Skip to main content

Microbial Interaction with Metals and Metalloids

  • Chapter
  • First Online:
Innovations in Biotechnology for a Sustainable Future

Abstract

The historical backdrop of the connection of microorganisms with metals and metalloids is extremely old, which has stimulated the enthusiasm of natural microbiologist in their abuse in accomplishing a cleaner soil. Conjunction of microorganisms with metals comes from the incorporation of divalent or progress metals at each phase of microbial development, digestion and separation. The delayed consequence of the anomaly to the generous metals/metalloids in the dirt and their improvement are compelled by different metal-microbial-correspondences, for instance, bioaccumulation, biosorption, bio-precipitation, biotransformation, or bio-activation/chelation. Albeit limited quantities of these metals are required for typical physical working, their admission is dependent upon interior homeostatic mechanisms. The rise of such intuitive systems not just encourages the natural capacity of metals through their redox change or adjusted portability/dissolvability and poisonousness, yet additionally guarantees the variation of microorganisms to the evolving climate. These associations that lead to an adjustment in the harmfulness and versatility of metals and metalloids are being concentrated so they can be applied for bioremediation of the poisonous component. Investigating these parts of microbial metal collaboration not just gives significant knowledge into the function of microorganisms in metal and metalloid cycling, yet additionally gives better techniques to proposition metals bioremediation from various contaminated conditions. The interdisciplinary field of bio-geo-compound communications over the microbiota has fantastic potential for future assessment to appreciate various atomic methodologies in fundamental investigation and their application in the making field of bioremediation progressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano, D. C. (2001). Trace elements in the terrestrial environment: Biogeochemistry, bioavailability and risks of metals (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-21510-5

    Book  Google Scholar 

  • Ahuja, R. (2016). Characterization of heavy metals in contaminated agricultural soil. International Journal of Theoretical and Applied Sciences, 8(1), 38–40.

    CAS  Google Scholar 

  • Ali, M., & Bhat, A. K. (2014). Soil microbiological indices of polluted soils of industrial belts of Jammu, India. International Journal of Current Microbiology and Applied Sciences, 3(1), 559–576.

    CAS  Google Scholar 

  • Alibhai, K., Leak, D. J., Dudeney, A. W. L., Agatzini, S., & Tzeferis, P. (1991). Microbial leaching of nickel from low grade Greek laterites. In R. W. Smith & M. Misra (Eds.), Mineral bioprocessing (pp. 191–205). The Minerals, Metals, and Materials Society.

    Google Scholar 

  • Andrews, D., & Walker, B. (2016). U.S. EPA, Occurrence data for the unregulated contaminant monitoring rule. www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule#3

  • Bae, W., Mehra, R. K., Mulchandani, A., et al. (2001). Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Applied and Environmental Microbiology, 67(11), 5335–5338. https://doi.org/10.1128/AEM.67.11.5335-5338.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi, F., Filippelli, M., & Olson, G. J. (1989). Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters. Microbial Ecology, 17, 263–274. https://doi.org/10.1007/BF02012839

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, S., Das, B., Umlong, I. M., et al. (2011). Heavy metal contaminants of underground water in Indo Bangla Border Districts of Tripura, India. International Journal of ChemTech Research, 3(1), 516–522.

    CAS  Google Scholar 

  • Banerjee, S., Kumar, A., Maiti, S. K., et al. (2016). Seasonal variation in heavy metal contaminations in water and sediments of Jamshedpur stretch of Subarnarekha River, India. Environment and Earth Science, 75(3), 1–12. https://doi.org/10.1007/s12665-015-4990-6

    Article  CAS  Google Scholar 

  • Banerjee, S., Pramanik, A., Sengupta, S., et al. (2017). Distribution and source identification of heavy metal concentration in Chilika Lake, Odisha India: An assessment over salinity gradient. Current Science, 112(1), 87. https://doi.org/10.18520/cs/v112/i01/87-94

    Article  CAS  Google Scholar 

  • Banfield, J. F., Cervini-Silva, J., & Nealson, K. H. (Eds.). (2005). Molecular geomicrobiology, Reviews in mineralogy and geochemistry (Vol. 59). Mineralogical Society of America.

    Google Scholar 

  • Barkay, T., & Wagner-Dobler, I. (2005). Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. Advances in Applied Microbiology, 57, 1–52. https://doi.org/10.1016/S0065-2164(05)57001-1

    Article  CAS  PubMed  Google Scholar 

  • Bell, N., & Quan, L. (1997). The application of Bactech (Australia) Ltd. technology for processing refractory gold ores at Youanmi Gold Mine. In Conference proceedings. International Bio-hydrometallurgy Symposium IBS97 BIOMINE 97. Australian Mineral Foundation, Glenside, South Australia (pp. M2.3.1–M2.3.9).

    Google Scholar 

  • Beveridge, T. J., & Doyle, R. (1989). Metal ions and bacteria. Wiley.

    Google Scholar 

  • Beveridge, T. J., & Koval, S. F. (1981). Binding of metals to cell envelopes of Escherichia coli K-12. Applied and Environmental Microbiology, 42, 325–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge, T. J., Forsberg, C. W., & Doyle, R. C. (1982). Major sites of metal binding in Bacillus licheniformis walls. Journal of Bacteriology, 150, 1438–1448. https://doi.org/10.1128/JB.150.3.1438-1448.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco, A. (2000). Immobilization of nonviable cyanobacteria and their use for heavy metal adsorption from water. In E. J. Oluguin, G. Sanchez, & E. Hernandez (Eds.), Environmental biotechnology and cleaner bioprocesses (p. 135). Taylor and Francis.

    Google Scholar 

  • Borremans, B., Hobman, J. L., Provoost, A., et al. (2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19), 5651–5658. https://doi.org/10.1128/JB.183.19.5651-5658.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosecker, K. (1993). Biosorption of heavy metals by filamentous fungi. In A. E. Torma, M. L. Apel, & C. L. Brierley (Eds.), Biohydro-metallurgical technologies (Vol. II, pp. 55–64). The Minerals, Metals and Materials Society.

