Skip to main content

Monitoring Tools for the Development of High Cell Density Culture Strategies

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

  • 1708 Accesses

Abstract

Biopharmaceuticals market has been constantly increasing during the last years, what is transforming the manufacturing industry of biomolecules. The efforts have been put into better understanding how bioprocesses are regulated in order to firstly, build the quality of the biopharmaceuticals into the bioprocess, and secondly, to be able to develop suitable culture strategies for the implementation of intensified bioprocess while preserving the product quality attributes (product quality). Both targets strongly depend on the development of reliable monitoring tools able to measure the key bioprocess variables and parameters. Among all the available monitoring tools, spectroscopic techniques are called to be the predominant as they can offer multicomponent mixtures composition. However, such techniques have not been widely incorporated due to its complexity which hampers their adoption by the industry. Alternatively, other “soft sensors” like oxygen uptake rate (OUR), have been successfully applied for the monitoring of cell activity, being very sensible to changes in metabolic behaviour or other biochemical changes suffered by the cells. Therefore, OUR has been applied to determine the key time points (Time of Action, TOA), for example the proper time for nutrients feeding in intensified cultures, or also the Time of Harvest in virus-host cells systems. TOAs detection would allow to automate and control the bioprocesses achieving higher productivities and product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evens RP (2016) Pharma success in product development—does biotechnology change the paradigm in product development and attrition. AAPS J 18:281–285

    CAS  PubMed  Google Scholar 

  2. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–11455

    CAS  PubMed  Google Scholar 

  3. Estes S, Melville M (2014) Mammalian cell line developments in speed and efficiency. Adv Biochem Eng Biotechnol 139:11–33

    CAS  PubMed  Google Scholar 

  4. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000

    CAS  PubMed  Google Scholar 

  5. Langer ES, Rader RA, Gillespie DE (2018) 15th Annual report and survey of biopharmaceutical manufacturing capacity and production: a study of biotherapeutic developers and contract manufacturing organizations. Rockville

    Google Scholar 

  6. Zijlstra G, Gupta P (2017) Moving toward continuous processing. Gen Eng News

    Google Scholar 

  7. Jennewein MF, Alter G (2017) The Immunoregulatory roles of antibody glycosylation. Trends Immunol 38:358–372

    CAS  PubMed  Google Scholar 

  8. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170. https://doi.org/10.1016/j.biotechadv.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  9. Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grabenhorst E, Schlenke P, Pohl S et al (1999) Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. In: Glycotechnology. Springer, Boston, pp 1–17

    Google Scholar 

  11. Amann T, Hansen AH, Kol S et al (2019) Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metab Eng 52:143–152. https://doi.org/10.1016/j.ymben.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  12. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    CAS  PubMed  Google Scholar 

  13. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    CAS  PubMed  Google Scholar 

  14. Xu S, Gavin J, Jiang R, Chen H (2017) Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol Prog 33:867–878

    CAS  PubMed  Google Scholar 

  15. Challener (2016) A Look At Perfusion: The Upstream Continuous Process – BioProcess InternationalBioProcess International. Bioprocess Int.

    Google Scholar 

  16. Clincke MF, Mölleryd C, Zhang Y et al (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™: part I: effect of the cell density on the process. Biotechnol Prog 29:754–767

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolf M, Bielser J-M, Morbidelli M (2020) Perfusion cell culture processes for biopharmaceuticals. Cambridge University Press, New York

    Google Scholar 

  18. Haigney S (2018) A look into the future of biopharmaceutical quality | BioPharm international. BioPharm Int 31

    Google Scholar 

  19. ICH_Q8 (2017) ICH guideline Q8 (R2) on pharmaceutical development

    Google Scholar 

  20. Román R, Farràs M, Camps M et al (2018) Effect of continuous feeding of CO2 and pH in cell concentration and product titers in hIFNγ producing HEK293 cells: induced metabolic shift for concomitant consumption of glucose and lactate. J Biotechnol 287:68–73. https://doi.org/10.1016/j.jbiotec.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  21. Linthwaite VL, Janus JM, Brown AP et al (2018) The identification of carbon dioxide mediated protein post-translational modifications. Nat Commun:9. https://doi.org/10.1038/s41467-018-05475-z

  22. Rao G, Moreira A, Brorson K (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102:348–356

    CAS  PubMed  Google Scholar 

  23. Zhao L, Fu H-Y, Zhou W, Hu W-S (2015) Advances in process monitoring tools for cell culture bioprocesses. Eng Life Sci 15:459–468. https://doi.org/10.1002/elsc.201500006

