Skip to main content

Biomanufacturing of Mesenchymal Stromal Cells for Therapeutic Applications

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

  • 1843 Accesses

Abstract

Mesenchymal Stromal Cells (MSCs) hold great promise to treat a number of diseases either directly, by repairing traumatic tissue injury or damage caused by degenerative diseases, or indirectly through secretion of trophic or immunomodulatory factors. However, it is estimated that 1010–1013 MSCs are needed for a single dose. This, combined with the fact that MSC populations are heterogenous, presents a number of manufacturing challenges. Selection of the appropriate cell culture medium can greatly influence cell metabolism and phenotype, which is important for reducing heterogeneity and batch-to-batch variability. The use of autologous cells vs. allogeneic cells has implications for large scale production and the choice between scale-up or scale-out. Traditional stirred tank bioreactors are better suited for scale-up whereas hollow fiber and packed bed bioreactors may be more appropriate for scale-out strategies. As MSCs are anchorage-dependent, the choice of microcarrier will be important regardless of the bioreactor type and mode of operation. Finally, the clinical success of MSCs is subject to the identification and ability to measure Critical Quality Attributes (CQAs) as a means of determining potency and efficacy. Here we discuss the current state of the cell manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AT-MSC :

Adipose tissue derived mesenchymal stromal cell

bFGF :

Basic fibroblast growth factor

BLA :

Biologics License Application

BM-MSC :

Bone marrow derived mesenchymal stromal cell

CMC :

Chemistry, Manufacturing and Controls

CPP :

Critical process parameters

CQA :

Critical quality attribute

DMEM :

Dulbecco’s Modified Eagle Medium

EGF :

Epidermal growth factor

EV :

Extracellular vesicle

FBS :

Fetal Bovine Serum

FDA :

Food and Drug Administration

FGF-2 :

Fibroblast growth factor 2

HGF :

Hepatocyte growth factor

HGF :

Human growth factor

HIF-1 :

Hypoxia-inducible factor 1-alpha

HLA :

Human leukocyte antigen

hMSC :

Human mesenchymal stromal cell

IGF :

Insulin-like growth factor

iMSC :

Induced mesenchymal stromal cell

IND :

Investigational New Drug

iPSC :

Induced pluripotent stem cell

ISCT :

International Society for Cell and Gene Therapy

MSC :

Mesenchymal stromal cell

NSF :

National Science Foundation

PBR :

Packed bed reactor

PDGF :

Platelet-derived growth factor

PLGA :

Poly (lactic-co-glycolic acid)

QbD :

Quality-by-design

TGF-β :

Transforming growth factor beta

UC-MSC :

Umbilic cord derived mesenchymal stromal cell

VEGF :

Vascular endothelial growth factor

References

  1. Martin I, Galipeau J, Kessler C, Blanc KL, Dazzi F (2019) Challenges for mesenchymal stromal cell therapies. Sci Transl Med 11:eaat2189. https://doi.org/10.1126/scitranslmed.aat2189

    Article  CAS  PubMed  Google Scholar 

  2. Johnson CL, Soeder Y, Dahlke MH (2017) Concise review: mesenchymal stromal cell-based approaches for the treatment of acute respiratory distress and sepsis syndromes. Stem Cells Transl Med 6:1141. https://doi.org/10.1002/sctm.16-0415

    Article  PubMed  PubMed Central  Google Scholar 

  3. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 6(12):2173–2185. https://doi.org/10.1002/sctm.17-0129

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao T, Sun F, Liu J, Ding T, She J, Mao F, Xu W, Qian H, Yan Y (2019) Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther 14(6):482–494. https://doi.org/10.2174/1574888x14666190228103230

    Article  CAS  PubMed  Google Scholar 

  5. Varderidou-Minasian S, Lorenowicz MJ (2020) Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 10(13):5979–5997. https://doi.org/10.7150/thno.40122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14(2):141–145. https://doi.org/10.1016/j.stem.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  7. Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, Biasio MD, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM (2020) Shattering barriers toward clinically meaningful MSC therapies. Sci Adv 6:1–19

    Article  Google Scholar 

  8. Confalonieri D, Schwab A, Walles H, Ehlicke F (2018) Advanced therapy medicinal products: a guide for bone marrow-derived MSC application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 24(2):155–169. https://doi.org/10.1089/ten.teb.2017.0305

    Article  PubMed  Google Scholar 

  9. Xie X, Wu H, Li M, Chen X, Xu X, Ni W, Lu C, Ni R, Bao B, Xiao M (2019) Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy 21(5):509–524. https://doi.org/10.1016/j.jcyt.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  10. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641. https://doi.org/10.1002/jor.1100090504

    Article  CAS  PubMed  Google Scholar 

  11. Phinney DG (2012) Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem 113:2806–2812. https://doi.org/10.1002/jcb.24166

    Article  CAS  PubMed  Google Scholar 

  12. Phinney DG, Galipeau J (2019) Manufacturing mesenchymal stromal cells for clinical applications: a survey of good manufacturing practices at U.S. academic centers. Cytotherapy 21(7):782–792. https://doi.org/10.1016/j.jcyt.2019.04.003

    Article  PubMed  Google Scholar 

  13. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Phinney DG, Sensebe L (2019) Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy 21(10):1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Li YY, Lam KL, Chen AD, Zhang W, Chan BP (2019) Collagen microencapsulation recapitulates mesenchymal condensation and potentiates chondrogenesis of human mesenchymal stem cells – a matrix-driven in vitro model of early skeletogenesis. Biomaterials 213(January):119210–119210. https://doi.org/10.1016/j.biomaterials.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  15. Raisin S, Belamie E, Morille M (2016) Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials 104:223–237. https://doi.org/10.1016/j.biomaterials.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  16. He J, Zhang N, Zhu Y, Jin R, Wu F (2021) MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials 265(October 2020):120448–120448. https://doi.org/10.1016/j.biomaterials.2020.120448

    Article  CAS  PubMed  Google Scholar 

  17. Jarmalavičiute A, Tunaitis V, Pivoraite U, Venalis A, Pivoriunas A (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 17(7):932–939. https://doi.org/10.1016/j.jcyt.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  18. Pinto DS, Ahsan T, Serra J, Fernandes-Platzgummer A, Cabral JMS, da Silva CL (2020) Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. J Cell Physiol 235(10):7224–7238. https://doi.org/10.1002/jcp.29622

    Article  CAS  PubMed  Google Scholar 

  19. Bracho-Sanchez E, Hassanzadeh A, Brusko MA, Wallet MA, Keselowsky BG (2019) Dendritic cells treated with exogenous indoleamine 2,3-dioxygenase maintain an immature phenotype and suppress antigen-specific T cell proliferation. J Immunol Regen Med 5(September 2018):100015–100015. https://doi.org/10.1016/j.regen.2019.100015

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey-Morillon EC, Bauer SR (2019) Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ–stimulated mesenchymal stromal cells that predict immunosuppression. Cytotherapy 21(1):17–31. https://doi.org/10.1016/j.jcyt.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Nicotra T, Desnos A, Halimi J, Antonot H, Reppel L, Belmas T, Freton A, Stranieri F, Mebarki M, Larghero J, Cras A, Faivre L (2020) Mesenchymal stem/stromal cell quality control: validation of mixed lymphocyte reaction assay using flow cytometry according to ICH Q2(R1). Stem Cell Res Ther 11(1):1–10. https://doi.org/10.1186/s13287-020-01947-6