    Google Scholar 

  • Boyington, J. C., Gladyshev, V. N., Kangulov, S. V., et al. (1997). Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science, 275, 1305–1308. https://doi.org/10.1126/science.275.5304.1305

    Article  CAS  PubMed  Google Scholar 

  • Brierley, C. L., & Brierley, J. A. (1982). Anaerobic reduction of molybdenum by Sulfolobus species. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie, 3, 289–294.

    Article  CAS  Google Scholar 

  • Brierley, J. A., Brierley, C. L., & Goyak, G. M. (1986). AMT-BIOCLAIM: A new wastewater treatment and metal recovery technology. In R. W. Lawrence, R. M. R. Branion, & H. G. Ebner (Eds.), Fundamental and applied biohydrometallurgy (pp. 291–308). Elsevier.

    Google Scholar 

  • Briggs, A. P., & Millard, M. (1997). Cobalt recovery using bacterial leaching at the Kasese Project, Uganda. In Conference proceedings. International Biohydrometallurgy Symposium IBS97 BIOMINE 97 (pp. M2.4.1–M2.4.11). Australian Mineral Foundation.

    Google Scholar 

  • Brim, H., Venkateswaran, A., Kostandarithes, H. M., et al. (2003). Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Applied and Environmental Microbiology, 69(8), 4575–4582. https://doi.org/10.1128/AEM.69.8.4575-4582.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brim, H., Osborne, J. P., Kostandarithes, H. M., et al. (2006). Deinococcus radiodurans engineered for complete toluene degradation facilities Cr(IV) reduction. Microbiology, 152, 2469–2477. https://doi.org/10.1099/mic.0.29009-0

    Article  CAS  PubMed  Google Scholar 

  • Brus, D. J., Li, Z., Song, J., et al. (2009). Predictions of spatially averaged cadmium contents in rice grains in the Fuyang Valley, PR China. Journal of Environmental Quality, 38(3), 1126–1136. https://doi.org/10.2134/jeq2008.0228

    Article  CAS  PubMed  Google Scholar 

  • Cantafio, A., Hagen, K. D., Lewis, G. E., et al. (1996). Pilot-scale selenium bioremediation of San Joaquin Drainage water with Thauera selenatis. Applied and Environmental Microbiology, 62, 3298–3303. https://doi.org/10.1128/aem.62.9.3298-3303.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaco, L. M., Hasman, H., Stegger, M., et al. (2010). Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates. Antimicrobial Agents and Chemotherapy, 54(9), 3605–3608. https://doi.org/10.1128/AAC.00058-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha, J. S., & Cooksey, D. A. (1991). Copper resistance in pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proceedings of the National Academy of Sciences, 88(20), 8915–8919. https://doi.org/10.1073/pnas.88.20.8915

    Article  CAS  Google Scholar 

  • Chaitanya, I., Satyaprakash, M., & Reddy, T. B. (2016). Bioaccumulation of heavy metals in marine fish samples at Visakhapatnam and Bheemili region, north east coast of Andhra Pradesh, India. International Journal of Science, Environment and Technology, 5, 1718–1729.

    Google Scholar 

  • Charan, P. D., Singh, M., Rakhecha, P., et al. (2015). Study of heavy metals concentration in ground water samples collected from Bikaner city, Rajasthan. International Journal of Engineering Research and Management Technology, 2(5), 16–17.

    Google Scholar 

  • Chau, Y. K., Wong, P. T. S., Silverberg, B. A., et al. (1976). Methylation of selenium in the aquatic environment. Science, 192, 1130–1131. https://doi.org/10.1126/science.192.4244.1130

    Article  CAS  PubMed  Google Scholar 

  • Coleman, M. L. L., Hedrick, D. B., Lovley, D. R., et al. (1993). Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature (London), 361, 436–438. https://doi.org/10.1038/361436a0

    Article  CAS  Google Scholar 

  • Das, P., Kumar, M., & Sarma, K. P. (2015). Speciation of heavy metals in surface sediment of the Brahmaputra River, Assam, India. Journal of Environmental Research And Development, 9(3A), 944–952.

    Google Scholar 

  • Dash, A., Das, H. K., & Mishra, B. (2016). Heavy metals contamination of ground water in and around Joda of Keonjhar district, Odisha, India. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(10), 44–50. https://doi.org/10.9790/2402-1010024450

    Article  CAS  Google Scholar 

  • DeLeo, P. C., & Ehrlich, H. L. (1994). Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous culture. Applied and Environmental Microbiology, 40, 756–759. https://doi.org/10.1007/BF00173341

    Article  CAS  Google Scholar 

  • DeMoll-Decker, H., & Macy, J. M. (1993). The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Archives of Microbiology, 160, 241–247. https://doi.org/10.1007/BF00249131

    Article  CAS  Google Scholar 

  • Dew, D. W., & Miller, D. M. (1997). The BioNIC process. Bioleaching of minerals sulfide concentrates for recovery of nickel. In Conference Proceedings. International Bio-hydrometallurgy Symposium IBS97 BIOMINE 97 (pp. M7.1.1–M7.1.9). Australian Mineral Foundation.

    Google Scholar 

  • Dey, R., & Choudhary, S. K. (2015). Heavy metal in sediments of Kabar Lake, a tropical wetland in Begusarai district of Bihar. Ecology, Environment & Conservation, 22(3), 1509–1515.

    Google Scholar 

  • Dhankher, O. P., Li, Y. J., Rosen, B. P., et al. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nature Biotechnology, 20, 1140–1145. https://doi.org/10.1038/nbt747

    Article  CAS  PubMed  Google Scholar 

  • Dheeba, B., & Sampathkumar, P. (2012). Evaluation of heavy metal contamination in surface soil around industrial area, Tamil Nadu, India. International Journal of ChemTech Research, 4(3), 1229–1240.

    CAS  Google Scholar 

  • Dixit, R., Malaviya, D., Pandiyan, K., et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  • Doyle, R. J. (1991). How cell walls of gram-positive bacteria interact with metal ions. In T. J. Beveridge & R. J. Doyle (Eds.), Metal ions and bacteria (pp. 275–293). Wiley.