    Article  CAS  Google Scholar 

  24. Jiang M, Severson KA, Love JC et al (2017) Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. Biotechnol Bioeng 114:2445–2456. https://doi.org/10.1002/bit.26383

    Article  CAS  PubMed  Google Scholar 

  25. Román R, Miret J, Scalia F et al (2016) Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide. J Biotechnol 239:57–60. https://doi.org/10.1016/j.jbiotec.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  26. Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep 5:1–11

    Google Scholar 

  27. Sergeeva D, Lee GM, Nielsen LK, Grav LM (2020) Multicopy targeted integration for accelerated development of high-producing Chinese hamster ovary cells. ACS Synth Biol 9:2546–2561

    CAS  PubMed  Google Scholar 

  28. Liste-Calleja L, Lecina M, Cairó JJ (2014) HEK293 cell culture media study towards bioprocess optimization: animal derived component free and animal derived component containing platforms. J Biosci Bioeng 117:471–477. https://doi.org/10.1016/j.jbiosc.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  29. Grossvenor S (2012) A new era in cell culture media development. BioPharm Int 25:20–23

    Google Scholar 

  30. Ultee M E (2018) The top 5 trends to watch in bioprocessing. In: Bioprocess online. https://www.bioprocessonline.com/doc/the-top-trends-to-watch-in-bioprocessing-0001

  31. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    CAS  PubMed  Google Scholar 

  32. van der Pol L, Tramper J (1998) Shear sensitivity of animal cells from a culture-medium perspective. Trends Biotechnol 16:323–328

    PubMed  Google Scholar 

  33. Kadic E, Heindel TJ (2014) An introduction to bioreactor hydrodynamics and gas-liquid mass transfer. Wiley, Hoboken

    Google Scholar 

  34. Hu W-S, Zhou W (2012) Cell culture bioprocess engineering, 2nd edn. CRC Press, Taylor and Francis Group

    Google Scholar 

  35. Martínez-Monge I, Comas P, Triquell J et al (2019) Concomitant consumption of glucose and lactate: a novel batch production process for CHO cells. Biochem Eng J 151:107358

    Google Scholar 

  36. Martínez-Monge I, Albiol J, Lecina M et al (2019) Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnol Bioeng 116:388–404

    PubMed  Google Scholar 

  37. Yang J-D, Lu C, Stasny B et al (2007) Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture. Biotechnol Bioeng 98:141–154. https://doi.org/10.1002/bit.21413

    Article  CAS  PubMed  Google Scholar 

  38. Lecina M, Tintó A, Gálvez J et al (2011) Continuous perfusion culture of encapsulated hybridoma cells. J Chem Technol Biotechnol 86:1555–1564. https://doi.org/10.1002/jctb.2680

    Article  CAS  Google Scholar 

  39. Bielser JM, Wolf M, Souquet J et al (2018) Perfusion mammalian cell culture for recombinant protein manufacturing – a critical review. Biotechnol Adv 36:1328–1340

    CAS  PubMed  Google Scholar 

  40. Lin H, Leighty RW, Godfrey S, Wang SB (2017) Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Biotechnol Prog 33:891–901. https://doi.org/10.1002/btpr.2472

    Article  CAS  PubMed  Google Scholar 

  41. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1:443–452

    PubMed  PubMed Central  Google Scholar 

  42. Gagnon M, Hiller G, Luan Y-T et al (2011) High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108:1328–1337

    CAS  PubMed  Google Scholar 

  43. Pereira S, Kildegaard HF, Andersen MR (2018) Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol J 13:1700499

    Google Scholar 

  44. Mulukutla BC, Kale J, Kalomeris T et al (2017) Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 114:1779–1790

    CAS  PubMed  Google Scholar 

  45. Advances in Biochemical Engineering/Biotechnology. https://www.springer.com/series/10. Accessed 20 Jan 2021

  46. Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19. https://doi.org/10.1016/j.jbiotec.2015.06.393

    Article  CAS  PubMed  Google Scholar 

  47. Woodgate JM (2018) Perfusion N-1 culture-opportunities for process intensification. In: Biopharmaceutical processing: development, design, and implementation of manufacturing processes. Elsevier, Amsterdam, pp 755–768

    Google Scholar 

  48. Bielser J, Kraus L, Burgos-Morales O et al (2020) Reduction of medium consumption in perfusion mammalian cell cultures using a perfusion rate equivalent concentrated nutrient feed. Biotechnol Prog 36. https://doi.org/10.1002/btpr.3026

