopadhyaya, M. C., & Pandey, J. D. (2016). Heavy metals in the environment: Fate, transport, toxicity and remediation technologies thermodynamic profiling of pollutants view project materials for solid oxide fuel cells view project heavy metals in the environment: Fate, transport, toxicity and rem.

    Google Scholar 

  • Gilbertson, M., & Carpenter, D. O. (2004). An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem. Environmental Research, 95(3), 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Giles, M. A. (1988). Accumulation of cadmium by rainbow trout, salmo gairdneri, during extended exposure. Canadian Journal of Fisheries and Aquatic Sciences, 45, 1045–1053.

    Article  CAS  Google Scholar 

  • Gourdon, R., Bhende, S., Rus, E., & Sofer, S. S. (1990). Biotechnology Letters, 12, 839e42.

    Article  Google Scholar 

  • Goyer, R. A. (1990). Lead toxicity: From overt to subclinical to subtle health effects. Environmental Health Perspectives, 86, 177–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, B. G., Liang, W., Yang, T. Z., Hu, Z. J., & Shen, H. D. (2019). Metallothionein, hemocyte status and superoxide dismutase/aspartate aminotransferase activity are sensitive biomarkers of cadmium stress in Onchidium reevesii. Aquatic Toxicology, 215, 105284.

    Article  CAS  PubMed  Google Scholar 

  • Harada, M. (1995). Minamata disease: Methylmercury poisoning in japan caused by environmental pollution. Critical Reviews in Toxicology, 25, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Hauptman, M., Bruccoleri, R., & Woolf, A. D. (2017). An update on childhood lead poisoning. Clinical Pediatric Emergency Medicine, 18(3), 181–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • HEI. (2004). Special report 15, health effects of outdoor air pollution in developing countries of Asia: a literature review. Health Effects Institute.

    Google Scholar 

  • Henriques, B., Rocha, L. S., Lopes, C. B., Figueira, P., Monteiro, R. J. R., Duarte, A. C., Pardal, M. A., & Pereira, E. (2015). Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters. Chemical Engineering Journal, 281, 759–770.

    Article  CAS  Google Scholar 

  • Hoostal, M. J., Bidart-Bouzat, M. G., & Bouzat, J. L. (2008). Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie. FEMS Microbiology Ecology, 65, 156–168.

    Article  CAS  PubMed  Google Scholar 

  • Hou, Y., Cheng, K., & Li, Z. (2015). Biosorption of cadmium and manganese using free cells of Klebsiella sp. Isolated from waste water. PLoS One, 10(10), 0140962.

    Article  Google Scholar 

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: a historical perspective. Toxicological Sciences, 123(2), 305–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, M. N., & Poole, R. K. (1989). Metals and micro-organisms (p. 277). Chapman & Hall.

    Google Scholar 

  • Hussein, H., Farag, S., & Kandil, K. (2005). Tolerance and uptake of heavy metals by Pseudomonads. Process Biochemistry, 40, 955–961.

    Article  CAS  Google Scholar 

  • Hutton, M. (1983). Sources of cadmium in the environment. Ecotoxicology and Environmental Safety, 7, 9–24.

    Article  CAS  PubMed  Google Scholar 

  • Hutton, M. L., & Hutchinson, T. C. (1987). Lead, mercury, cadmium and arsenic in the environment. John Wiley & Sons Ltd..

    Google Scholar 

  • Idriss, A., & Ahmad, A. (2015). Heavy metal concentrations in fishes from Juru River, estimation of the health risk. Bulletin of Environmental Contamination and Toxicology, 94, 204–208.

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (IARC). (2017). IARC monographs on the evaluation of carcinogenic risks to humans: Nickel and nickel compounds monograph (Vol. 100, pp. 169–218). WHO Press.

    Google Scholar 

  • Islam, M. S., Hossain, M. B., Matin, A., & Sarker, M. S. I. (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere, 202, 25–32.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340–343.

    Article  CAS  PubMed  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

    Article  PubMed  Google Scholar 

  • Javed, H., Islam, A., Chauhan, A., Kumar, S., & Sushil, K. (2018). Efficacy of engineered GO Amberlite XAD-16 picolylamine sorbent for the trace determination of Pb (II) and Cu (II) in fishes by solid phase extraction column coupled with inductively coupled plasma optical emission spectrometry. Scientific Reports, 8, 17560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johncy, M., Hemambika, B., Hemapriya, J., & Rajesh Kannan, V. (2010). Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach. African Journal of Environmental Science and Technology, 4(2), 77–83.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. CRC Press.