    Google Scholar 

  • Edyvean, R. G. J. (1995). The influence of marine macrofouling on corrosion. In C. C. Gaylarde & H. A. Videla (Eds.), Bioextraction and biodeterioration of metals (pp. 169–196). Cambridge University Press.

    Google Scholar 

  • Ehrlich, H. L. (1996a). Geomicrobiology. Dekker. https://doi.org/10.4319/lo.1982.27.5.0984

    Book  Google Scholar 

  • Ehrlich, H. L. (1996b). Microbes and metals. Applied Microbiology and Biotechnology, 48(6), 687–692. https://doi.org/10.1007/s002530051116

    Article  Google Scholar 

  • Ehrlich, H. L., & Brierley, C. L. (1990). Microbial mineral recovery. Mc-Graw-Hill.

    Google Scholar 

  • Ehrlich, H. L., & Newman, D. K. (2009). Geomicrobiology (5th ed.). CRC Press/Taylor & Francis.

    Google Scholar 

  • Fasinu, P. S., & Orisakwe, O. E. (2013). Heavy metal pollution in sub-Saharan Africa and possible implications in cancer epidemiology. Asian Pacific Journal of Cancer Prevention, 14(6), 3393–3402. https://doi.org/10.7314/apjcp.2013.14.6.3393

    Article  PubMed  Google Scholar 

  • Fazil, M. I., Iqbalb, M. A., & Abdullah, S. (2012). A study on heavy metal ion contamination of groundwater reserves in Beed City, Maharashtra, India. Bulletin of Environment, Pharmacology and Life Sciences, 1(1), 18–21.

    Google Scholar 

  • Fernandez-Cadena, J. C., Andrade, S., Silva-Coello, C. L., & De la Iglesia, R. (2014). Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Marine Pollution Bulletin, 82(1), 221–226. https://doi.org/10.1016/j.marpolbul.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  • Ferris, F. G. (1991). Metallic ion interactions with the outer membrane of gram-negative bacteria. In T. J. Beveridge & R. J. Doyle (Eds.), Metal ions and bacteria (pp. 295–323). Wiley.

    Google Scholar 

  • Ferris, F. G., Schultze, S., Witten, T. C., Fyfe, W. S., & Beveridge, T. J. (1989). Metal interactions with microbial biofilms in acidic and neutral pH environments. Applied and Environmental Microbiology, 55, 1249–1257. https://doi.org/10.1128/AEM.55.5.1249-1257.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry, J. G. (1995). CO dehydrogenases. Annual Review of Microbiology, 49, 305–333. https://doi.org/10.1146/annurev.mi.49.100195.001513

    Article  CAS  PubMed  Google Scholar 

  • Fowler, B. A., Hildebrand, C. E., Kojima, Y., & Webb, M. (1987). Nomenclature of metallothionein. In J. H. R. Kagi & Y. Kojima (Eds.), Metallothionein II (pp. 19–22). https://doi.org/10.1007/978-3-0348-6784-9_2

    Chapter  Google Scholar 

  • Frankenberger, W. T., Jr., & Karlson, U. (1992). Dissipation of soil selenium by microbial volatilization. In D. C. Adriano (Ed.), Bio-geochemistry of trace metals (pp. 365–381). Lewis.

    Google Scholar 

  • Fridovich, I. (1978). The biology of oxygen radicals. Science, 201, 875–880. https://doi.org/10.1126/science.210504

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G. M. (1993). Interactions of fungi with toxic metals. The New Phytologist, 124, 25–60. https://doi.org/10.1007/978-1-4899-0981-7_28

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G. M., & Raven, J. A. (2010). Geomicrobiology of eukaryotic microorganisms. Geomicrobiology Journal, 27(6–7), 491–519. https://doi.org/10.1080/01490451003703006

    Article  CAS  Google Scholar 

  • Gadd, G. M., Burford, E. P., Fomina, M., & Melville, K. (2007). Mineral transformation and biogeochemical cycles: A geomycological perspective. In G. M. Gadd, P. Dyer, & S. Watkinson (Eds.), Fungi in the environment (pp. 78–111). Cambridge University Press. https://doi.org/10.1017/CBO9780511541797.006

    Chapter  Google Scholar 

  • Gaylarde, C. C., & Videla, H. A. (1995). Bioextraction and biodeterioration of metals. Cambridge University Press. https://doi.org/10.1017/CBO9780511541797.006

    Book  Google Scholar 

  • Ghiorse, W. C., & Ehrlich, H. L. (1992). Microbial biomineralization of iron and manganese. In H. C. W. Skinner & R. W. Fitzpatrick (Eds.), Biomineralization. Processes of iron and manganese. Modern and ancient environments. Catena supplement 21 (pp. 75–99). Catena Cremlingen-Destedt.

    Google Scholar 

  • Giri, S., Mahato, M. K., Singh, G., et al. (2012). Risk assessment due to intake of heavy metals through the ingestion of groundwater around two proposed uranium mining areas in Jharkhand, India. Environmental Monitoring and Assessment, 184(3), 1351–1358. https://doi.org/10.1007/s10661-011-2045-3

    Article  CAS  PubMed  Google Scholar 

  • Goher, M. E., Farhat, H. I., Abdo, M. H., et al. (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research, 40(3), 213–224. https://doi.org/10.1016/j.ejar.2014.09.004

    Article  Google Scholar 

  • Gomathy, M., & Sabarinathan, K. G. (2010). Microbial mechanisms of heavy metal tolerance-A review. Agricultural Reviews, 31(2), 133–138.

    Google Scholar 

  • Govil, P., Reddy, G., & Krishna, A. (2001). Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environmental Geology, 41(3), 461–469. https://doi.org/10.1007/s002540100415

    Article  CAS  Google Scholar 

  • Groudev, S. N., & Groudeva, V. I. (1986). Biological leaching of aluminum from clays. Workshop on biotechnology for the mining, metal-refining and fossil fuel industries. Biotechnology and Bioengineering Symposium, 16, 91–99.

