Skip to main content

ICG Image-Guided Surgery with the Assessment for Anastomotic Safety

  • Chapter
  • First Online:
Innovative Endoscopic and Surgical Technology in the GI Tract

Abstract

Humans have been performing gastrointestinal anastomosis since the 1700s, when it was a highly controversial procedure associated with near-universal mortality. Advances in the 1800s included recognition of the importance of serosal apposition and the development of aseptic surgery which greatly improved outcomes. Technological growth led to surgical stapling devices, laparoscopy, and even surgical robots to further reduce morbidity and mortality, but anastomotic leak remains a feared and not infrequent complication. Various methods of intraoperative anastomotic evaluation have been employed, but leaks persist. It has been hypothesized that anastomotic malperfusion could contribute to breakdown, but surrogates for perfusion to the anastomosis might be misleading. Fluorescent angiography with indocyanine green dye allows for real-time, intraoperative visualization of blood flow to the bowel. Inadequate perfusion may then be addressed intraoperatively, which may decrease complications. Determining optimal procedures and applications remains an area of active research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senn N. Enterorrhaphy: its history, technique and present status. JAMA. 1893;21:215–35.

    Google Scholar 

  2. Ellison G. End to end intestinal anastomosis in the dog: a comparison of techniques. Comp Cont Educ Pract Vet North Am Ed. 1981;3:486–94.

    Google Scholar 

  3. Lembert A. Memoire sur l’enterorraphie avec description d’un precede nouveau pour pratiquer cette operation chirurgicale. Rep Gen D’Anat Physiol Pathol Clin Chir. 1826;2:100–7.

    Google Scholar 

  4. Riskin DJ, Longaker MT, Gertner M, Krummel TM. Innovation in surgery: a historical perspective. Ann Surg. 2006;244(5):686–93.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bruce J, Krukowski ZH, Al-Khairy G, Russell EM, Park KG. Systematic review of the definition and measurement of anastomotic leak after gastrointestinal surgery. Br J Surg. 2001;88(9):1157–68.

    Article  CAS  PubMed  Google Scholar 

  6. Peel AL, Taylor EW. Proposed definitions for the audit of postoperative infection: a discussion paper. Surgical Infection Study Group. Ann R Coll Surg Engl. 1991;73(6):385–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rahbari NN, Weitz J, Hohenberger W, Heald RJ, Moran B, Ulrich A, et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: a proposal by the International Study Group of Rectal Cancer. Surgery. 2010;147(3):339–51.

    Article  PubMed  Google Scholar 

  8. Chadi SA, Fingerhut A, Berho M, DeMeester SR, Fleshman JW, Hyman NH, et al. Emerging trends in the etiology, prevention, and treatment of gastrointestinal anastomotic leakage. J Gastrointest Surg. 2016;20(12):2035–51.

    Article  PubMed  Google Scholar 

  9. Daniel VT, Alavi K, Davids JS, Sturrock PR, Harnsberger CR, Steele SR, et al. The utility of the delphi method in defining anastomotic leak following colorectal surgery. Am J Surg. 2020;219(1):75–9.

    Article  PubMed  Google Scholar 

  10. Alves A, Panis Y, Trancart D, Regimbeau JM, Pocard M, Valleur P. Factors associated with clinically significant anastomotic leakage after large bowel resection: multivariate analysis of 707 patients. World J Surg. 2002;26(4):499–502.

    Article  PubMed  Google Scholar 

  11. Marijnen CA, Kapiteijn E, van de Velde CJ, Martijn H, Steup WH, Wiggers T, et al. Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol. 2002;20(3):817–25.

    Article  CAS  PubMed  Google Scholar 

  12. Alberts JC, Parvaiz A, Moran BJ. Predicting risk and diminishing the consequences of anastomotic dehiscence following rectal resection. Colorectal Dis. 2003;5(5):478–82.

    Article  CAS  PubMed  Google Scholar 

  13. Glehen O, Osinsky D, Cotte E, Kwiatkowski F, Freyer G, Isaac S, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003;10(8):863–9.

    Article  CAS  PubMed  Google Scholar 

  14. Choi HK, Law WL, Ho JW. Leakage after resection and intraperitoneal anastomosis for colorectal malignancy: analysis of risk factors. Dis Colon Rectum. 2006;49(11):1719–25.

    Article  PubMed  Google Scholar 

  15. Lipska MA, Bissett IP, Parry BR, Merrie AE. Anastomotic leakage after lower gastrointestinal anastomosis: men are at a higher risk. ANZ J Surg. 2006;76(7):579–85.

    Article  PubMed  Google Scholar 

  16. Buchs NC, Gervaz P, Secic M, Bucher P, Mugnier-Konrad B, Morel P. Incidence, consequences, and risk factors for anastomotic dehiscence after colorectal surgery: a prospective monocentric study. Int J Colorectal Dis. 2008;23(3):265–70.

    Article  PubMed  Google Scholar 

  17. Iancu C, Mocan LC, Todea-Iancu D, Mocan T, Acalovschi I, Ionescu D, et al. Host-related predictive factors for anastomotic leakage following large bowel resections for colorectal cancer. J Gastrointestin Liver Dis. 2008;17(3):299–303.