    Google Scholar 

  • Kafilzadeh, F., & Mirzaei, N. (2008). Growth pattern of Hg resistant bacteria isolated from Kor River in the presence of mercuric chloride. Pakistan Journal of Biological Sciences, 11(18), 2243–2248.

    Article  CAS  PubMed  Google Scholar 

  • Karaca, H., Tay, T., & Kivanac, M. (2010). Kinetics of lead ion bisorption from aqueous solution onto lyophilized Aspergillus niveus. Water Practice Technology, 5(1), 1–10.

    Article  Google Scholar 

  • Kaur, S., Kamli, M. R., Ali, A. (2011). Role of arsenic and its resistance in nature. Canadian Journal of Microbiology, 57, 769–774. https://doi.org/10.1139/w11-062

  • Khan, Z., Kunal, M., Soni, A., & Madamwar, D. (2014). Microaerophilic degradation of sulphonated azo dye Reactive Red 195 by bacterial consortium AR1 through cometabolism. International Biodeterioration and Biodegradation, 94, 167–175.

    Article  CAS  Google Scholar 

  • Kim, H. T., Loftus, J. P., Mann, S., & Wakshlag, J. J. (2018). Evaluation of arsenic, cadmium, lead and mercury contamination in over-the-counter available dry dog foods with different animal ingredients (Red Meat, Poultry, and Fish). Frontiers in Veterinary Science, 5, 264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konate, A., He, X., Zhang, Z., Ma, Y., Zhang, P., Alugongo, G. M., & Rui, Y. (2017). Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability, 9, 790.

    Article  CAS  Google Scholar 

  • Kondo, K. (2000). Congenital minamata disease: Warnings from Japan’s experience. Journal of Child Neurology, 157, 458–464.

    Article  Google Scholar 

  • Krishna, A. K., & Mohan, K. R. (2016). Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surfac e soils around an industrial area, Hyderabad, India. Environment and Earth Science, 75, 411.

    Article  CAS  Google Scholar 

  • Kumari, B., Kumar, V., Sinha, A. K., Ahsan, J., & Ghosh, A. K. (2016). Toxicology of arsenic in _ sh and aquatic system. Environmental Chemistry Letters, 15, 43–64.

    Article  CAS  Google Scholar 

  • Lacerda, E. C. M., dos Passos Galluzzi Baltazar, M., dos Reis, T. A., Côrrea, B., & Gimenes, L. J. (2019). Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environmental Monitoring and Assessment, 191, 247.

    Article  PubMed  CAS  Google Scholar 

  • Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., Swarr, G. J., Munson, K. M., Ohnemus, D. C., Lam, P. J., Heimbürger, L. E., Rijkenberg, M. J. A., & Saito, M. A. (2014). A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 512, 65.

    Article  CAS  PubMed  Google Scholar 

  • Leonila, M. L., Cavalcanti, A. D., Marcos, C., Luna José, C. V., Júnior Rosileide, F. S., Andrade Thayse, A., de Lima Silva Camilo, E., & La Rotta Galba, M. (2018). Campos-Takaki. Cadmium removal from aqueous solutions by strain of Pantoea agglomerans UCP1320 isolated from laundry effluent. Open Microbiology Journal, 12, 297–307.

    Article  CAS  Google Scholar 

  • Li, F., Qiu, Z. Z., & Zhang, J. D. (2017). Investigation, pollution mapping and simulative leakage health risk assessment for heavy metals and metalloids in groundwater from a typical brownfield, middle China. International Journal of Environmental Research and Public Health, 14(7), 768.

    Article  PubMed Central  CAS  Google Scholar 

  • Li, W., & Wang, W. X. (2019). Inter-species differences of total mercury and methylmercury in farmed fish in Southern China: Does feed matter? Science of the Total Environment, 651, 1857–1866.

    Article  CAS  Google Scholar 

  • Lin, J., & Harichund, C. (2012). Production and characterization of heavy-metal removing bacterial bioflocculants. African Journal of Biotechnology, 11, 9619–9629.

    CAS  Google Scholar 

  • Litynska, M., Astrelin, I., & Tolstopalova, N. (2017). Ways of arsenic compounds getting into natural. MESE, 3(1), 50–60.

    Article  Google Scholar 

  • Liu, Q. Q., Wang, F. F., Meng, F. P., Jiang, L., Li, G. J., & Zhou, R. G. (2018). Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Marine Pollution Bulletin, 126, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, M. E. C., Macêdo, G. L., Pereira, S. I., Arrifano, G. D. P., Picanço-Diniz, D. L., Nascimento, J. L. M. D., & Herculano, A. (2009). Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacological Research, 60, 212–220.