    Article  CAS  Google Scholar 

  22. Noh MY, Lim SM, Oh K-W, Cho K-A, Park J, Kim K-S, Lee S-J, Kwon M-S, Kim SH (2016) Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl Med 5:1538. https://doi.org/10.5966/sctm.2015-0217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Contentin R, Demoor M, Concari M, Desancé M, Audigié F, Branly T, Galéra P (2020) Comparison of the chondrogenic potential of mesenchymal stem cells derived from bone marrow and umbilical cord blood intended for cartilage tissue engineering. Stem Cell Rev Rep 16(1):126–143. https://doi.org/10.1007/s12015-019-09914-2

    Article  CAS  PubMed  Google Scholar 

  24. Galieva LR, James V, Mukhamedshina YO, Rizvanov AA (2019) Therapeutic potential of extracellular vesicles for the treatment of nerve disorders. Front Neurosci 13(March):1–9. https://doi.org/10.3389/fnins.2019.00163

    Article  Google Scholar 

  25. Lipsitz YY, Timmins NE, Zandstra PW (2016) Quality cell therapy manufacturing by design. Nat Biotechnol 34(4):393–400. https://doi.org/10.1038/nbt.3525

    Article  CAS  PubMed  Google Scholar 

  26. Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, Gee AP, Gimble JM, Hematti P, Koh MBC, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, Shi Y, Stroncek DF, Viswanathan S, Weiss DJ, Sensebe L (2015) International society for cellular therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151. https://doi.org/10.1016/j.jcyt.2015.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Technau A, Froelich K, Hagen R, Kleinsasser N (2011) Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy 13(3):310–317. https://doi.org/10.3109/14653249.2010.504769

    Article  CAS  PubMed  Google Scholar 

  28. Mukonoweshuro B, Brown CJF, Fisher J, Ingham E (2014) Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng 5(X):204173141453425. https://doi.org/10.1177/2041731414534255

    Article  CAS  Google Scholar 

  29. Berglund AK, Fortier LA, Antczak DF, Schnabel LV (2017) Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 8(1):1–7. https://doi.org/10.1186/s13287-017-0742-8

    Article  CAS  Google Scholar 

  30. Grau-vorster M, Laitinen A, Nystedt J, Vives J (2019) HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: a two-site study. Stem Cell Res Ther 9:1–8

    Google Scholar 

  31. Grau-Vorster M, RodrÍGuez L, Torrents-Zapata S, Vivas D, Codinach M, Blanco M, Oliver-Vila I, GarcÍA-LÓPez JOAN, Vives J (2019) Levels of IL-17F and IL-33 correlate with HLA-DR activation in clinical-grade human bone marrow–derived multipotent mesenchymal stromal cell expansion cultures. Cytotherapy 21(1):32–40. https://doi.org/10.1016/j.jcyt.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  32. Kiernan CH, KleinJan A, Peeters M, Wolvius EB, Farrell E, Brama PAJ (2018) Allogeneic chondrogenically differentiated human bone marrow stromal cells do not induce dendritic cell maturation. J Tissue Eng Regen Med 12(6):1530–1540. https://doi.org/10.1002/term.2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lipsitz YY, Milligan WD, Fitzpatrick I, Stalmeijer E, Farid SS, Tan KY, Smith D, Perry R, Carmen J, Chen A, Mooney C, Fink J (2017) A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 19(12):1383–1391. https://doi.org/10.1016/j.jcyt.2017.06.009

    Article  PubMed  Google Scholar 

  34. François M, Romieu-Mourez R, Li M, Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(1):187–195. https://doi.org/10.1038/mt.2011.189

    Article  CAS  PubMed  Google Scholar 

  35. Guan Q, Li Y, Shpiruk T, Bhagwat S, Wall DA (2018) Inducible indoleamine 2,3-dioxygenase 1 and programmed death ligand 1 expression as the potency marker for mesenchymal stromal cells. Cytotherapy 20:639. https://doi.org/10.1016/j.jcyt.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Kang I, Lee BC, Choi SW, Lee JY, Kim JJ, Kim BE, Kim DH, Lee SE, Shin N, Seo Y, Kim HS, Kim DI, Kang KS (2018) Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med 50(4):1. https://doi.org/10.1038/s12276-017-0014-9

    Article  CAS  PubMed  Google Scholar 

  37. Burja B, Barlič A, Erman A, Mrak-Poljšak K, Tomšič M, Sodin-Semrl S, Lakota K (2020) Human mesenchymal stromal cells from different tissues exhibit unique responses to different inflammatory stimuli. Curr Res Transl Med 68(4):217–224. https://doi.org/10.1016/j.retram.2020.05.006

    Article  PubMed  Google Scholar 

  38. Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC (2016) Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 7(1):1–11. https://doi.org/10.1186/s13287-016-0418-9

    Article  CAS  Google Scholar 

  39. Mennan C, Garcia J, Roberts S, Hulme C, Wright K (2019) A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 10(1):1–15. https://doi.org/10.1186/s13287-019-1202-4

    Article  CAS  Google Scholar 

  40. Wang Z-g, He Z-y, Liang S, Yang Q, Cheng P, A-m C (2020) Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 11(1):1–11. https://doi.org/10.1186/s13287-020-02032-8

    Article  CAS  Google Scholar 

  41. Prockop DJ (2017) The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 19:1. Elsevier B.V. https://doi.org/10.1016/j.jcyt.2016.09.008

    Article  PubMed  Google Scholar 

  42. Spitzhorn LS, Megges M, Wruck W, Rahman MS, Otte J, Degistirici Ö, Meisel R, Sorg RV, Oreffo ROC, Adjaye J (2019) Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther 10(1):1–18. https://doi.org/10.1186/s13287-019-1209-x

    Article  CAS  Google Scholar 

  43. Diederichs S, Tuan RS (2014) Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev 23(14):1594–1610. https://doi.org/10.1089/scd.2013.0477

    Article  PubMed  PubMed Central  Google Scholar 

  44. Slukvin II, Kumar A (2018) The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cell Mol Life Sci 75(19):3507–3520. https://doi.org/10.1007/s00018-018-2871-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS (2014) Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 111(1):69–83. https://doi.org/10.1002/bit.25008

    Article  CAS  PubMed  Google Scholar 

  46. Tsuji K, Ojima M, Otabe K, Horie M, Koga H, Sekiya I, Muneta T (2017) Effects of different cell-detaching methods on the viability and cell surface antigen expression of synovial mesenchymal stem cells. Cell Transplant 26(6):1089–1102. https://doi.org/10.3727/096368917X694831

    Article  PubMed  PubMed Central  Google Scholar 

  47. Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM (2017) Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2(2):170–179. https://doi.org/10.1002/btm2.10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Muñoz N, Bunnell BA, Logan TM, Ma T (2015) Density-dependent metabolic heterogeneity in human mesenchymal stem cells. Stem Cells 33:3368. https://doi.org/10.1002/stem.2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oja S, Kaartinen T, Ahti M, Korhonen M, Laitinen A, Nystedt J (2019) The utilization of freezing steps in mesenchymal stromal cell (MSC) manufacturing: potential impact on quality and cell functionality attributes. Front Immunol 10(July):1–14. https://doi.org/10.3389/fimmu.2019.01627

    Article  CAS  Google Scholar 

  50. Marklein RA, Lo Surdo JL, Bellayr IH, Godil SA, Puri RK, Bauer SR (2016) High content imaging of early morphological signatures predicts long term mineralization capacity of human mesenchymal stem cells upon osteogenic induction. Stem Cells 34(4):935–947. https://doi.org/10.1002/stem.2322