    Google Scholar 

  • Guard, H. E., Cobet, A. B., & Coleman, W. M., III. (1981). Methylation of trimethyltin compounds by estuarine sediments. Science, 213, 770–771. https://doi.org/10.1126/science.213.4509.770

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S., Bhatnagar, M., & Jain, R. (2003). Physico-chemical characteristics and analysis of Fe and Zn in tubewell water and sewage water of Bikaner City. Asian Journal of Chemistry, 15(2), 727.

    CAS  Google Scholar 

  • Hallas, L. E., Means, J. C., & Cooney, J. J. (1982). Methylation of tin by estuarine microorganisms. Science, 215, 1505–1507. https://doi.org/10.1126/science.215.4539.1505

    Article  CAS  PubMed  Google Scholar 

  • Haloi, N., & Sarma, H. P. (2012). Heavy metal contaminations in the groundwater of Brahmaputra flood plain: An assessment of water quality in Barpeta District, Assam (India). Environmental Monitoring and Assessment, 184(10), 6229–6237. https://doi.org/10.1007/s10661-011-2415-x

    Article  CAS  PubMed  Google Scholar 

  • Harikrishnan, N., Suresh Gandhi, M., Chandrasekaran, A., & Ravisankar, R. (2015). Assessment of heavy metal pollution and potential ecological risk of sediments of East Coast of Tamil Nadu by Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) and Sediment Quality Guidelines (SQGS). Journal of Heavy Metal Toxicity and Diseases, 3, 1–7. https://doi.org/10.21767/2473-6457.100003

    Article  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  • Hejabi, A. T., Basavarajappa, H. T., Karbassi, A. R., et al. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 182(1), 1–13. https://doi.org/10.1007/s10661-010-1854-0

    Article  CAS  Google Scholar 

  • Herawati, N., Suzuki, S., Hayashi, K., et al. (2000). Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bulletin of Environmental Contamination and Toxicology, 64(1), 33–39. https://doi.org/10.1007/s001289910006

    Article  CAS  PubMed  Google Scholar 

  • Hoffland, E., Kuyper, T. W., et al. (2004). The role of fungi in weathering. Frontiers in Ecology and the Environment, 2(5), 258–264.

    Article  Google Scholar 

  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., et al. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22(2), 335–348. https://doi.org/10.2134/jeq1993.00472425002200020015x

    Article  CAS  Google Scholar 

  • Ilyaletdinov, A. N., & Abdrashitova, S. A. (1981). Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya, 50, 197–204. PMID: 7242389.

    CAS  Google Scholar 

  • Ingledew, W. J. (1982). Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochimica et Biophysica Acta, 683, 89–117. https://doi.org/10.1016/0304-4173(82)90007-6

    Article  CAS  PubMed  Google Scholar 

  • Jain, C. K., Bandyopadhyay, A., & Bhadra, A. (2010). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environmental Monitoring and Assessment, 166(1), 663–676. https://doi.org/10.1007/s10661-009-1031-5

    Article  CAS  PubMed  Google Scholar 

  • Jamir, T. T., Devi, W. B., Singh, U. I., et al. (2011). Lead, iron and manganese contamination in spring pond and well water in Nagaland, one of the seven North-Eastern States of India, A future danger. Journal of Chemical and Pharmaceutical Research, 3, 403–411.

    CAS  Google Scholar 

  • JarosÅ‚awiecka, A., & Piotrowska-Seget, Z. (2014). Lead resistance in microorganisms. Microbiology, 160(1), 12–25. https://doi.org/10.1099/mic.0.070284-0

    Article  CAS  PubMed  Google Scholar 

  • Ji, G., & Silver, S. (1995). Bacterial resistance mechanisms for heavy metals of environmental concern. Journal of Industrial Microbiology, 14, 61–75. https://doi.org/10.1007/BF01569887

    Article  CAS  PubMed  Google Scholar 

  • Jinwal, A., & Dixit, S. (2008). Pre and post monsoon variation in physio-chemical characteristic in groundwater quality in Bhopal, India. Asian Journal of Experimental Sciences, 22, 311–316.

    Google Scholar 

  • Jo, I. S., & Koh, M. H. (2004). Chemical change in agricultural soils of Korea: Date review and suggested countermeasures. Environmental Geochemistry and Health, 26, 105–107. https://doi.org/10.1023/b:egah.0000039573.05245.cc

    Article  CAS  PubMed  Google Scholar 

  • Jung, M. C. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors, 8(4), 2413–2423. https://doi.org/10.3390/s8042413

    Article  PubMed  PubMed Central  Google Scholar 

  • Kachenko, A. G., & Singh, B. (2005). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169(1), 101–123. https://doi.org/10.1007/s11270-006-2027-1

    Article  CAS  Google Scholar 

  • Kashyap, R., & Vera, K. S. (2015). Seasonal variation of certain heavy metals in Kuntbhyog lake of Himachal Pradesh, India. Journal of Environment, Ecology, Family and Urban Studies, 1(1), 15–26.

    Google Scholar 

  • Kaur, J., & Maddela, N. R. (2021). Microbial bioremediation: A cutting-edge technology for xenobiotic removal. In N. R. Maddela, L. C. García Cruzatty, & S. Chakraborty (Eds.), Advances in the domain of environmental biotechnology. Environmental and microbial biotechnology. Springer. https://doi.org/10.1007/978-981-15-8999-7_16

    Chapter  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., et al. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41(1), 197–207. https://doi.org/10.1016/S0045-6535(99)00412-9

    Article  CAS  PubMed  Google Scholar 

  • Kierans, M., Staines, A. M., Bennett, H., et al. (1991). Silver tolerance and accumulation in yeasts. Biology of Metals, 4, 100–106. https://doi.org/10.1007/BF01135386

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. H., & Gadd, G. M. (2008). Bacterial physiology and metabolism. Cambridge University Press.