    Article  CAS  Google Scholar 

  • Lu, T. H., Su, C. C., Chen, Y. W., Yang, C. Y., Wu, C. C., Hung, D. Z., Chen, C. H., Cheng, P. W., Liu, S. H., & Huang, C. F. (2011). Arsenic induces pancreatic beta-cell apoptosis via the oxidative stress regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicology Letters, 201, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Lund, B. O., Miller, D. M., & Woods, J. S. (1993). Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochemical Pharmacology, 45, 2017–2024.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Qiu, Z., Shu, W., Zhang, Y., & Zhang, L. (2009). Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicology Letters, 184, 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H., Li, X., Wei, M., Zeng, G., Hou, S., Li, D., & Xu, H. (2020). Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere, 239, 124706.

    Article  CAS  PubMed  Google Scholar 

  • Maddela, N. R., Kakarla, D., Garcia, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of the Total Environment, 720, 137645.

    Article  CAS  Google Scholar 

  • Maeda, E., Murata, K., & Kumazawa, Y. (2019). Associations of environmental exposures to methylmercury and selenium with female infertility: A case control study. Environmental Research, 168, 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Mahaffey, K. R., Joseph, D., Annest, L., Robert, J. M. S., Robert, S., & Murphy, M. S. P. H. (1982). National estimates of blood lead levels: United States, 1976-1980; association with selected demographic and socioeconomic factors. The New England Journal of Medicine, 307(10), 537–579.

    Article  Google Scholar 

  • Mahvi, A. H., & Diels, L. (2001). Biological removal of cadmium by Alcaligenes eutrophus CH34. International journal of Environmental Science and Technology, 1(3), 199–204.

    Article  Google Scholar 

  • Maier, D., Blaha, L., Giesy, J. P., Henneberg, A., & Köhler, H. R. (2014). Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Research, 22(9), 6670–6678.

    Google Scholar 

  • Maitra, S. (2016). Study of genetic determinants of nickel and cadmium resistance in bacteria-a review. International Journal of Current Microbiology and Applied Sciences, 5(11), 459–471.

    Article  CAS  Google Scholar 

  • Maja-Lena, B., Richard, B., Ingemar, R., Ove, E., Jerzy, B., & Kjell, B. (1999). The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in Northern Europe. Environmental Science & Technology, 33(24), 4391–4395.

    Article  CAS  Google Scholar 

  • Mandal, B., & Suzuki, K. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs, 15, 1–6.

    Google Scholar 

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. In Heavy metals. InTech.

    Google Scholar 

  • Mason, R. P. (2009). Mercury emissions from natural processes and their importance in the global mercury cycle. In Mercury fate and transport in the global atmosphere (pp. 173–191). Springer Science and Business Media LLC.

    Chapter  Google Scholar 

  • Mathe, I., Benedek, T., Tancsics, A., Palatinszky, M., Lanyi, S., & Marialigeti, K. (2012). Diversity, activity, antibiotic and heavy metal resistance of bacteria from petroleum hydrocarbon contaminated soils located in Harghita Country (Romania). International Biodeterioration & Biodegradation, 73, 41–49.

    Article  CAS  Google Scholar 

  • Mathew, B. B., Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: A review. Journal of Pharmacy Research, 4(12), 4340–4343.

    Google Scholar 

  • Matsuo, T. (2003). Japanese experiences of environmental management. Water Science and Technology, 47, 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Maynaud, G., Brunel, B., Yashiro, E., Mergeay, M., Cleyet-Marel, J. C., & Le Quere, A. (2014). CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance. Research in Microbiology, 165, 175–189.

    Article  CAS  PubMed  Google Scholar 

  • Messner, B., & Bernhard, D. (2010). Cadmium and cardiovascular diseases: Cell biology, pathophysiology, and epidemiological relevance. BioMetals, 23(5), 811–822.

    Article  CAS  PubMed  Google Scholar 

  • Mire, C. E., Tourjee, J. A., O’Brien, W. F., Ramanujachary, K. V., & Hecht, G. B. (2004). Lead precipitation by Vibrio harveyi: Evidence for novel quorum-sensing interactions. Applied and Environmental Microbiology, 70, 855–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed, R. M., & Abo-Amer, A. E. (2012). Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. Journal of Basic Microbiology, 52, 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Morais, S., Costa, F. G., & Pereira, M. L. (2012). Heavy metals and human health. In J. Oosthuizen (Ed.), Environmental health – emerging issues and practice (pp. 227–246). InTech.