  49. Rantanen J, Khinast J (2015) The future of pharmaceutical manufacturing sciences. J Pharm Sci 104:3612–3638. https://doi.org/10.1002/jps.24594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhan C, Schwarz H, Lundqvist M, et al (2017) Development and application of screening scale bioreactor systems for very high cell density perfusion of mammalian cells. Integr Contin Biomanufacturing III

    Google Scholar 

  51. Casablancas A, Gámez X, Lecina M et al (2013) Comparison of control strategies for fed-batch culture of hybridoma cells based on on-line monitoring of oxygen uptake rate, optical cell density and glucose concentration. J Chem Technol Biotechnol 88:1680–1689. https://doi.org/10.1002/jctb.4019

    Article  CAS  Google Scholar 

  52. Arnold SA, Crowley J, Woods N et al (2003) In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation. Biotechnol Bioeng 84:13–19

    CAS  PubMed  Google Scholar 

  53. Sandor M, Rüdinger F, Bienert R et al (2013) Comparative study of non-invasive monitoring via infrared spectroscopy for mammalian cell cultivations. J Biotechnol 168:636–645

    CAS  PubMed  Google Scholar 

  54. Abu-Absi NR, Kenty BM, Cuellar ME et al (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    CAS  PubMed  Google Scholar 

  55. Favre E, Pugeaud P, Péringer P (1990) Automated HPLC monitoring of glucose, glutamine, lactate and alanine on suspended mammalian cell reactors. Biotechnol Tech 4:315–320. https://doi.org/10.1007/BF00157428

    Article  CAS  Google Scholar 

  56. Campmajó C, Cairó JJ, Sanfeliu A et al (1994) Determination of ammonium and L-Glutamine in hybridoma cell cultures by sequential flow injection analysis. Cytotechnology 14:177–182

    PubMed  Google Scholar 

  57. Höpfner T, Bluma A, Rudolph G et al (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33:247–256

    PubMed  Google Scholar 

  58. Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM (2007) Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590:110–117. https://doi.org/10.1016/j.aca.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  59. Ohadi K, Aghamohseni H, Legge RL, Budman HM (2014) Fluorescence-based soft sensor for at situ monitoring of chinese hamster ovary cell cultures. Biotechnol Bioeng 111:1577–1586

    CAS  PubMed  Google Scholar 

  60. Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50:35–48. https://doi.org/10.1007/s10616-005-3974-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Metze S, Ruhl S, Greller G et al (2020) Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors. Bioprocess Biosyst Eng 43:193–205. https://doi.org/10.1007/s00449-019-02216-4

    Article  CAS  PubMed  Google Scholar 

  62. Kilburn DG, Fitzpatrick P, Blake-Coleman BC et al (1989) On-line monitoring of cell mass in mammalian cell cultures by acoustic densitometry. Biotechnol Bioeng 33:1379–1384. https://doi.org/10.1002/bit.260331103

    Article  CAS  PubMed  Google Scholar 

  63. Behrendt U, Koch S, Gooch DD et al (1994) Mass spectrometry: a tool for on-line monitoring of animal cell cultures. Cytotechnology 14:157–165

    CAS  PubMed  Google Scholar 

  64. Martínez-Monge I, Comas P, Triquell J et al (2018) A new strategy for fed-batch process control of HEK293 cell cultures based on alkali buffer addition monitoring: comparison with O.U.R. dynamic method. Appl Microbiol Biotechnol 102:10469–10483

    PubMed  Google Scholar 

  65. Niklas J, Melnyk A, Yuan Y, Heinzle E (2011) Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells. Anal Biochem 416:218–227

    CAS  PubMed  Google Scholar 

  66. Dremel BAA, Li S-Y, Schmid RD (1992) On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis. Biosens Bioelectron 7:133–139. https://doi.org/10.1016/0956-5663(92)90018-I

    Article  CAS  PubMed  Google Scholar 

  67. Zavala-Ortiz DA, Ebel B, Li M et al (2020) Interest of locally weighted regression to overcome nonlinear effects during in situ NIR monitoring of CHO cell culture parameters and antibody glycosylation. Biotechnol Prog 36:e2924

    CAS  PubMed  Google Scholar 

  68. Ashton L, Xu Y, Brewster VL et al (2013) The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst 138:6977–6985

    CAS  PubMed  Google Scholar 

  69. Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28:1355–1362

    CAS  PubMed  Google Scholar 

  70. Bhatia H, Mehdizadeh H, Drapeau D, Yoon S (2018) In-line monitoring of amino acids in mammalian cell cultures using raman spectroscopy and multivariate chemometrics models. Eng Life Sci 18:55–61