    Book  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275. https://doi.org/10.1007/s10661-006-9224-7

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha, A., Soni, R. K., & Shinde, C. P. (2015). Quantitative estimation of heavy metals in ground water in Meerut Region in Uttar Pradesh. Journal of Applied Pharmaceutical Science, 8(8), 46–49. https://doi.org/10.9790/5736-08824649

    Article  Google Scholar 

  • Kumar, V., & Chopra, A. K. (2015). Heavy metals accumulation in soil and agricultural crops grown in the province of Asahi India Glass Ltd., Haridwar (Uttarakhand), India. Advances in Crop Science and Technology, 4(1), 203. https://doi.org/10.4172/2329-8863.1000203

    Article  CAS  Google Scholar 

  • Kumar, S. D., & Srikantaswamy, S. (2012). Heavy metals pollution assessment in industrial area soil of Mysore city, Karnataka, India. International Journal of Applied Sciences and Engineering Research, 1(4), 604–611. https://doi.org/10.6088/ijaser.0020101062

    Article  CAS  Google Scholar 

  • Kumar, S. K., Magesh, N. S., & Chandrasekar, N. (2012). Trace element concentration in groundwater, Tuticorin City, Tamil Nadu, India. Bulletin of Environmental Contamination and Toxicology, 88(6), 876–879. https://doi.org/10.1007/s00128-012-0614-y

    Article  CAS  PubMed  Google Scholar 

  • Kumar, B., Kumari, S., & Flores, L. C. (2014). Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10, S2335. https://doi.org/10.1016/j.arabjc.2013.08.010

    Article  CAS  Google Scholar 

  • Landa, E. R. (2005). Microbial biogeochemistry of uranium mill tailings. Advances in Applied Microbiology, 57, 113–130. https://doi.org/10.1016/S0065-2164(05)57004-7

    Article  CAS  PubMed  Google Scholar 

  • Leyval, C., & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 165–185). CRC Press.

    Google Scholar 

  • Lloyd, J. R., & Lovley, D. R. (2001). Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology, 12(3), 248–253. https://doi.org/10.1016/s0958-1669(00)00207-x

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R. (1987). Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiology Journal, 5, 375–399. https://doi.org/10.1080/01490458709385975

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55, 259–287. https://doi.org/10.1016/S0065-2911(04)49005-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Review of Microbiology, 47, 263–290. https://doi.org/10.1146/annurev.mi.47.100193.001403

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R. (1995). Bioremediation of organic and inorganic metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14, 85–93. https://doi.org/10.1007/BF01569889

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8, 285–289. https://doi.org/10.1016/s0958-1669(97)80005-5

    Article  CAS  PubMed  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472–1480. https://doi.org/10.1128/AEM.54.6.1472-1480.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1992). Bioremediation of uranium contamination with enzymatic uranium reduction. Environmental Science & Technology, 26, 2228–2234. https://doi.org/10.1021/es00035a023

    Article  CAS  Google Scholar 

  • Luo, Y. M., & Teng, Y. (2006). Status of soil pollution degradation and countermeasures in China. Soil Science, 38(5), 505–508.

    Google Scholar 

  • Lyalikova, N. N., Vedenina, I. Y., & Romanova, A. K. (1976). Assimilation of carbon dioxide by a culture of Stibiobacter senarmontii. Mikrobiologiya, 45, 552–554. (Microbiology NY 45: 476–477). PMID: 1004256.

    CAS  Google Scholar 

  • Macaskie, L. E., Dean, A. C. R., Cheetham, A. K., et al. (1987). Cadmium accumulation by a Citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location on the bacterial cells. Journal of General Microbiology, 133, 539–544. https://doi.org/10.1099/00221287-133-3-539

    Article  CAS  Google Scholar 

  • Macaskie, L. E., Empson, R. M., Cheetham, A. K., et al. (1992). Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2-PO4. Science, 257, 782–784. https://doi.org/10.1126/science.1496397

    Article  CAS  PubMed  Google Scholar 

  • Machender, G., Dhakate, R., Mallikharjuna, S. T., et al. (2012). Heavy metal contamination in sediments of Balanagar industrial area, Hyderabad, Andhra Pradesh, India. Arabian Journal of Geosciences, 7(2), 513–525. https://doi.org/10.1007/s12517-012-0759-3

    Article  CAS  Google Scholar 

  • Maddela, N. R., Reyes, J. J. M., Viafara, D., & Gooty, J. M. (2015). Biosorption of copper (II) by microorganisms isolated from crude oil contaminated soil. Soil and Sediment Contamination: An International Journal, 24(8), 898–908.

    Article  CAS  Google Scholar 

  • Maddela, N. R., Burgos, R., Kadiyala, V., Banganegiri, M., & Carrión, A. R. (2016). Removal of crude oil from soil by using novel microorganisms of Ecuador soils: Solid and slurry phase methods. International Biodeterioration and Biodegradation, 108, 85–90.

    Article  CAS  Google Scholar 

  • Maddela, N. R., Scalvenzi, L., & Venkateswarlu, K. (2017). Microbial degradation of total petroleum hydrocarbons in crude oil: A field-scale study at the low-land rainforest of Ecuador. Environmental Technology, 38, 2543–2550.

    Article  CAS  PubMed  Google Scholar 

  • Marg, B. Z. (2011). Hazardous metals and minerals pollution in India: Sources, toxicity and management. A position paper. Indian National Science Academy.

    Google Scholar 

  • Maurya, P. K., & Malik, D. S. (2016). Distribution of heavy metals in water, sediments and fish tissue (Heteropneustis fossilis) in Kali River of western U.P. India. International Journal of Fisheries and Aquatic Studies, 4(2), 208–215.

    Google Scholar 

  • McCready, R. G. L., & Gould, W. D. (1990). Bioleaching of uranium. In H. L. Ehrlich & C. L. Brierley (Eds.), Microbial mineral recovery (pp. 107–125). McGraw-Hill.

    Google Scholar 

  • Meitei, L. S., & Rakesh, K. (2013). A comparative study of the ground and surface water quality with reference to heavy metal concentrations in the Imphal valley Manipur, India. International Journal of Environmental Sciences, 3(6), 1857.