    Google Scholar 

  • Morel, F., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecological Systems, 29, 543–566.

    Article  Google Scholar 

  • Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury- contaminated water: Volatilisation and plant-accumulation aspects. Environmental and Experimental Botany, 62, 78–85.

    Article  CAS  Google Scholar 

  • Morillo Pérez, J. A., García-Ribera, R., Quesada, T., Aguilera, M., Ramos-Cormenzana, A., & Monteoliva-Sánchez, M. (2008). Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World Journal of Microbiology and Biotechnology, 24, 2699–2704.

    Article  CAS  Google Scholar 

  • Muller, D., Médigue, C., Koechler, S., Barbe, V., Barakat, M., & Talla, E. (2007). A tale of two oxidation states?: Bacterial colonization of arsenic-rich environments. PLoS Genetics, 3, e53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mundey, M. K., Roy, M., Roy, S., Awasthi, M. K., & Sharma, R. (2013). Antioxidant potential of Ocimum sanctum in arsenic induced nervous tissue damage. Brazilian Association of Veterinary Pathology, 6, 95–101.

    Google Scholar 

  • Najeeb, U., Ahmad, W., Zia, M. H., Malik, Z., & Zhou, W. (2014). Enhancing the lead phytostabilization in wetland plant Juncus eff usus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 10, 3310–3317.

    Article  CAS  Google Scholar 

  • Nath, S., Deb, B., & Sharma, I. (2012). Isolation and characterization of cadmium and lead resistant bacteria. Global Advanced Research Journal of Microbiology, 1, 194–198.

    Google Scholar 

  • Naujokas, M. F., Anderson, B., Ahsan, H., Vasken Aposhian, H., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121, 295–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawrot, T. S., Staessen, J. A., & Roels, H. A. (2010). Cadmium exposure in the population: From health risks to strategies of prevention. BioMetals, 23(5), 769–782.

    Article  CAS  PubMed  Google Scholar 

  • Nies, D. H., Nies, A., Chu, L., & Silver, S. (1989). Expression and nucleotide sequence of a plasmid determined divalent cation efflux system from Alcaligenes eutrophus. Proceedings of the National Academy of Sciences of the United States of America, 86, 7351–7355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nithya, C., Gnanalakshmi, B., & Pandian, S. K. (2011). Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. Marine Environmental Research, 71, 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Nnaji, J. C., Uzairu, A., Harrison, G. F. S., & Balarabe, M. L. (2007). Evaluation of cadmium, chromium, copper, lead and zinc concentrations in the fish head/viscera of Oreochromis niloticus and Syndontis schall of River Galma, Zaria, Nigeria. Electronic Journal of Environmental, Agriculture and Food Chemistry, 6, 2420–2426.

    CAS  Google Scholar 

  • Nordberg, M. (1978). Studies on metallothionein and cadmium. Environmental Research, 15, 381–404.

    Article  CAS  PubMed  Google Scholar 

  • Norouzi, E., Bahramifar, N., & Ghasempouri, S. M. (2012). Effect of teeth amalgam on mercury levels in the colostrums human milk in Lenjan. Environmental Monitoring and Assessment, 184, 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. (1988). Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature, 333, 134–139.

    Article  CAS  PubMed  Google Scholar 

  • Obi, E., Okafor, C., Igwebe, A., Ebenebe, J., Johnson Afonne, O., Ifediata, F., Orisakwe, O. E., Nriagu, J. O., & Basu, N. (2015). Elevated prenatal methylmercury exposure in Nigeria: evidence from maternal and cord blood. Chemosphere, 119, 485–489.

    Article  CAS  PubMed  Google Scholar 

  • Ogbomida, E. T., Nakayama, S., Bortey-Sam, N., Oroszlany, B., Tongo, I., Enuneku, A. A., Ogbeide, O., Ainerua, M. O., Fasipe, I. P., Ezemonye, L. I., Mizukawa, H., & Ikenaka, Y. (2018). Accumulation patterns and risk assessment of metals and metalloid in muscle and ofcial of free-range chickens, cattle and goat in Benin City, Nigeria. Ecotoxicology and Environmental Safety, 151, 98–108.

    Article  CAS  PubMed  Google Scholar 

  • Okolo, N. V., Olowolafe, E. A., Akawu, I., & Okoduwa, S. I. R. (2016). Effects of industrial effluents on soil resources in Challawa industrial area, Kano, Nigeria. Journal of Global Ecology and Environment, 5, 1–10.