    Article  CAS  PubMed  Google Scholar 

  51. Lo Surdo JL, Millis BA, Bauer SR (2013) Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells. Cytotherapy 15(12):1527–1540. https://doi.org/10.1016/j.jcyt.2013.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lam J, Bellayr IH, Marklein RA, Bauer SR, Puri RK, Sung KE (2018) Functional profiling of chondrogenically induced multipotent stromal cell aggregates reveals transcriptomic and emergent morphological phenotypes predictive of differentiation capacity. Stem Cells Transl Med 7(9):664–675. https://doi.org/10.1002/sctm.18-0065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yin L, Wu Y, Yang Z, Tee CA, Denslin V, Lai Z, Lim CT, Lee EH, Han J (2018) Microfluidic label-free selection of mesenchymal stem cell subpopulation during culture expansion extends the chondrogenic potential: in vitro. Lab Chip 18(6):878–889. https://doi.org/10.1039/c7lc01005b

    Article  CAS  PubMed  Google Scholar 

  54. Deng Y, Lei G, Lin Z, Yang Y, Lin H, Tuan RS (2019) Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathway. Biomaterials 192(November 2018):569–578. https://doi.org/10.1016/j.biomaterials.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  55. Guo T, Lim CG, Noshin M, Ringel JP, Fisher JP (2018) 3D printing bioactive PLGA scaffolds using DMSO as a removable solvent. Bioprinting 10(November):1–8. https://doi.org/10.1016/j.bprint.2018.e00038

    Article  Google Scholar 

  56. Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, Kaneko T, Matsushita T (2014) Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 35(27):7800–7810. https://doi.org/10.1016/j.biomaterials.2014.05.052

    Article  CAS  PubMed  Google Scholar 

  57. Kim M, Erickson IE, Huang AH, Garrity ST, Mauck RL, Steinberg DR (2018) Donor variation and optimization of human mesenchymal stem cell chondrogenesis in hyaluronic acid. Tissue Eng Part A 24(21–22):1693–1703. https://doi.org/10.1089/ten.tea.2017.0520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Braid LR, Wood CA, Wiese DM, Ford BN (2018) Intramuscular administration potentiates extended dwell time of mesenchymal stromal cells compared to other routes. Cytotherapy 20(2):232–244. https://doi.org/10.1016/j.jcyt.2017.09.013

    Article  PubMed  Google Scholar 

  59. Giri J, Galipeau J (2020) Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Adv 4(9):1987–1997. https://doi.org/10.1182/bloodadvances.2020001711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM (2017) Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ Res 120(7):1139–1150. https://doi.org/10.1161/CIRCRESAHA.116.309819

    Article  CAS  PubMed  Google Scholar 

  61. Losurdo M, Pedrazzoli M, D’Agostino C, Elia CA, Massenzio F, Lonati E, Mauri M, Rizzi L, Molteni L, Bresciani E, Dander E, D’Amico G, Bulbarelli A, Torsello A, Matteoli M, Buffelli M, Coco S (2020) Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease. Stem Cells Transl Med 9(September 2019):1–17. https://doi.org/10.1002/sctm.19-0327

    Article  CAS  Google Scholar 

  62. Oh KW, Noh MY, Kwon MS, Kim HY, Oh S, Park J, Kim HJ, Ki CS, Kim SH (2018) Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol 84(3):361–373. https://doi.org/10.1002/ana.25302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim J, Heo J, Ju H, Shin JW, Kim YH, Lee S, Yu HY, Ryu CM, Yun HD, Song S, Hong KS, Chung HM, Kim HR, Roe JS, Choi K, Kim IG, Jeong EM, Shin DM (2020) Glutathione dynamics determine the therapeutic efficacy of mesenchymal stem cells for graft-versus-host disease via CREB1-NRF2 pathway. Sci Adv 6(16):1–18. https://doi.org/10.1126/sciadv.aba1334

    Article  CAS  Google Scholar 

  64. Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK, Kirk AD, Galipeau J (2016) Cryopreserved mesenchymal stromal cells are susceptible to T-cell mediated apoptosis which is partly rescued by IFNγ licensing. Stem Cells 34(9):2429–2442. https://doi.org/10.1002/stem.2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harrison RP, Rafiq QA, Medcalf N (2018) Centralised versus decentralised manufacturing and the delivery of healthcare products: a United Kingdom exemplar. Cytotherapy 20(6):873–890. https://doi.org/10.1016/j.jcyt.2018.05.003

    Article  PubMed  Google Scholar 

  66. Harrison RP, Ruck S, Rafiq QA, Medcalf N (2018) Decentralised manufacturing of cell and gene therapy products: learning from other healthcare sectors. Biotechnol Adv 36(2):345–357. https://doi.org/10.1016/j.biotechadv.2017.12.013

    Article  PubMed  Google Scholar 

  67. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for cellular therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  68. Cantor JR (2019) The rise of physiologic media. Trends Cell Biol 29(11):854–861. https://doi.org/10.1016/j.tcb.2019.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, When Ak OS, Karnieli O (2017) A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19(2):155–169. https://doi.org/10.1016/j.jcyt.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  70. Barilani M, Lavazza C, Boldrin V, Ragni E, Parazzi V, Crosti M, Montelatici E, Giordano R, Lazzari L (2016) A chemically defined medium-based strategy to efficiently generate clinically relevant cord blood mesenchymal stromal colonies. Cell Transplant 25(8):1501–1514. https://doi.org/10.3727/096368916X690827

    Article  PubMed  Google Scholar 

  71. Dessels C, Potgieter M, Pepper MS (2016) Making the switch: alternatives to fetal bovine serum for adipose-derived stromal cell expansion. Front Cell Dev Biol 4(October):1–10. https://doi.org/10.3389/fcell.2016.00115

    Article  Google Scholar 

  72. Allen AB, Butts EB, Copland IB, Stevens HY, Guldberg RE (2017) Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues of xenogenicity and species variability. J Tissue Eng Regen Med 11(10):2876–2884. https://doi.org/10.1002/term.2191

    Article  CAS  PubMed  Google Scholar 

  73. Ren J, Ward D, Chen S, Tran K, Jin P, Sabatino M, Robey PG, Stroncek DF (2018) Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. J Transl Med 16(1):1–15. https://doi.org/10.1186/s12967-018-1400-3

    Article  CAS  Google Scholar 

  74. Xu J, Lian W, Chen J, Li W, Li L, Huang Z (2020) Chemical-defined medium supporting the expansion of human mesenchymal stem cells. Stem Cell Res Ther 11(1):1–11. https://doi.org/10.1186/s13287-020-01641-7

    Article  CAS  Google Scholar 

  75. Gharibi B, Hughes FJ (2012) Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med 1(11):771–782. https://doi.org/10.5966/sctm.2010-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hoch AI, Leach JK (2014) Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 4:412. https://doi.org/10.5966/sctm.2013-0196

    Article  CAS  Google Scholar 

  77. Rodrigues M, Griffith LG, Wells A (2010) Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 1(4):1–12. https://doi.org/10.1186/scrt32

    Article  CAS  Google Scholar 

  78. Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A (2013) Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 31(1):104–116. https://doi.org/10.1002/stem.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tamama K, Fan VH, Griffith LG, Blair HC, Wells A (2006) Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24(3):686–695. https://doi.org/10.1634/stemcells.2005-0176

    Article  CAS  PubMed  Google Scholar 

  80. Zhang C, Guo H, Yang C, Chen Q, Huang J, Liu L, Zhang Y, Jin S, Song A, Yang P (2019) The biological behavior optimization of human periodontal ligament stem cells via preconditioning by the combined application of fibroblast growth factor-2 and A83-01 in in vitro culture expansion. J Transl Med 17(1):1–11. https://doi.org/10.1186/s12967-019-1799-1