    Google Scholar 

  • Mohankumar, K., Hariharan, V., & Rao, N. P. (2016). Heavy metal contamination in groundwater around industrial estate vs residential areas in Coimbatore, India. Journal of Clinical and Diagnostic Research, 10(4), BC05. https://doi.org/10.7860/jcdr/2016/15943.7527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsenzadeh, F., & Shahrokhi, F. (2014). Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. Journal of Environmental Health Science and Engineering, 12(1), 102. https://doi.org/10.1186/2052-336X-12-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller, A. K., Barkay, T., Hansen, M. A., et al. (2014). Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiology Ecology, 87(1), 52–63. https://doi.org/10.1111/1574-6941.12189

    Article  CAS  PubMed  Google Scholar 

  • Morais, P. V., Branco, R., & Francisco, R. (2011). Chromium resistance strategies and toxicity: What makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 24(3), 401–410. https://doi.org/10.1007/s10534-011-9446-1

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Naik, M. M., Pandey, A., & Dubey, S. K. (2012). Biological characterization of lead enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation, 23, 775–783. https://doi.org/10.1007/s10532-012-9552-y

    Article  CAS  PubMed  Google Scholar 

  • Nanda, P. (2015). Bioaccumulation of heavy metals and physiological response in anabas testudineus on exposure to paper mill effluent. Journal of Environmental & Analytical Toxicology, 5(1), 1. https://doi.org/10.4172/2161-0525.1000244

    Article  Google Scholar 

  • Nath, T. N. (2013). Heavy metals contamination of tea estates soil in Sivasagar and Dibrugarh district of Assam, India. International Journal of Advanced Research and Technology, 2(4), 2278–7763.

    Google Scholar 

  • Neilands, J. B. (Ed.). (1974). Microbial iron metabolism. Academic Press.

    Google Scholar 

  • Olson, G. J. (1994). Microbial oxidation of gold ore and gold bio-leaching. FEMS Microbiology Letters, 119, 1–6. https://doi.org/10.1111/j.1574-6968.1994.tb06858.x

    Article  CAS  Google Scholar 

  • Orme-Johnson, W. H. (1992). Nitrogenase structure: Where to now? Science, 257, 1639–1640. https://doi.org/10.1126/science.1529351

    Article  CAS  PubMed  Google Scholar 

  • Pacyna, J. M., & Nriagu, J. O. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134–139. https://doi.org/10.1038/333134a0

    Article  PubMed  Google Scholar 

  • Patel, M., & Manoj, K. (2015). Assessment of heavy metals in potable ground water of Olpad Taluka, Surat, Gujarat, India. International Journal of Current Microbiology and Applied Sciences, 4, 124–128.

    CAS  Google Scholar 

  • Patel, K. S., Shrivas, K., & Hoffmann, P. (2006). A survey of lead pollution in Chhattisgarh State, central India. Environmental Geochemistry and Health, 28(1), 11–17. https://doi.org/10.1007/s10653-005-9006-0

    Article  CAS  PubMed  Google Scholar 

  • Pethkar, A. V., & Paknikar, K. M. (1997). Recovery of silver from low-tenor solutions using Cladosporium cladosporioides biomass beads. In Conference Proceedings. International Biohydro-metallurgy Symposium IBS97 BIOMINE 97 (pp. PE8.1–PE8.2). Australian Mineral Foundation.

    Google Scholar 

  • Phillips, E. J. P., Landa, E. R., & Lovely, D. R. (1995). Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. Journal of Industrial Microbiology, 14, 203–207. https://doi.org/10.1007/BF01569928

    Article  CAS  Google Scholar 

  • Pope, D. H., Duquette, D. J., Johannes, A. H., et al. (1984). Microbially influenced corrosion of industrial alloys. Materials Performance, 23, 14–18. https://doi.org/10.5772/intechopen.70735

    Article  CAS  Google Scholar 

  • Prasanth, K. M., Sreekala, P. P., Sandeep, S., et al. (2013). Heavy metals and its fractions in soils of Koratty Region, Kerala. Research Journal of Recent Sciences, 2, 171–176.

    CAS  Google Scholar 

  • Raja, I. A., Khan, M. Y., Khan, N. A., et al. (2013). Assessment of some metals in the drinking water of Dal Lake Kashmir. Nature and Science, 11(3), 63–64.

    Google Scholar 

  • Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935–944. PMID: 15242287.

    CAS  PubMed  Google Scholar 

  • Rech, S., & Macy, J. M. (1992). The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. Journal of Bacteriology, 174, 7361–7320. https://doi.org/10.1128/jb.174.22.7316-7320.1992

    Article  Google Scholar 

  • Roane, T. M., & Pepper, I. L. (2000). Microorganisms and metal pollutants. In Environmental Microbiology (pp. 421–441). https://doi.org/10.1016/B978-0-12-370519-8.00021-3

    Chapter  Google Scholar 

  • Robinson, J. B., & Tuovinen, O. H. (1984). Mechanism of microbial resistance and detoxification of mercury and organomercury compounds: Physiological, biochemical, and genetic analyses. Microbiological Reviews, 48, 95–124. PMCID: PMC373215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson, R. L., Eady, R. R., Richardson, T. H., et al. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322, 388–390. https://doi.org/10.1038/322388a0

    Article  CAS  Google Scholar 

  • Rodrigue, A., Effantin, G., & Mandrand-Berthelot, M. A. (2005). Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. Journal of Bacteriology, 187(8), 2912–2916. https://doi.org/10.1128/JB.187.8.2912-2916.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychowdhury, T., Uchino, T., Tokunaga, H., et al. (2002). Arsenic and other heavy metals in soils from an arsenic affected area of West Bengal, India. Chemosphere, 49(6), 605–618. https://doi.org/10.1016/s0045-6535(02)00309-0

    Article  CAS  PubMed  Google Scholar 

  • Sand, W., Rohde, K., Sobotke, B., et al. (1992). Evaluation of Leptospirillum ferrooxidans for leaching. Applied and Environmental Microbiology, 58, 85–92. https://doi.org/10.1128/AEM.58.1.85-92.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand, W., Gehrke, T., Hallman, R., et al. (1995). Sulfur chemistry, biofilm, and the (in)direct attack mechanism - A critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43, 961–966. https://doi.org/10.1007/BF00166909

    Article  CAS  Google Scholar 

  • Sandstroem, A. E., Sundkvist, J. E., & Petersson, S. (1997). Bio-oxidation of a complex zinc sulfide ore: A study performed in continuous bench and pilot scale. In Conference Proceedings. International Biohydrometallurgy Symposium IBS97 BIOMINE 97 (pp. M1.1.1–M1.1.11). Australian Mineral Foundation.