    Google Scholar 

  • Outten, F. W., Outten, C. E., & Halloran, T. O. (2000). Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In G. Storz & R. Hengge-Aronis (Eds.), Bacterial stress responses (pp. 145–157). ASM Press.

    Google Scholar 

  • Oves, M., Saghir Khan, M., & Zaidi, A. (2013). Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi Journal of Biological Sciences, 20, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Öz, M., Inanan, B. E., & Dikel, S. (2018). Effect of boric acid in rainbow trout (Oncorhynchus mykiss) growth performance. Journal of Applied Animal Research, 46, 990–993.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M, Steenhuisen, F., Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.

    Google Scholar 

  • Pais, I., & Jones, J. B. (1997). The handbook of trace elements. Saint Lucie Press.

    Google Scholar 

  • Panagiotaras, D., & Nikolopoulos, D. (2015). Arsenic occurrence and fate in the environment. A geochemical perspective. Journal of Earth Science and Climatic Change, 6(4), 1–9.

    Google Scholar 

  • Panwichian, S., Kantachote, D., Wittayaweerasa, B., & Mallavarapu, M. (2011). Removal of heavy metals by exopolymeric substances produced by resistant purple non sulphur bacteria isolated from contaminated shrimp ponds. Electronic Journal of Biotechnology, 14, 3458.

    Google Scholar 

  • Paperi, R., Micheletti, E., & De Philippis, R. (2006). Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. Journal of Applied Microbiology, 101, 1351–1356.

    Article  CAS  PubMed  Google Scholar 

  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52, 199–223.

    Article  CAS  Google Scholar 

  • Paul, S., Bera, D., & Chattopadhyay, P. (2006). Biosorption of Pb(II) by Bacillus cereus M116 immobilized in calcium alginate gel. Journal of Hazardous Substance Research, 5, 2.

    Article  Google Scholar 

  • Pepi, M., Focardi, S., Tarabelli, A., Volterrani, M., & Focardi, S. E. (2013). Bacterial strains resistant to inorganic and organic forms of mercury isolated from polluted sediments of the Orbetello Lagoon, Italy, and their possible use in bioremediation processes. E3S Web of Conferences, 1, 31002.

    Article  CAS  Google Scholar 

  • Pepi, M., Gaggi, C., Bernardini, E., & Focardi, S. (2011). Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. International Biodeterioration & Biodegradation, 65, 85–91.

    Article  CAS  Google Scholar 

  • Perez, M. P. J. A., Garcıa-Ribera, R., Quesada, T., Aguilera, M., Ramos-Cormenzana, A., & Monteoliva-Sanchez, M. (2008). Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World Journal of Microbiology and Biotechnology, 24, 2699–2704.

    Article  CAS  Google Scholar 

  • Pirrone, N., Costa, P., Pacyna, J., & Ferrara, R. (2001). Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmospheric Environment, 35, 2997–3006.

    Article  CAS  Google Scholar 

  • Polya, D. A., & Middleton, D. R. (2017). Arsenic in drinking water: Sources & human exposure. In P. Bhattacharya, D. A. Polya, & D. Draganovic (Eds.), Best practice guide on the control of arsenic in drinking water (1st ed.). International Water Association Publishing.

    Google Scholar 

  • Pompeani, D. P., Abbott, M. B., Steinman, B. A., & Bain, D. J. (2013). Lake sediments record prehistoric lead pollution related to early copper production in North America. Environmental Science & Technology, 47(11), 5545–5552.

    Article  CAS  Google Scholar 

  • Pongratz, R., & Heumann, K. G. (1999). Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere, 39, 89–102.

    Article  CAS  Google Scholar 

  • Porto, J. I. R., Araujo, S. O. C., & Feldberg, E. (2005). Mutagenic effects of mercury pollution as revealed by micronucleus test on three Amazonian fish species. Environmental Research, 97(3), 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Radwan, M. A., & Salama, A. K. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology, 44, 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M. A., Hasegawa, H., & Lim, R. P. (2012). Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research, 116, 118–135.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, M. A., Hogan, B., Duncan, E., Doyle, C., Krassoi, R., Rahman, M. M., & Hassler, C. (2014). Toxicity or arsenic species to three freshwater organisms and biotranformation or inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 106, 126–135.

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar, S., & Li, X. (2018). Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports, 5, 288–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richard, K. (2009). Arsenic pollution—a global synthesis. Wiley-Blackwell.