    Article  Google Scholar 

  81. Hoffman MD, Benoit DSW (2015) Agonism of Wnt-β-catenin signalling promotes mesenchymal stem cell (MSC) expansion. J Tissue Eng Regen Med 9:E13. https://doi.org/10.1002/term.1736

    Article  CAS  PubMed  Google Scholar 

  82. Paciejewska MM, Maijenburg MW, Gilissen C, Kleijer M, Vermeul K, Weijer K, Veltman JA, Von Lindern M, Van Der Schoot CE, Voermans C (2016) Different balance of Wnt signaling in adult and fetal bone marrow-derived mesenchymal stromal cells. Stem Cells Dev 25(12):934–947. https://doi.org/10.1089/scd.2015.0263

    Article  CAS  PubMed  Google Scholar 

  83. Carrillo-Gálvez AB, Gálvez-Peisl S, González-Correa JE, de Haro-Carrillo M, Ayllón V, Carmona-Sáez P, Ramos-Mejía V, Galindo-Moreno P, Cara FE, Granados-Principal S, Muñoz P, Martin F, Anderson P (2020) GARP is a key molecule for mesenchymal stromal cell responses to TGF-β and fundamental to control mitochondrial ROS levels. Stem Cells Transl Med 9(5):636–650. https://doi.org/10.1002/sctm.19-0372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dubon MJ, Yu J, Choi S, Park KS (2018) Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J Cell Physiol 233(1):201–213. https://doi.org/10.1002/jcp.25863

    Article  CAS  PubMed  Google Scholar 

  85. Gurung S, Werkmeister JA, Gargett CE (2015) Inhibition of transforming growth factor-β receptor signaling promotes culture expansion of undifferentiated human endometrial mesenchymal stem/stromal cells. Sci Rep 5(September):27–31. https://doi.org/10.1038/srep15042

    Article  CAS  Google Scholar 

  86. Lucciola R, Vrljicak P, Gurung S, Filby C, Darzi S, Muter J, Ott S, Brosens JJ, Gargett CE (2020) Impact of sustained transforming growth factor-β receptor inhibition on chromatin accessibility and gene expression in cultured human endometrial MSC. Front Cell Dev Biol 8(September):1–15. https://doi.org/10.3389/fcell.2020.567610

    Article  Google Scholar 

  87. Pasumarthy KK, Doni Jayavelu N, Kilpinen L, Andrus C, Battle SL, Korhonen M, Lehenkari P, Lund R, Laitinen S, Hawkins RD (2017) Methylome analysis of human bone marrow MSCs reveals extensive age- and culture-induced changes at distal regulatory elements. Stem Cell Rep 9(3):999–1015. https://doi.org/10.1016/j.stemcr.2017.07.018

    Article  CAS  Google Scholar 

  88. Li J, Pei M (2012) Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Eng Part B Rev 18(4):270–287. https://doi.org/10.1089/ten.teb.2011.0583

    Article  CAS  PubMed  Google Scholar 

  89. Sathy BN, Daly A, Gonzalez-Fernandez T, Olvera D, Cunniffe G, McCarthy HO, Dunne N, Jeon O, Alsberg E, Donahue TLH, Kelly DJ (2019) Hypoxia mimicking hydrogels to regulate the fate of transplanted stem cells. Acta Biomater 88:314–324. https://doi.org/10.1016/j.actbio.2019.02.042

    Article  CAS  PubMed  Google Scholar 

  90. Yuan X, Logan TM, Ma T (2019) Metabolism in human mesenchymal stromal cells: a missing link between HMSC biomanufacturing and therapy? Front Immunol 10(May):1–11. https://doi.org/10.3389/fimmu.2019.00977

    Article  CAS  Google Scholar 

  91. Liu Y, Muñoz N, Tsai AC, Logan TM, Ma T (2017) Metabolic reconfiguration supports reacquisition of primitive phenotype in human mesenchymal stem cell aggregates. Stem Cells 35:398. https://doi.org/10.1002/stem.2510

    Article  CAS  PubMed  Google Scholar 

  92. Gharibi B, Ghuman MS, Hughes FJ (2012) Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. J Cell Mol Med 16(11):2789–2801. https://doi.org/10.1111/j.1582-4934.2012.01602.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu Y, Yuan X, Muñoz N, Logan TM, Ma T (2019) Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells. Stem Cells Transl Med 8(1):93–106. https://doi.org/10.1002/sctm.18-0070

    Article  CAS  PubMed  Google Scholar 

  94. Lee SJ, Yi TG, Ahn SH, Lim DK, Kim S, Lee HJ, Cho YK, Lim JY, Sung JH, Yun JH, Lim J, Song SU, Kwon SW (2018) Comparative study on metabolite level in tissue-specific human mesenchymal stem cells by an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. Anal Chim Acta 1024:112. https://doi.org/10.1016/j.aca.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  95. Mancini OK, Lora M, Cuillerier A, Shum-Tim D, Hamdy R, Burelle Y, Servant MJ, Stochaj U, Colmegna I (2018) Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease. Circ Res 122(2):255–266. https://doi.org/10.1161/CIRCRESAHA.117.311400

    Article  CAS  Google Scholar 

  96. Gharibi B, Farzadi S, Ghuman M, Hughes FJ (2014) Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells 32:2256. https://doi.org/10.1002/stem.1709

    Article  CAS  PubMed  Google Scholar 

  97. Liu Y, Ma T (2015) Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 31(2):468–481. https://doi.org/10.1002/btpr.2034

    Article  CAS  PubMed  Google Scholar 

  98. Fujisawa K, Takami T, Okada S, Hara K, Matsumoto T, Yamamoto N, Yamasaki T, Sakaida I (2018) Analysis of metabolomic changes in mesenchymal stem cells on treatment with desferrioxamine as a hypoxia mimetic compared with hypoxic conditions. Stem Cells 36:1226. https://doi.org/10.1002/stem.2826

    Article  CAS  PubMed  Google Scholar 

  99. Pereira Chilima TD, Moncaubeig F, Farid SS (2018) Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem Eng J 137:132–151. https://doi.org/10.1016/j.bej.2018.04.017

    Article  CAS  Google Scholar 

  100. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow–derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35(7):601–610

    Article  PubMed  Google Scholar 

  101. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  CAS  PubMed  Google Scholar 

  102. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  103. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:812693

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  106. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M (2010) Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol 223(1):229–237

    Article  CAS  PubMed  Google Scholar 

  107. Nabavi SM, Arab L, Jarooghi N, Bolurieh T, Abbasi F, Mardpour S, Azimyian V, Moeininia F, Maroufizadeh S, Sanjari L (2018) Safety, feasibility of intravenous and intrathecal injection of autologous bone marrow derived mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: an open label phase I clinical trial. Cell J 20(4):592

    PubMed  PubMed Central  Google Scholar 

  108. Carlsson P-O, Schwarcz E, Korsgren O, Le Blanc K (2015) Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes 64(2):587–592

    Article  CAS  PubMed  Google Scholar 

  109. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du M-Q, Luan S-L, Altmann DR, Thompson AJ (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156

    Article  PubMed  PubMed Central  Google Scholar 

  110. Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He X-L, Richardson K, Barber K, Webber DJ, Wheeler-Kingshott CA (2011) The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jarocha D, Milczarek O, Wedrychowicz A, Kwiatkowski S, Majka M (2015) Continuous improvement after multiple mesenchymal stem cell transplantations in a patient with complete spinal cord injury. Cell Transplant 24(4):661–672

    Article  PubMed  Google Scholar 

  112. Roh KH, Nerem RM, Roy K (2016) Biomanufacturing of therapeutic cells: state of the art, current challenges, and future perspectives. Annu Rev Chem Biomol Eng 7:455–478. https://doi.org/10.1146/annurev-chembioeng-080615-033559