    Google Scholar 

  • Santos, I. R., Ilho, E. V. S., Schaefer, C., et al. (2005). Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50(2), 185–194. https://doi.org/10.1016/j.marpolbul.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, A., Paul, D., Kazy, S. K., et al. (2016). Molecular analysis of microbial community in arsenic-rich groundwater of Kolsor, West Bengal. Journal of Environmental Science and Health, Part A, 51(3), 229–239. https://doi.org/10.1080/10934529.2015.1094339

    Article  CAS  Google Scholar 

  • Scheer, H. (Ed.). (1991). Chlorophylls. CRC.

    Google Scholar 

  • Schiewer, S., & Volesky, B. (2000). Biosorption processes for heavy metal removal. In Environmental microbe-metal interactions (pp. 329–362). American Society of Microbiology.

    Google Scholar 

  • Schultze-Lam, S., Fortin, D., Davis, B. S., et al. (1996). Mineralization of bacterial surfaces. Chemical Geology, 132, 171–181. https://doi.org/10.1016/S0009-2541(96)00053-8

    Article  CAS  Google Scholar 

  • Sekhon, G. S., & Singh, B. (2013). Estimation of heavy metals in the groundwater of Patiala District of Punjab, India. Earth Resources, 1(1), 1–4. https://doi.org/10.12966/er.05.01.2013

    Article  Google Scholar 

  • Shallari, S., Schwartz, C., Hasko, A., et al. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 209(2–3), 133–142. https://doi.org/10.1016/S0048-9697(98)80104-6

    Article  CAS  Google Scholar 

  • Sharma, A., & Kumar, A. (2016). Assessment of heavy metal contamination in soil sediments of Jaipur and Kota Industrial Areas, Rajasthan, India. International Journal of Engineering, Management & Sciences, 3(10), 1–7.

    CAS  Google Scholar 

  • Sharma, P., Dubey, A., & Chatterjee, S. K. (2013). Determination of heavy metals in surface and ground water in an around (Agrang Block) Raipur District, Chhattisgarh, India. International Journal of Scientific and Engineering Research, 4, 722–724.

    Google Scholar 

  • Sharma, M. C., Baxi, S., Sharma, K. K., et al. (2014). Heavy metal ions levels and related physicochemical parameters in soils in the vicinity of a paper industry location in Nahan Area of Himachal Pradesh. Journal of Environmental & Analytical Toxicology, 4(6), 1. https://doi.org/10.4172/2161-0525.1000236

    Article  Google Scholar 

  • Sharma, B. B., Sarma, H. P., & Borah, L. (2015). Chemical speciation of copper and cadmium in Kameng river sediments using sequential extraction procedure. International Journal of Environmental Sciences, 6(1), 88–96. https://doi.org/10.6088/ijes.6010

    Article  CAS  Google Scholar 

  • Sheela, A. M., Letha, J., Joseph, S., et al. (2012). Assessment of heavy metal contamination in coastal lake sediments associated with urbanization: Southern Kerala, India. Lakes & Reservoirs: Research and Management, 17(2), 97–112. https://doi.org/10.1111/j.1440-1770.2012.00501.x

    Article  CAS  Google Scholar 

  • Shrivastava, V. (2014). Geochemical assessment of heavy metal pollution and toxicity of Kunda River Sediment at Khargone District, Madhya Pradesh, India. International Journal of Engineering Research & Technology, 3(2), 329–333.

    Google Scholar 

  • Silver, S. (1992). Bacterial heavy metal detoxification and resistance systems. In S. Mongkolsuk, P. S. Lovett, & J. Trempy (Eds.), Biotechnology and environmental science: Molecular approaches (pp. 109–129). Plenum. https://doi.org/10.1007/b102447

    Chapter  Google Scholar 

  • Silver, S., & Walderhaug, M. (1992). Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiological Reviews, 56, 195–228. PMCID: PMC372861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singare, P. U., Trivedi, M. P., & Ravindra, M. (2012). Sediment heavy metal contaminants in Vasai Creek of Mumbai: Pollution impacts. American Journal of Chemistry, 2(3), 171180. https://doi.org/10.5923/j.chemistry.20120203.13

    Article  CAS  Google Scholar 

  • Singh, G., & Kamal, R. K. (2017). Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India. Applied Water Science, 7(3), 1479–1485. https://doi.org/10.1007/s13201-016-0430-3

    Article  CAS  Google Scholar 

  • Slifierz, M. J., Friendship, R. M., & Weese, J. S. (2014). Methicillin-resistant Staphylococcus aureus in commercial swine herds is associated with disinfectant and zinc usage. Applied and Environmental Microbiology, 81(8), 2690–2695. https://doi.org/10.1128/AEM.00036-15

    Article  CAS  Google Scholar 

  • Slifierz, M. J., Friendship, R. M., & Weese, J. S. (2015). Methicillin-resistant Staphylococcus aureus in commercial swine herds is associated with disinfectant and zinc usage. Applied and Environmental Microbiology, 81(8), 2690–2695. https://doi.org/10.1128/AEM.00036-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snavely, M. D., Florer, J. B., Miller, C. G., et al. (1989). Magnesium transport in Salmonella typhimurium: Magnesium-28 ion transport by the CorA Mgta, and Mgtb systems. Journal of Bacteriology, 171, 4761–4766. https://doi.org/10.1128/jb.171.9.4761-4766.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonawane, N. S., Sawant, C. P., & Patil, R. V. (2013). Soil quality assessment and heavy metal contamination in agricultural soil in and around Toranmal (Triable Region) of Maharashtra. Archives of Applied Science Research, 5(2), 294–298.