    Book  Google Scholar 

  • Rehman, M. Z. U., Zafar, M., Waris, A. A., Rizwan, M., Ali, S., Sabir, M., Usman, M., Ayub, M. A., & Ahmad, Z. (2020). Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere, 244, 125548.

    Article  CAS  PubMed  Google Scholar 

  • Reuben, A., Caspi, A., & Belsky, D. W. (2017). Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA, 317(12), 1244–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond, R. (2015). Coral reefs: present problems and future concerns resulting from anthropogenic disturbance. Integrative and Comparative Biology, 33(6), 524–536.

    Google Scholar 

  • Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37, 231–4235.

    Article  CAS  Google Scholar 

  • Samina, W., Shams, T., & Masood, A. (2010). Isolation and characterization of a Pseudomonas fluorescens strain tolerant to major Indian water pollutants. Journal of Bioremediation & Biodegradation, 1, 1–5.

    Google Scholar 

  • Sanchez-Pena, L. C., Petrosyan, P., Morales, M., Gonzalez, N. B., Gutierrez-Ospina, G., Del Razo, L. M., & Gonsebatt, M. E. (2010). Arsenic species, AS3MT amount, and AS3MT gene expression in different brain regions of mouse exposed to arsenite. Environmental Research, 110, 428–434.

    Article  CAS  PubMed  Google Scholar 

  • Sawut, R., Kasim, N., Maihemuti, B., Hu, L., Abliz, A., Abdujappar, A., & Kurban, M. (2018). Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Science of the Total Environment, 642, 864–878.

    Article  CAS  Google Scholar 

  • Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: A review. Environmental Research, 137, 246–255.

    Article  CAS  PubMed  Google Scholar 

  • Shaolin, C., & David, B. W. (1997). Construction and characterization of genetically engineered for bioremediation of Hg2þ contaminated environments. Applied and Environmental Microbiology, 63, 2442–2445.

    Article  Google Scholar 

  • Sheehan, M. C., Burke, T. A., Navas-Acien, A., Breysse, P. N., McGready, J., & Fox, M. A. (2014). Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: A systematic review. Bulletin of the World Health Organization, 92, 254–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, Z., Carey, M., Meharg, C., Williams, P. N., Signes-Pastor, A. J., Triwardhani, E. A., Pandiangan, F. I., Campbell, K., Elliott, C., & Marwa, E. M. (2020). Rice grain cadmium concentrations in the global supply-chain Expo Health (pp. 1–8).

    Google Scholar 

  • Shi, Z., Taylor, A. W., Riley, M., Byles, J., Liu, J., & Noakes, M. (2018). Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clinical Nutrition, 37(1), 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar, C. K., Thippeswamy, B., Tejaswikumar, M. V., & Prashanthakumara, S. M. (2014). Bioaccumulation of heavy metals and its effect on organs of edible fishes located in Bhadra River, Karnataka. International Journal of Research in Fisheries and Aquaculture, 4, 90–98.

    Google Scholar 

  • Siddiquee, S., Rovina, K., Azad, S. A., Naher, L., Suryani, S., & Chaikaew, P. (2015). Heavy metalcontaminants removal from wastewater using the potential filamentous fungi biomass: A review. Journal of Microbial and Biochemical Technology, 7(6), 384–395.

    Article  CAS  Google Scholar 

  • Silbernagel, S. M., Carpenter, D. O., Gilbert, S. G., Gochfeld, M., & Groth, E. (2011). Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: Information for physicians. Journal of Toxicology, 2011, 1–7.

    Article  Google Scholar 

  • Silverberg, B. A., Wong, P. T. S., & Chau, Y. K. (1977). Effect of tetramethyl lead on freshwater green algae. Archives of Environmental Contamination and Toxicology, 5, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Kang, S. H., Mulchandani, A., & Chen, W. (2008). Bioremediation: Environmental clean-up through pathway engineering. Current Opinion in Biotechnology, 19, 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Sivaperumal, P., Sankar, T. V., & Viswanathan Nair, P. G. (2007). Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chemistry, 102, 612–620.

    Article  CAS  Google Scholar 

  • Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Soliman, N. F., Younis, A. M., & Elkady, E. M. (2019). An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere, 222, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Sri Kumaran, N., Sundaramanicam, A., & Bragadeeswaran, S. (2011). Adsorption studies on heavy metals by isolated cyanobacterial strain (Nostoc sp.) from Uppanar estuarine water, Southeast coast of India. Journal of Applied Sciences Research, 7(11), 1609–1615.

    CAS  Google Scholar 

  • Srivastav, A. K., Rai, R., Suzuki, N., Mishra, D., & Srivastav, S. K. (2013). Effects of lead on the plasma electrolytes of a freshwater fish. Heteropneustes fossilis. International Aquatic Research, 5, 4.