    Article  CAS  PubMed  Google Scholar 

  113. de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS (2020) Addressing the manufacturing challenges of cell-based therapies. Adv Biochem Eng Biotechnol 171:225–278. https://doi.org/10.1007/10_2019_118

    Article  CAS  PubMed  Google Scholar 

  114. Larsson A, Dérand H (2002) Stability of polycarbonate and polystyrene surfaces after hydrophilization with high intensity oxygen RF plasma. J Colloid Interface Sci 246(1):214–221

    Article  CAS  PubMed  Google Scholar 

  115. Jokinen V, Suvanto P, Franssila S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6(1):016501

    Article  PubMed Central  Google Scholar 

  116. Lerman MJ, Lembong J, Muramoto S, Gillen G, Fisher JP (2018) The evolution of polystyrene as a cell culture material. Tissue Eng B Rev 24(5):359–372

    Article  CAS  Google Scholar 

  117. Sigma-Aldrich Co. (2016) Fundamental Techniques in cell culture laboratory handbook. Available via https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/425/663/fundamental-techniques-in-cell-culture.pdf. Accessed September 3, 2021

  118. Fajardo-Orduña GR, Mayani H, Castro-Manrreza ME, Flores-Figueroa E, Flores-Guzmán P, Arriaga-Pizano L, Piña-Sánchez P, Hernández-Estévez E, Castell-Rodríguez AE, Chávez-Rueda AK, Legorreta-Haquet MV, Santiago-Osorio E, Montesinos JJ (2016) Bone marrow mesenchymal stromal cells from clinical scale culture: in vitro evaluation of their differentiation, hematopoietic support, and immunosuppressive capacities. Stem Cells Dev 25(17):1299–1310. https://doi.org/10.1089/scd.2016.0071

    Article  CAS  PubMed  Google Scholar 

  119. ThermoSCientific (2017) Culture of Human mesenchymal stem cells in nunc cell factory systems. Available via https://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/culture-human-mesenchymal-stem-app-note.pdf. Accessed September 3, 2021.

  120. Abbasalizadeh S, Baharvand H (2013) Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 31(8):1600–1623

    Article  CAS  PubMed  Google Scholar 

  121. Chen AK-L, Reuveny S, Oh SKW (2013) Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 31(7):1032–1046

    Article  PubMed  Google Scholar 

  122. Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30(6):350–359

    Article  CAS  PubMed  Google Scholar 

  123. Cherian DS, Bhuvan T, Meagher L, Heng TSP (2020) Biological considerations in scaling up therapeutic cell manufacturing. Front Pharmacol 11:654. https://doi.org/10.3389/fphar.2020.00654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hoch A, Leach JK (2014) Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 3(5):643–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17(7):1164

    Article  PubMed Central  Google Scholar 

  126. Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32(7):1713–1723. https://doi.org/10.1002/stem.1649

    Article  CAS  PubMed  Google Scholar 

  127. Jossen V, van den Bos C, Eibl R, Eibl D (2018) Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 102(9):3981–3994. https://doi.org/10.1007/s00253-018-8912-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213–e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28(6):707–715. https://doi.org/10.1016/s0301-472x(00)00160-0

    Article  CAS  PubMed  Google Scholar 

  130. von Bahr L, Sundberg B, Lönnies L, Sander B, Karbach H, Hägglund H, Ljungman P, Gustafsson B, Karlsson H, Le Blanc K, Ringdén O (2012) Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant 18(4):557–564. https://doi.org/10.1016/j.bbmt.2011.07.023

    Article  Google Scholar 

  131. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing May 20–21 2014 continuous manufacturing symposium. J Pharm Sci 104(3):813–820

    Article  CAS  PubMed  Google Scholar 

  132. Fogler HS (1999) Elements of chemical reaction engineering. Pearson, Boston

    Google Scholar 

  133. Kirouac DC, Zandstra PW (2008) The systematic production of cells for cell therapies. Cell Stem Cell 3(4):369–381

    Article  CAS  PubMed  Google Scholar 

  134. Silva Couto P, Rotondi MC, Bersenev A, Hewitt CJ, Nienow AW, Verter F, Rafiq QA (2020) Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 45:107636. https://doi.org/10.1016/j.biotechadv.2020.107636

    Article  CAS  PubMed  Google Scholar 

  135. Hassan MNFB, Yazid MD, Yunus MHM, Chowdhury SR, Lokanathan Y, Idrus RBH, Ng AMH, Law JX (2020) Large-scale expansion of human mesenchymal stem cells. Stem Cells Int 2020:9529465. https://doi.org/10.1155/2020/9529465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Warnock JN, Al-Rubeai M (2006) Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol Appl Biochem 45(Pt 1):1–12. https://doi.org/10.1042/ba20050233

    Article  CAS  PubMed  Google Scholar 

  137. Yeatts AB, Choquette DT, Fisher JP (2013) Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta (BBA)-Gen Subj 1830(2):2470–2480

    Article  CAS  Google Scholar 

  138. Teixeira FG, Panchalingam KM, Assunção-Silva R, Serra SC, Mendes-Pinheiro B, Patrício P, Jung S, Anjo SI, Manadas B, Pinto L (2016) Modulation of the mesenchymal stem cell secretome using computer-controlled bioreactors: impact on neuronal cell proliferation, survival and differentiation. Sci Rep 6:27791

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brindley D, Moorthy K, Lee J-H, Mason C, Kim H-W, Wall I (2011) Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011:620247

    PubMed  PubMed Central  Google Scholar 

  140. Bunpetch V, Wu H, Zhang S, Ouyang H (2017) From “bench to bedside”: current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 26(22):1662–1673. https://doi.org/10.1089/scd.2017.0104

    Article  PubMed  Google Scholar 

  141. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. https://doi.org/10.1186/1471-2121-7-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Krinner A, Zscharnack M, Bader A, Drasdo D, Galle J (2009) Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation. Cell Prolif 42(4):471–484. https://doi.org/10.1111/j.1365-2184.2009.00621.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fotia C, Massa A, Boriani F, Baldini N, Granchi D (2015) Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology 67(6):1073–1084. https://doi.org/10.1007/s10616-014-9731-2

    Article  CAS  PubMed  Google Scholar 

  144. Choi JR, Yong KW, Wan Safwani WKZ (2017) Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 74(14):2587–2600. https://doi.org/10.1007/s00018-017-2484-2

    Article  CAS  PubMed  Google Scholar 

  145. Feng Y, Zhu M, Dangelmajer S, Lee YM, Wijesekera O, Castellanos CX, Denduluri A, Chaichana KL, Li Q, Zhang H, Levchenko A, Guerrero-Cazares H, Quiñones-Hinojosa A (2014) Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer. Cell Death Dis 5(12):e1567–e1567. https://doi.org/10.1038/cddis.2014.521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM (2010) Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol 223(1):27–35. https://doi.org/10.1002/jcp.21987

    Article  CAS  PubMed  Google Scholar 

  147. Choi JR, Pingguan-Murphy B, Wan Abas WAB, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WKZ (2015) In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 10(1):e0115034. https://doi.org/10.1371/journal.pone.0115034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JM (2012) Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res 9(3):225–236. https://doi.org/10.1016/j.scr.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  149. Colao IL, Corteling R, Bracewell D, Wall I (2018) Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med 24(3):242–256. https://doi.org/10.1016/j.molmed.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  150. Schirmaier C, Jossen V, Kaiser SC, Jüngerkes F, Brill S, Safavi-Nab A, Siehoff A, van den Bos C, Eibl D, Eibl R (2014) Scale-up of adipose tissue-derived mesenchymal stem cell production in stirred single-use bioreactors under low-serum conditions. Eng Life Sci 14(3):292–303. https://doi.org/10.1002/elsc.201300134