    CAS  Google Scholar 

  • Southam, G., Lengke, M. F., Fairbrother, L., et al. (2009). The biogeochemistry of gold. Elements, 5, 303–307. https://doi.org/10.2113/gselements.5.5.303

    Article  CAS  Google Scholar 

  • Srinivas, J., Purushotham, A. V., & Murali Krishna, K. V. S. G. (2013). A study of heavy metals contamination in surface and groundwater of rural and urban areas of Kakinada, East Godavari district, A. P. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, 3, 231–236.

    Google Scholar 

  • Summers, A. P., & Silver, S. (1978). Microbial transformations of metals. Annual Review of Microbiology, 32, 637–672. https://doi.org/10.1146/annurev.mi.32.100178.003225

    Article  CAS  PubMed  Google Scholar 

  • Summers, A. P., & Sugarman, L. I. (1974). Cell-free mercury(II) reducing activity in a plasmid-bearing strain of Escherichia coli. Journal of Bacteriology, 119, 242–249. https://doi.org/10.1128/JB.119.1.242-249.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghavi, S., Mergeay, M., & Van der Lelie, D. (1997). Genetic and physical maps of the Alcaligenes eutrophusCH34 Megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. Plasmid, 37(1), 22–34. https://doi.org/10.1006/plas.1996.1274

    Article  CAS  PubMed  Google Scholar 

  • Talukdar, B., Basumatary, S., Kalita, H. K., et al. (2015). Histopathological alternations in liver and kidney of Tor tor (Ham) inhabited in coal mining affected areas of Simsang River, Garohills; Meghalaya. National Academy Science Letters, 38(4), 321–324.

    Article  CAS  Google Scholar 

  • Thakur, B. K., & Gupta, V. (2015). Groundwater arsenic contamination in Bihar: Causes, issues and challenges. Manthan: Journal of Commerce and Management, 2(1). https://doi.org/10.17492/manthan.v2i1.6434

  • Toth, G., Hermann, T., Szatmari, G., et al. (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 565, 1054–1062. https://doi.org/10.1016/j.scitotenv.2016.05.115

    Article  CAS  Google Scholar 

  • Trevors, J. T. (1992). Mercury methylation by bacteria. Journal of Basic Microbiology, 26, 499–504. https://doi.org/10.1002/jobm.3620260811

    Article  Google Scholar 

  • Turpeinen, R., Pantsar-Kallio, M., & Kairesalo, T. (2002). Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Science of the Total Environment, 285(1), 133–145. https://doi.org/10.1016/S0048-9697(01)00903-2

    Article  CAS  Google Scholar 

  • Urmila, Garg, A., & Annu. (2016). Assessment of heavy metal pollution in soil of Jhajjar, Haryana-India. Journal of Chemical and Pharmaceutical Research, 8(5), 629–634.

    CAS  Google Scholar 

  • Vanita, C., Piar, C., Avinash, N., et al. (2014). Evaluation of heavy metals contamination and its genotoxicity in agricultural soil of Amritsar, Punjab, India. International Journal of Research in Chemistry and Environment, 4(4), 20–28.

    CAS  Google Scholar 

  • Varghese, J., & Jaya, D. S. (2014). Metal pollution of groundwater in the vicinity of Valiathura sewage farm in Kerala, South India. Bulletin of Environmental Contamination and Toxicology, 93(6), 694–698. https://doi.org/10.1007/s00128-014-1410-7

    Article  CAS  PubMed  Google Scholar 

  • Videla, H. A. (1995). Electrochemical aspects of biocorrosion. In C. C. Gaylarde & H. A. Videla (Eds.), Bioextraction and biodeterioration of metals (pp. 85–127). Cambridge University Press.

    Google Scholar 

  • Viti, C., Marchi, E., Decorosi, F., et al. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiology Reviews, 38(4), 633–659. https://doi.org/10.1111/1574-6976.12051

    Article  CAS  PubMed  Google Scholar 

  • Von Wolzogen Kuehr, C. A. H., & Van der Vlugt, L. S. (1934). Graphitization of cast iron as an electro-biochemical process in anaerobic soils. Water, 18, 147–165.

    Google Scholar 

  • Wackett, L. P., Orme-Johnson, W. H., & Walsh, C. T. (1989). Transition metal enzymes in bacterial metabolism. In T. J. Beveridge & R. J. Doyle (Eds.), Metal ions and bacteria (pp. 165–206). Wiley.

    Google Scholar 

  • Wallander, H., Mahmood, S., Hagerberg, D., et al. (2003). Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology, 44(1), 57–65. https://doi.org/10.1016/S0168-6496(02)00456-7

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. T., & Shen, H. (1995). Bacterial reduction of hexavalent chromium. Journal of Industrial Microbiology, 14, 159–163. https://doi.org/10.1007/BF01569898

    Article  CAS  PubMed  Google Scholar 

  • Warren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54, 261–320. https://doi.org/10.1016/S0012-8252(01)00032-0

    Article  CAS  Google Scholar 

  • Wase, J., & Forster, C. F. (1997). Biosorbents for metal ions. Taylor & Francis. https://doi.org/10.3109/9780203483046

    Book  Google Scholar 

  • Wong, P. T. S., Chau, Y. K., & Luxon, P. L. (1975). Methylation of lead in the environment. Nature, 253, 263–264. https://doi.org/10.1038/253263a0

    Article  CAS  PubMed  Google Scholar 

  • Yadav, A., Yadav, P. K., & Shukla, D. N. (2013). Investigation of heavy metal status in soil and vegetables grown in urban area of Allahabad, Uttar Pradesh, India. International Journal of Scientific and Research Publications, 3(9), 1–7.

    Google Scholar 

  • Yamamoto, I., Takashi, S., Liu, S.-M., et al. (1983). Purification and properties of NADP-dependent dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. The Journal of Biological Chemistry, 258, 1826–1832. PMID: 6822536.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, F., Wei, W., Li, M., et al. (2015). Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. International Journal of Environmental Research and Public Health, 12(12), 15584–15593. https://doi.org/10.3390/ijerph121215005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramesh, B. et al. (2021). Microbial Interaction with Metals and Metalloids. In: Maddela, N.R., García, L.C. (eds) Innovations in Biotechnology for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-80108-3_13

Download citation

Publish with us

Policies and ethics