    Article  Google Scholar 

  • Stanbrough, R., Chuaboonmee, S., Palombo, E. A., Malherbe, F., & Bhave, M. (2013). Heavy metal phytoremediation potential of a heavy metal resistant soil bacterial isolate, Achromobacter sp. strain AO22. APCBEE Procedia, 5, 502–507.

    Article  CAS  Google Scholar 

  • Styblo, M., Del Razo, L. M., Vega, L., Germolec, D. R., Lecluyse, E. L., Hamilton, G. A., Reed, W., Wang, C., Cullen, W. R., & Thomas, D. J. (2000). Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology, 74, 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Sultana, M., Sanyal, S. K., & Hossain, M. A. (2015). Arsenic pollution in the environment. Bioremediation, 2015, 92–119.

    Google Scholar 

  • Takeuchi, M., Kawahata, H., Gupta, L. P., Kita, N., Morishita, Y., Ono, Y., & Komai, T. (2007). Arseni resistance and removal by marine and non-marine bacteria. Journal of Biotechnology, 127, 434–442.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Z., Seshadri, S., & Beiser, A. (2003). Plasma total cholesterol level as a risk factor for Alzheimer disease: The Framingham Study. Archives of Internal Medicine, 163, 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Shan, B., Zhang, H., Zhang, W., Zhao, Y., & Ding, Y. (2014). Heavy metal contamination in the surface sediments of representative limnetic ecosystems in Eastern China. Scientific Reports, 4, 7152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J., & Bannigan, J. (2008). Cadmium: Toxic effects on the reproductive system and the embryo. Reproductive Toxicology, 25, 304–315.

    Article  CAS  PubMed  Google Scholar 

  • Thophon, S., Kruatrachue, M., Upatham, E. S., Pokethitiyook, P., Sahaphong, S., & Jaritkhuan, S. (2003). Histopathological alterations of white seabass, Lates calcalifer, in acute and subchronic cadmium exposure. Environmental Pollution, 121, 307–320.

    Article  CAS  PubMed  Google Scholar 

  • Thornton, I. (1992). Sources and pathways of cadmium in the environment. IARC Scientific Publications, 118, 149–162.

    CAS  Google Scholar 

  • Timbrell, J. A. (2008). Biochemical mechanisms of toxicity: Specific examples. In Principles of biochemical toxicology (4th ed.). Informa Health Care.

    Chapter  Google Scholar 

  • Tinkov, A. A., Filippini, T., Ajsuvakovae, O. P., Skalnaya, M. G., Aasethf, J., Bjørklundh Gatiatulinai, E. R., Popova, E. V., Nemereshinai, O. N., & Huangk, P. T. (2018). Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environmental Research, 162, 240–260.

    Article  CAS  PubMed  Google Scholar 

  • Tsibakhashvili, N., Mosulishvili, L., Kirkesali, E., & Murusidze, I. (2010). NAA for studying detoxification of Cr and Hg by Arthrobacter globiformis 151B. Journal of Radioanalytical and Nuclear Chemistry, 286, 533–537.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., Alkredaa, R. S., & Al-Wabel, M. (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicology and Environmental Safety, 97, 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Vahidnia, A., Van der Voet, G., & De Wolff, F. (2007). Arsenic neurotoxicity—a review. Human & Experimental Toxicology, 26, 823–832.

    Article  CAS  Google Scholar 

  • Vargas-García, M. D. C., López, M. J., Suárez-Estrella, F., & Moreno, J. (2012). Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Science of the Total Environment, 431, 62–67.

    Article  CAS  Google Scholar 

  • Vasanthi, N., Muthukumaravel, K., Sathick, O., Sugumaran, J. (2019). Toxic effect of mercury on the freshwater fish Oreochromis mossambicus. Research Journal of Life Sciences Bioinformatics Pharmaceutical and Chemical Sciences, 5(3), 376. https://doi.org/10.26479/2019.0503.30

  • Vega, L., Styblo, M., Patterson, R., Cullen, W., & Wang, C. (2001). Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicology and Applied Pharmacology, 172, 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Veiga, M. M., Maxson, P. A., & Hylander, L. D. (2006). Origin and consumption of mercury in small- scale gold mining. Journal of Cleaner Production, 14(3–4), 436–447.

    Article  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.