    Article  CAS  Google Scholar 

  151. Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS (2017) Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 120:49–62. https://doi.org/10.1016/j.bej.2016.11.020

    Article  CAS  Google Scholar 

  152. Rafiq QA, Brosnan KM, Coopman K, Nienow AW, Hewitt CJ (2013) Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor. Biotechnol Lett 35(8):1233–1245. https://doi.org/10.1007/s10529-013-1211-9

    Article  CAS  PubMed  Google Scholar 

  153. Robb KP, Fitzgerald JC, Barry F, Viswanathan S (2019) Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy 21(3):289–306. https://doi.org/10.1016/j.jcyt.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  154. Ma T, Tsai A-C, Liu Y (2016) Biomanufacturing of human mesenchymal stem cells in cell therapy: influence of microenvironment on scalable expansion in bioreactors. Biochem Eng J 108:44–50. https://doi.org/10.1016/j.bej.2015.07.014

    Article  CAS  Google Scholar 

  155. Tsai AC, Jeske R, Chen X, Yuan X, Li Y (2020) Influence of microenvironment on mesenchymal stem cell therapeutic potency: from planar culture to microcarriers. Front Bioeng Biotechnol 8:640. https://doi.org/10.3389/fbioe.2020.00640

    Article  PubMed  PubMed Central  Google Scholar 

  156. Pigeau GM, Csaszar E, Dulgar-Tulloch A (2018) Commercial scale manufacturing of allogeneic cell therapy. Front Med 5:233. https://doi.org/10.3389/fmed.2018.00233

    Article  Google Scholar 

  157. Riboldi SA, Bertoldi S, Mantero S (2017) In vitro dynamic culture of cell-biomaterial constructs. In: Characterization of polymeric biomaterials. Elsevier, Duxford, pp 339–363

    Chapter  Google Scholar 

  158. Bunpetch V, Zhang Z-Y, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O (2019) Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 196:67–79. https://doi.org/10.1016/j.biomaterials.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  159. Hupfeld J, Gorr IH, Schwald C, Beaucamp N, Wiechmann K, Kuentzer K, Huss R, Rieger B, Neubauer M, Wegmeyer H (2014) Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Biotechnol Bioeng 111(11):2290–2302. https://doi.org/10.1002/bit.25281

    Article  CAS  PubMed  Google Scholar 

  160. Borys BS, Roberts EL, Le A, Kallos MS (2018) Scale-up of embryonic stem cell aggregate stirred suspension bioreactor culture enabled by computational fluid dynamics modeling. Biochem Eng J 133:157–167

    Article  CAS  Google Scholar 

  161. Hookway TA, Butts JC, Lee E, Tang H, McDevitt TC (2016) Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny. Methods 101:11–20

    Article  CAS  PubMed  Google Scholar 

  162. Kehoe DE, Jing D, Lock LT, Tzanakakis ES (2009) Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng A 16(2):405–421

    Article  Google Scholar 

  163. Lam AT-L, Chen AK-L, Ting SQ-P, Reuveny S, Oh SK-W (2016) Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures. Biochem Biophys Res Commun 473(3):764–768

    Article  CAS  PubMed  Google Scholar 

  164. Oh SK, Chen AK, Mok Y, Chen X, Lim U-M, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230

    Article  CAS  PubMed  Google Scholar 

  165. Ashok P, Fan Y, Rostami MR, Tzanakakis ES (2015) Aggregate and microcarrier cultures of human pluripotent stem cells in stirred-suspension systems. In: Bioreactors in stem cell biology. Springer, New York, pp 35–52

    Chapter  Google Scholar 

  166. Allen LM, Matyas J, Ungrin M, Hart DA, Sen A (2019) Serum-free culture of human mesenchymal stem cell aggregates in suspension bioreactors for tissue engineering applications. Stem Cells Int 2019:4607461. https://doi.org/10.1155/2019/4607461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bijonowski BM, Yuan X, Jeske R, Li Y, Grant SC (2020) Cyclical aggregation extends in vitro expansion potential of human mesenchymal stem cells. Sci Rep 10(1):20448. https://doi.org/10.1038/s41598-020-77288-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. McKee C, Chaudhry GR (2017) Advances and challenges in stem cell culture. Colloids Surf B: Biointerfaces 159:62–77

    Article  CAS  PubMed  Google Scholar 

  169. Merten O-W (2015) Advances in cell culture: anchorage dependence. Philos Trans R Soc B: Biol Sci 370(1661):1

    Article  Google Scholar 

  170. Weber W, Weber E, Geisse S, Memmert K (2002) Optimisation of protein expression and establishment of the wave bioreactor for Baculovirus/insect cell culture. Cytotechnology 38(1–3):77–85. https://doi.org/10.1023/a:1021102015070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Godara P, McFarland CD, Nordon RE (2008) Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 83(4):408–420

    Article  CAS  Google Scholar 

  172. Kumar A, Starly B (2015) Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication 7(4):044103. https://doi.org/10.1088/1758-5090/7/4/044103

    Article  PubMed  Google Scholar 

  173. Mizukami A, Swiech K (2018) Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cells Int 2018:4083921. https://doi.org/10.1155/2018/4083921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, Aysola M, Rapiejko PJ, Punreddy S, Rook MS (2016) Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem Eng J 108:3–13. https://doi.org/10.1016/j.bej.2015.08.014

    Article  CAS  Google Scholar 

  175. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87. https://doi.org/10.1007/10_2008_15

    Article  CAS  PubMed  Google Scholar 

  176. Timmins NE, Kiel M, Günther M, Heazlewood C, Doran MR, Brooke G, Atkinson K (2012) Closed system isolation and scalable expansion of human placental mesenchymal stem cells. Biotechnol Bioeng 109(7):1817–1826. https://doi.org/10.1002/bit.24425

    Article  CAS  PubMed  Google Scholar 

  177. Croughan MS, Giroux D, Fang D, Lee B (2016) Chapter 5 – novel single-use bioreactors for scale-up of anchorage-dependent cell manufacturing for cell therapies. In: Cabral JMS, Lobato de Silva C, Chase LG, Margarida Diogo M (eds) Stem cell manufacturing. Elsevier, Boston, pp. 105–139. doi:https://doi.org/10.1016/B978-0-444-63265-4.00005-4

    Chapter  Google Scholar 

  178. de Sousa PD, Bandeiras C, de Almeida FM, Rodrigues CAV, Jung S, Hashimura Y, Tseng RJ, Milligan W, Lee B, Ferreira FC, Lobato da Silva C, Cabral JMS (2019) Scalable manufacturing of human mesenchymal stromal cells in the vertical-wheel bioreactor system: an experimental and economic approach. Biotechnol J 14(8):e1800716. https://doi.org/10.1002/biot.201800716

    Article  CAS  Google Scholar 

  179. Lembong J, Kirian R, Takacs JD, Olsen TR, Lock LT, Rowley JA, Ahsan T (2020) Bioreactor parameters for microcarrier-based human MSC expansion under xeno-free conditions in a vertical-wheel system. Bioengineering (Basel) 7(3):73. https://doi.org/10.3390/bioengineering7030073

    Article  CAS  Google Scholar 

  180. Hoch AI, Duhr R, Di Maggio N, Mehrkens A, Jakob M, Wendt D (2017) Expansion of bone marrow mesenchymal stromal cells in perfused 3D ceramic scaffolds enhances in vivo bone formation. Biotechnol J 12(12):1700071