    CAS  PubMed  Google Scholar 

  71. Tulsyan A, Schorner G, Khodabandehlou H et al (2019) A machine-learning approach to calibrate generic Raman models for real-time monitoring of cell culture processes. Biotechnol Bioeng 116:2575–2586

    CAS  PubMed  Google Scholar 

  72. Tulsyan A, Wang T, Schorner G et al (2020) Automatic real-time calibration, assessment, and maintenance of generic Raman models for online monitoring of cell culture processes. Biotechnol Bioeng 117:406–416. https://doi.org/10.1002/bit.27205

    Article  CAS  PubMed  Google Scholar 

  73. Ruffieux P-A, Von Stockar U, Marison IW (1998) Measurement of volumetric ( OUR ) and determination of specific ( q O 2 ) oxygen uptake rates in animal cell cultures. J Biotechnol 63:85–95

    CAS  PubMed  Google Scholar 

  74. Kussow CM, Zhou W, Gryte DM, Hu W-S (1995) Monitoring of mammalian cell growth and virus production process using on-line oxygen uptake rate measurement. Enzym Microb Technol 17:779–783. https://doi.org/10.1016/0141-0229(94)00035-P

    Article  CAS  Google Scholar 

  75. Fontova A, Lecina M, López-Repullo J et al (2018) A simplified implementation of the stationary liquid mass balance method for on-line OUR monitoring in animal cell cultures. J Chem Technol Biotechnol 93:1757–1766. https://doi.org/10.1002/jctb.5551

    Article  CAS  Google Scholar 

  76. Lin J, Takagi M, Qu Y, Yoshida T (2002) Possible strategy for on-line monitoring and control of hybridoma cell culture. In: Biochemical engineering journal. Elsevier, New York, pp 205–209

    Google Scholar 

  77. Martínez-Monge I, Roman R, Comas P et al (2019) New developments in online OUR monitoring and its application to animal cell cultures. Appl Microbiol Biotechnol 103:6903–6917

    PubMed  Google Scholar 

  78. Ducommun P, Ruffieux PA, Furter MP et al (2000) A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J Biotechnol 78:139–147

    CAS  PubMed  Google Scholar 

  79. Wlaschin KF, Hu WS (2007) Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. J Biotechnol 131:168–176

    CAS  PubMed  Google Scholar 

  80. Gálvez J, Lecina M, Solà C et al (2012) Optimization of HEK-293S cell cultures for the production of adenoviral vectors in bioreactors using on-line OUR measurements. J Biotechnol 157:214–222

    PubMed  Google Scholar 

  81. Lecina M, Soley A, Gràcia J et al (2006) Application of on-line OUR measurements to detect actions points to improve baculovirus-insect cell cultures in bioreactors. J Biotechnol 125:385–394. https://doi.org/10.1016/j.jbiotec.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  82. de Moura MB, Van Houten B (2014) Bioenergetic analysis of intact mammalian cells using the seahorse XF24 extracellular flux analyzer and a luciferase ATP assay. Methods Mol Biol 1105:589–602

    PubMed  Google Scholar 

  83. Goldrick S, Lee K, Spencer C et al (2018) On-line control of glucose concentration in high-yielding mammalian cell cultures enabled through oxygen transfer rate measurements. Biotechnol J 13:1700607

    Google Scholar 

  84. Janakiraman V, Kwiatkowski C, Kshirsagar R et al (2015) Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Biotechnol Prog 31:1623–1632

    CAS  PubMed  Google Scholar 

  85. Kreye S, Stahn R, Nawrath K et al (2019) A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnol Prog 35:e2832

    CAS  PubMed  Google Scholar 

  86. Zhou W, Hu W-S (1994) On-line characterization of a hybridoma cell culture process. Biotechnol Bioeng 44:170–177. https://doi.org/10.1002/bit.260440205

    Article  CAS  PubMed  Google Scholar 

  87. Reuveny S, Kim YJ, Kemp CW, Shiloach J (1993) Effect of temperature and oxygen on cell growth and recombinant protein production in insect cell cultures. Appl Microbiol Biotechnol 38:619–623. https://doi.org/10.1007/BF00182800

    Article  CAS  PubMed  Google Scholar 

  88. Wong TKK, Nielsen LK, Greenfield PF, Reid S (1994) Relationship between oxygen uptake rate and time of infection of Sf9 insect cells infected with a recombinant baculovirus. Cytotechnology 15:157–167. https://doi.org/10.1007/BF00762390

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure of Interests

All authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martí Lecina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lecina, M., Comas, P., Martínez-Monge, I., Cairó, J.J. (2021). Monitoring Tools for the Development of High Cell Density Culture Strategies. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_16

Download citation

Publish with us

Policies and ethics