    PubMed  Google Scholar 

  18. Bège T, Lelong B, Viret F, Turrini O, Guiramand J, Topart D, et al. Bevacizumab-related surgical site complication despite primary tumor resection in colorectal cancer patients. Ann Surg Oncol. 2009;16(4):856–60.

    Article  PubMed  Google Scholar 

  19. Telem DA, Chin EH, Nguyen SQ, Divino CM. Risk factors for anastomotic leak following colorectal surgery: a case-control study. Arch Surg. 2010;145(4):371–6; discussion 6.

    Article  PubMed  Google Scholar 

  20. Kobayashi M, Mohri Y, Ohi M, Inoue Y, Araki T, Okita Y, et al. Risk factors for anastomotic leakage and favorable antimicrobial treatment as empirical therapy for intra-abdominal infection in patients undergoing colorectal surgery. Surg Today. 2014;44(3):487–93.

    Article  PubMed  Google Scholar 

  21. Kwag SJ, Kim JG, Kang WK, Lee JK, Oh ST. The nutritional risk is a independent factor for postoperative morbidity in surgery for colorectal cancer. Ann Surg Treat Res. 2014;86(4):206–11.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pommergaard HC, Gessler B, Burcharth J, Angenete E, Haglind E, Rosenberg J. Preoperative risk factors for anastomotic leakage after resection for colorectal cancer: a systematic review and meta-analysis. Colorectal Dis. 2014;16(9):662–71.

    Article  CAS  PubMed  Google Scholar 

  23. Frasson M, Flor-Lorente B, Rodríguez JL, Granero-Castro P, Hervás D, Alvarez Rico MA, et al. Risk factors for anastomotic leak after colon resection for cancer: multivariate analysis and nomogram from a multicentric, prospective, national study with 3193 patients. Ann Surg. 2015;262(2):321–30.

    Article  PubMed  Google Scholar 

  24. Hayden DM, Mora Pinzon MC, Francescatti AB, Saclarides TJ. Patient factors may predict anastomotic complications after rectal cancer surgery: anastomotic complications in rectal cancer. Ann Med Surg (Lond). 2015;4(1):11–6.

    Article  Google Scholar 

  25. McDermott FD, Heeney A, Kelly ME, Steele RJ, Carlson GL, Winter DC. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg. 2015;102(5):462–79.

    Article  CAS  PubMed  Google Scholar 

  26. Vasiliu EC, Zarnescu NO, Costea R, Neagu S. Review of risk factors for anastomotic leakage in colorectal surgery. Chirurgia (Bucur). 2015;110(4):319–26.

    Google Scholar 

  27. Frasson M, Granero-Castro P, Ramos Rodríguez JL, Flor-Lorente B, Braithwaite M, Martí Martínez E, et al. Risk factors for anastomotic leak and postoperative morbidity and mortality after elective right colectomy for cancer: results from a prospective, multicentric study of 1102 patients. Int J Colorectal Dis. 2016;31(1):105–14.

    Article  PubMed  Google Scholar 

  28. Fjederholt KT, Okholm C, Svendsen LB, Achiam MP, Kirkegård J, Mortensen FV. Ketorolac and other NSAIDs increase the risk of anastomotic leakage after surgery for GEJ cancers: a cohort study of 557 patients. J Gastrointest Surg. 2018;22(4):587–94.

    Article  PubMed  Google Scholar 

  29. Huang Y, Tang SR, Young CJ. Nonsteroidal anti-inflammatory drugs and anastomotic dehiscence after colorectal surgery: a meta-analysis. ANZ J Surg. 2018;88(10):959–65.

    Article  PubMed  Google Scholar 

  30. Oshi M, Kunisaki C, Miyamoto H, Kosaka T, Akiyama H, Endo I. Risk factors for anastomotic leakage of esophagojejunostomy after laparoscopy-assisted total gastrectomy for gastric cancer. Dig Surg. 2018;35(1):28–34.

    Article  PubMed  Google Scholar 

  31. Sciuto A, Merola G, De Palma GD, Sodo M, Pirozzi F, Bracale UM, et al. Predictive factors for anastomotic leakage after laparoscopic colorectal surgery. World J Gastroenterol. 2018;24(21):2247–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao C, Xu G, Wang C, Wang D. Evaluation of preoperative risk factors and postoperative indicators for anastomotic leak of minimally invasive McKeown esophagectomy: a single-center retrospective analysis. J Cardiothorac Surg. 2019;14(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hall BR, Flores LE, Parshall ZS, Shostrom VK, Are C, Reames BN. Risk factors for anastomotic leak after esophagectomy for cancer: a NSQIP procedure-targeted analysis. J Surg Oncol. 2019;120(4):661–9.