    Article  Google Scholar 

  181. Guyot Y, Luyten F, Schrooten J, Papantoniou I, Geris L (2015) A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. Biotechnol Bioeng 112(12):2591–2600

    Article  CAS  PubMed  Google Scholar 

  182. Yeo D, Kiparissides A, Cha JM, Aguilar-Gallardo C, Polak JM, Tsiridis E, Pistikopoulos EN, Mantalaris A (2013) Improving embryonic stem cell expansion through the combination of perfusion and bioprocess model design. PLoS One 8(12):e81728

    Article  PubMed  PubMed Central  Google Scholar 

  183. Elder BD, Athanasiou KA (2009) Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng B Rev 15(1):43–53

    Article  CAS  Google Scholar 

  184. Schroeder C, Hoelzer A, Zhu G, Woiczinski M, Betz OB, Graf H, Mayer-Wagner S, Mueller PE (2016) A closed loop perfusion bioreactor for dynamic hydrostatic pressure loading and cartilage tissue engineering. J Mech Med Biol 16(03):1650025

    Article  Google Scholar 

  185. Lambrechts T, Papantoniou I, Rice B, Schrooten J, Luyten FP, Aerts J-M (2016) Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy 18(9):1219–1233

    Article  CAS  PubMed  Google Scholar 

  186. Chapman LA, Whiteley JP, Byrne HM, Waters SL, Shipley RJ (2017) Mathematical modelling of cell layer growth in a hollow fibre bioreactor. J Theor Biol 418:36–56

    Article  CAS  PubMed  Google Scholar 

  187. Ahmed HMM, Salerno S, Piscioneri A, Khakpour S, Giorno L, De Bartolo L (2017) Human liver microtissue spheroids in hollow fiber membrane bioreactor. Colloids Surf B: Biointerfaces 160:272–280

    Article  CAS  PubMed  Google Scholar 

  188. Knöspel F, Freyer N, Stecklum M, Gerlach JC, Zeilinger K (2016) Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor. Biotechnol Prog 32(1):141–151

    Article  PubMed  Google Scholar 

  189. Naghib SD, Di Maio FP, De Bartolo L, Curcio E, Di Renzo A (2018) Automation and control system for fluid dynamic stability in hollow-fiber membrane bioreactor for cell culture. J Chem Technol Biotechnol 93(3):710–719

    Article  CAS  Google Scholar 

  190. Sheu J, Beltzer J, Fury B, Wilczek K, Tobin S, Falconer D, Nolta J, Bauer G (2015) Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor. Mol Ther Methods Clin Dev 2:15020

    Article  PubMed  PubMed Central  Google Scholar 

  191. Pihl AF, Offersgaard AF, Mathiesen CK, Prentoe J, Fahnøe U, Krarup H, Bukh J, Gottwein JM (2018) High density Huh7. 5 cell hollow fiber bioreactor culture for high-yield production of hepatitis C virus and studies of antivirals. Sci Rep 8(1):17505

    Article  PubMed  PubMed Central  Google Scholar 

  192. Yan IK, Shukla N, Borrelli DA, Patel T (2018) Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. In: Extracellular RNA. Springer, New York, pp 35–41

    Chapter  Google Scholar 

  193. Jones M, Nankervis B, Frank N, Vang B, DiLorenzo T, Hill D, Coeshott C (2018) CD146 expression, as a surrogate biomarker for human mesenchymal stromal cell multilineage differentiation, is preserved during cell expansion in an automated hollow-fiber membrane bioreactor. Pharm Bioprocess 6(3):93–105

    Google Scholar 

  194. Cipriano M, Freyer N, Knöspel F, Oliveira NG, Barcia R, Cruz PE, Cruz H, Castro M, Santos JM, Zeilinger K (2017) Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro. Arch Toxicol 91(4):1815–1832

    Article  CAS  PubMed  Google Scholar 

  195. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Boettger J (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Spier MR, Vandenberghe L, Medeiros ABP, Soccol CR (2011) Application of different types of bioreactors in bioprocesses. In: Bioreactors: design, properties and applications, pp 53–87

    Google Scholar 

  197. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Knippenberg M, Helder MN, Zandieh Doulabi B, Semeins CM, Wuisman PI, Klein-Nulend J (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 11(11–12):1780–1788

    Article  CAS  PubMed  Google Scholar 

  199. Osiecki MJ, McElwain SD, Lott WB (2018) Modelling mesenchymal stromal cell growth in a packed bed bioreactor with a gas permeable wall. PLoS One 13(8):e0202079

    Article  PubMed  PubMed Central  Google Scholar 

  200. Li D, Tang T, Lu J, Dai K (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng A 15(10):2773–2783

    Article  CAS  Google Scholar 

  201. Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MM, da Silva CL, Cabral JM (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146(4):194–197

    Article  CAS  PubMed  Google Scholar 

  202. Badenes S, Fernandes-Platzgummer A, Rodrigues C, Diogo M, da Silva C, Cabral J (2016) Microcarrier culture systems for stem cell manufacturing. In: Stem cell manufacturing. Elsevier, Amsterdam, Netherlands, pp 77–104

    Chapter  Google Scholar 

  203. Li B, Wang X, Wang Y, Gou W, Yuan X, Peng J, Guo Q, Lu S (2015) Past, present, and future of microcarrier-based tissue engineering. J Orthop Transl 3(2):51–57

    Google Scholar 

  204. Hossain KMZ, Patel U, Ahmed I (2015) Development of microspheres for biomedical applications: a review. Progress Biomater 4(1):1–19

    Article  Google Scholar 

  205. Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y, Melkoumian Z (2014) Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One 9(3):e92120

    Article  PubMed  PubMed Central  Google Scholar 

  206. Dias AD, Elicson JM, Murphy WL (2017) Microcarriers with synthetic hydrogel surfaces for stem cell expansion. Adv Healthc Mater 6(16):1700072

    Article  Google Scholar 

  207. Atala A, Lanza R, Mikos T, Nerem R (2008) Principles of regenerative medicine. Academic, Amsterdam

    Google Scholar 

  208. Tavassoli H, Alhosseini SN, Tay A, Chan PP, Oh SKW, Warkiani ME (2018) Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products. Biomaterials 181:333

    Article  CAS  PubMed  Google Scholar 

  209. de Soure AM, Fernandes-Platzgummer A, da Silva CL, Cabral JMS (2016) Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol 236:88–109. https://doi.org/10.1016/j.jbiotec.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  210. Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Idrus RBH, Yazid MD (2020) Three dimensional microcarrier system in mesenchymal stem cell culture: a systematic review. Cell Biosci 10(1):75. https://doi.org/10.1186/s13578-020-00438-8

    Article  PubMed  PubMed Central  Google Scholar 

  211. Rafiq QA, Coopman K, CJJCOiCE H (2013) Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Curr Opin Chem Eng 2(1):8–16

    Article  Google Scholar 

  212. Tavassoli H, Alhosseini SN, Tay A, Chan PPY, Weng Oh SK, Warkiani ME (2018) Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products. Biomaterials 181:333–346. https://doi.org/10.1016/j.biomaterials.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  213. Rafiq QA, Coopman K, Nienow AW, Hewitt CJ (2016) Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J 11(4):473–486. https://doi.org/10.1002/biot.201400862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Malda J, Frondoza CG (2006) Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 24(7):299–304

    Article  CAS  PubMed  Google Scholar 

  215. Yu C, Kornmuller A, Brown C, Hoare T, Flynn LE (2017) Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials 120:66–80