    Article  CAS  PubMed  Google Scholar 

  • Vipra, A., Desai, S. N., Junjappa, R. P., Roy, P., Poonacha, N., Ravinder, P., Sriram, B., & Padmanabhan, S. (2013). Determining the minimum inhibitory concentration of bacteriophages: potential advantages. Advances in Microbiology, 3, 181–190.

    Article  Google Scholar 

  • Vogel, C., & Fisher, N. S. (2010). Metal accumulation by heterotrophic marine bacterioplankton. Limnology and Oceanography, 55(2), 519–528.

    Article  CAS  Google Scholar 

  • Von Canstein, H., Li, Y., & Wagner-Dobler, I. (2001). Long-term performance of bioreactors cleaning mercury-contaminated waste water and their response to temperature and mercury stress and mechanical perturbation. Biotechnology and Bioengineering, 74, 212–219.

    Article  Google Scholar 

  • Wagner-Dobler, I., Lunsdorf, H., Lubbenhusen, T., von Canstein, H. F., & Li, Y. (2000). Structure and species composition of mercury-reducing biofilms. Applied and Environmental Microbiology, 66, 4559–4563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenhamer, J. D., & Clement, M. L. (2007). Widespread lead contamination of imported low-cost jewelry in the US. Chemosphere, 67(5), 961–965.

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek, J., Baran, A., Urbanski, K., Mazurek, R., & Klimowicz-Pawlas, A. (2018). Assessment of the pollution and ecological risk of lead and cadmium in soils. Environmental Geochemistry and Health, 40, 2325–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research International, 23(9), 8244–8259.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Zhu, L., Zhao, Y., Wei, Z., Chen, X., Yao, C., Meng, Q., & Zhao, R. A. (2019). Novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials. Bioresource Technology, 293, 122095.

    Article  CAS  PubMed  Google Scholar 

  • Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 278–285.

    Article  Google Scholar 

  • Ye, S., Zeng, G., Wu, H., Zhang, C., Liang, J., Dai, J., & Cheng, M. (2017). Co-occurrence and interactions of pollutants, and their impacts on soil remediation-a review. Critical Reviews in Environmental Science and Technology, 47(16), 1528–1553.

    Article  Google Scholar 

  • Zamil, S. S., Ahmad, S., Choi, M. H., Park, J. Y., & Yoon, S. C. (2009). Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ 711 using QICAR model. Bioresource Technology, 100, 1895–1902.

    Article  CAS  PubMed  Google Scholar 

  • Zeitoun, M. M., & Mehana, E. (2014). Impact of water pollution with heavy metals on fish health: Overview and updates. Global Veterinary, 12, 219–231.

    Google Scholar 

  • Zeng, X., Tang, J., Liu, X., & Jiang, P. (2012). Response of P. aeruginosa E1 gene expression to cadmium stress. Current Microbiology, 65, 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Mu, X., Xu, W., Martin, F. L., Alamdar, A., Liu, L., Tian, M., Huang, Q., & Shen, H. (2014). Exposure to arsenic via drinking water induces 5-hydroxymethylcytosine alteration in rat. Science of the Total Environment, 497–498, 618–625.

    Article  CAS  Google Scholar 

  • Zhang, W., Chen, L., & Liu, D. (2012). Characterization of a marine-isolated mercury resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Applied Microbiology and Biotechnology, 93, 13051314.

    Article  Google Scholar 

  • Zhao, H., Xia, B., Fan, C., Zhao, P., & Shen, S. (2012). Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Science of the Total Environment, 41, 45–54.

    Article  CAS  Google Scholar 

  • Zheng, N. A., Wang, S., & Dong, W. U. (2019). The toxicological effects of mercury exposure in marine fish. Bulletin of Environmental Contamination and Toxicology, 102(5), 714–720.

    Article  CAS  PubMed  Google Scholar 

  • Zietz, B. P., Lass, J., Dunkelberg, H., & Suchenwirth, R. (2009). Lead pollution of drinking water in lower Saxonomy from corrosion of pipe materials. Gesundheitswesen, 71(5), 265–274.

    Article  CAS  PubMed  Google Scholar 

  • Zoghi, A., Darani, K. K., & Sohrabvandi, S. (2014). Mini Reviews in Medicinal Chemistry, 14, 84–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhavi, A., Srinivasulu, M., Chandra, M.S., Rangaswamy, V. (2021). Detoxification of Heavy Metals Using Marine Metal Resistant Bacteria: A New Method for the Bioremediation of Contaminated Alkaline Environments. In: Maddela, N.R., García, L.C. (eds) Innovations in Biotechnology for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-80108-3_15

Download citation

Publish with us

Policies and ethics