    Article  CAS  PubMed  Google Scholar 

  216. Heathman TR, Glyn VA, Picken A, Rafiq QA, Coopman K, Nienow AW, Kara B, Hewitt CJ (2015) Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process. Biotechnol Bioeng 112(8):1696–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ogle ME, Doron G, Levy MJ, Temenoff JS (2020) Hydrogel culture surface stiffness modulates mesenchymal stromal cell secretome and alters senescence. Tissue Eng A 26(23–24):1259–1271. https://doi.org/10.1089/ten.tea.2020.0030

    Article  CAS  Google Scholar 

  218. Martin C, Olmos É, Collignon M-L, De Isla N, Blanchard F, Chevalot I, Marc A, Guedon E (2017) Revisiting MSC expansion from critical quality attributes to critical culture process parameters. Process Biochem 59:231–243. https://doi.org/10.1016/j.procbio.2016.04.017

    Article  CAS  Google Scholar 

  219. Heathman TR, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ (2015) The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 10(1):49–64. https://doi.org/10.2217/rme.14.73

    Article  CAS  PubMed  Google Scholar 

  220. Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P (2017) Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 59:255–265. https://doi.org/10.1016/j.procbio.2017.03.017

    Article  CAS  Google Scholar 

  221. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JM (2015) A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J 10(8):1235–1247. https://doi.org/10.1002/biot.201400586

    Article  CAS  PubMed  Google Scholar 

  222. Tozetti PA, Caruso SR, Mizukami A, Fernandes TR, da Silva FB, Traina F, Covas DT, Orellana MD, Swiech K (2017) Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnol Prog 33(5):1358–1367. https://doi.org/10.1002/btpr.2494

    Article  CAS  PubMed  Google Scholar 

  223. Dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, Boucher S, Vemuri MC, da Silva CL, Cabral JM (2014) A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng 111(6):1116–1127. https://doi.org/10.1002/bit.25187

    Article  CAS  PubMed  Google Scholar 

  224. Cifuentes SJ, Priyadarshani P, Castilla-Casadiego DA, Mortensen LJ, Almodóvar J, Domenech M (2020) Heparin/collagen surface coatings modulate the growth, secretome, and morphology of human mesenchymal stromal cell response to interferon-gamma. J Biomed Mater Res A 109:951. https://doi.org/10.1002/jbm.a.37085

    Article  CAS  PubMed  Google Scholar 

  225. Krutty JD, Koesser K, Schwartz S, Yun J, Murphy WL, Gopalan P (2021) Xeno-free bioreactor culture of human mesenchymal stromal cells on chemically defined microcarriers. ACS Biomater Sci Eng 7(2):617–625. https://doi.org/10.1021/acsbiomaterials.0c00663

    Article  CAS  PubMed  Google Scholar 

  226. Krutty JD, Dias AD, Yun J, Murphy WL, Gopalan P (2019) Synthetic, chemically defined polymer-coated microcarriers for the expansion of human mesenchymal stem cells. Macromol Biosci 19(2):e1800299. https://doi.org/10.1002/mabi.201800299

    Article  CAS  PubMed  Google Scholar 

  227. Tamura A, Kobayashi J, Yamato M, Okano T (2012) Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture. Acta Biomater 8(11):3904–3913. https://doi.org/10.1016/j.actbio.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  228. Ng EX, Wang M, Neo SH, Tee CA, Chen C-H, Van Vliet KJ (2020) Dissolvable gelatin-based microcarriers generated through droplet microfluidics for expansion and culture of mesenchymal stromal cells. Biotechnol J 16(3):2000048. https://doi.org/10.1002/biot.202000048

    Article  CAS  Google Scholar 

  229. Yan X, Zhang K, Yang Y, Deng D, Lyu C, Xu H, Liu W, Du Y (2020) Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion. Tissue Eng Part C Methods 26(5):263–275. https://doi.org/10.1089/ten.tec.2020.0039

    Article  CAS  PubMed  Google Scholar 

  230. Min H, Xu L, Parrott R, Overall CC, Lillich M, Rabjohns EM, Rampersad RR, Tarrant TK, Meadows N, Fernandez-Castaneda A, Gaultier A, Kurtzberg J, Filiano AJ (2020) Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies. Stem Cells (Dayton, Ohio) 39(May):1–14. https://doi.org/10.1002/stem.3292

    Article  CAS  Google Scholar 

  231. Bowles AC, Kouroupis D, Willman MA, Perucca Orfei C, Agarwal A, Correa D (2020) Signature quality attributes of CD146+ mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells 38(8):1034–1049. https://doi.org/10.1002/stem.3196

    Article  CAS  PubMed  Google Scholar 

  232. Madsen SD, Russell KC, Tucker HA, Glowacki J, Bunnell BA, O’Connor KC (2017) Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 8(1):1–14. https://doi.org/10.1186/s13287-017-0649-4

    Article  CAS  Google Scholar 

  233. Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS, Olson SD (2017) Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury. Stem Cells 35(5):1416–1430. https://doi.org/10.1002/stem.2603

    Article  CAS  PubMed  Google Scholar 

  234. Lee RH, Yu JM, Foskett AM, Peltier G, Reneau JC, Bazhanov N, Oh JY, Prockop DJ (2014) TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proc Natl Acad Sci U S A 111(47):16766–16771. https://doi.org/10.1073/pnas.1416121111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Jiao H, Walczak BE, Lee MS, Lemieux ME, Li WJ (2020) GATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells 39(March):1–16. https://doi.org/10.1002/stem.3297

    Article  CAS  Google Scholar 

  236. Kowal JM, Schmal H, Halekoh U, Hjelmborg JB, Kassem M (2020) Single-cell high-content imaging parameters predict functional phenotype of cultured human bone marrow stromal stem cells. Stem Cells Transl Med 9:189. https://doi.org/10.1002/sctm.19-0171

    Article  CAS  PubMed  Google Scholar 

  237. Ang J, Lee YA, Raghothaman D, Jayaraman P, Teo KL, Khan FJ, Reuveny S, Chang YT, Kang NY, Oh S (2019) Rapid detection of senescent mesenchymal stromal cells by a fluorescent probe. Biotechnol J 14(10):1–10. https://doi.org/10.1002/biot.201800691

    Article  CAS  Google Scholar 

  238. Bertolo A, Gemperli A, Gruber M, Gantenbein B, Baur M, Pötzel T, Stoyanov J (2015) In vitro cell motility as a potential mesenchymal stem cell marker for multipotency. Stem Cells Transl Med 4:84. https://doi.org/10.5966/sctm.2014-0156

    Article  CAS  PubMed  Google Scholar 

  239. Rennerfeldt DA, Raminhos JS, Leff SM, Manning P, Van Vliet KJ (2019) Emergent heterogeneity in putative mesenchymal stem cell colonies: single-cell time lapsed analysis. PLoS One 14:e0213452. https://doi.org/10.1371/journal.pone.0213452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Nienow AW, Coopman K, Heathman TRJ, Rafiq QA, Hewitt CJ (2016) Bioreactor engineering fundamentals for stem cell manufacturing. In: Stem cell manufacturing, pp 43–75. https://doi.org/10.1016/B978-0-444-63265-4.00003-0

    Chapter  Google Scholar 

  241. Food US, Drug Administration/Center for Biologics E, Research (2005) Q5E comparability of biotechnological/biological products subject to changes in their manufacturing process. In: ICH quality guidelines: an implementation guide. Wiley, Hoboken. https://doi.org/10.1089/blr.2005.24.627

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Warnock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marklein, R.A., Mantay, M., Gomillion, C., Warnock, J.N. (2021). Biomanufacturing of Mesenchymal Stromal Cells for Therapeutic Applications. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_9

Download citation

Publish with us

Policies and ethics