    PubMed  Google Scholar 

  34. Sánchez-Guillén L, Frasson M, García-Granero Á, Pellino G, Flor-Lorente B, Álvarez-Sarrado E, et al. Risk factors for leak, complications and mortality after ileocolic anastomosis: comparison of two anastomotic techniques. Ann R Coll Surg Engl. 2019;101(8):571–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tadros T, Wobbes T, Hendriks T. Blood transfusion impairs the healing of experimental intestinal anastomoses. Ann Surg. 1992;215(3):276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leichtle SW, Mouawad NJ, Welch KB, Lampman RM, Cleary RK. Risk factors for anastomotic leakage after colectomy. Dis Colon Rectum. 2012;55(5):569–75.

    Article  PubMed  Google Scholar 

  37. Alizadeh RF, Li S, Inaba C, Penalosa P, Hinojosa MW, Smith BR, et al. Risk factors for gastrointestinal leak after bariatric surgery: MBASQIP analysis. J Am Coll Surg. 2018;227(1):135–41.

    Article  PubMed  Google Scholar 

  38. Bakker IS, Grossmann I, Henneman D, Havenga K, Wiggers T. Risk factors for anastomotic leakage and leak-related mortality after colonic cancer surgery in a nationwide audit. Br J Surg. 2014;101(4):424–32; discussion 32.

    Article  CAS  PubMed  Google Scholar 

  39. Gessler B, Eriksson O, Angenete E. Diagnosis, treatment, and consequences of anastomotic leakage in colorectal surgery. Int J Colorectal Dis. 2017;32(4):549–56.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Voron T, Bruzzi M, Ragot E, Zinzindohoue F, Chevallier JM, Douard R, et al. Anastomotic location predicts anastomotic leakage after elective colonic resection for cancer. J Gastrointest Surg. 2019;23(2):339–47.

    Article  PubMed  Google Scholar 

  41. Krarup PM, Nordholm-Carstensen A, Jorgensen LN, Harling H. Anastomotic leak increases distant recurrence and long-term mortality after curative resection for colonic cancer: a nationwide cohort study. Ann Surg. 2014;259(5):930–8.

    Article  PubMed  Google Scholar 

  42. Mirnezami A, Mirnezami R, Chandrakumaran K, Sasapu K, Sagar P, Finan P. Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak: systematic review and meta-analysis. Ann Surg. 2011;253(5):890–9.

    Article  PubMed  Google Scholar 

  43. McArdle CS, McMillan DC, Hole DJ. Impact of anastomotic leakage on long-term survival of patients undergoing curative resection for colorectal cancer. Br J Surg. 2005;92(9):1150–4.

    Article  CAS  PubMed  Google Scholar 

  44. Vonlanthen R, Slankamenac K, Breitenstein S, Puhan MA, Muller MK, Hahnloser D, et al. The impact of complications on costs of major surgical procedures: a cost analysis of 1200 patients. Ann Surg. 2011;254(6):907–13.

    Article  PubMed  Google Scholar 

  45. Di Cristofaro L, Ruffolo C, Pinto E, Massa M, Antoniutti M, Cagol M, et al. Complications after surgery for colorectal cancer affect quality of life and surgeon-patient relationship. Colorectal Dis. 2014;16(12):O407–19.

    Article  PubMed  Google Scholar 

  46. Biere SS, Maas KW, Cuesta MA, van der Peet DL. Cervical or thoracic anastomosis after esophagectomy for cancer: a systematic review and meta-analysis. Dig Surg. 2011;28(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  47. Messager M, Warlaumont M, Renaud F, Marin H, Branche J, Piessen G, et al. Recent improvements in the management of esophageal anastomotic leak after surgery for cancer. Eur J Surg Oncol. 2017;43(2):258–69.

    Article  CAS  PubMed  Google Scholar 

  48. Phitayakorn R, Delaney CP, Reynolds HL, Champagne BJ, Heriot AG, Neary P, et al. Standardized algorithms for management of anastomotic leaks and related abdominal and pelvic abscesses after colorectal surgery. World J Surg. 2008;32(6):1147–56.

    Article  CAS  PubMed  Google Scholar 

  49. Marinello FG, Baguena G, Lucas E, Frasson M, Hervás D, Flor-Lorente B, et al. Anastomotic leakage after colon cancer resection: does the individual surgeon matter? Colorectal Dis. 2016;18(6):562–9.

    Article  CAS  PubMed  Google Scholar 

  50. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis. 2009;24(5):569–76.

    Article  CAS  PubMed  Google Scholar 

  51. Ricciardi R, Roberts PL, Marcello PW, Hall JF, Read TE, Schoetz DJ. Anastomotic leak testing after colorectal resection: what are the data? Arch Surg. 2009;144(5):407–11; discussion 11-2.

    Article  PubMed  Google Scholar 

  52. Wu Z, van de Haar RC, Sparreboom CL, Boersema GS, Li Z, Ji J, et al. Is the intraoperative air leak test effective in the prevention of colorectal anastomotic leakage? A systematic review and meta-analysis. Int J Colorectal Dis. 2016;31(8):1409–17.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Allaix ME, Lena A, Degiuli M, Arezzo A, Passera R, Mistrangelo M, et al. Intraoperative air leak test reduces the rate of postoperative anastomotic leak: analysis of 777 laparoscopic left-sided colon resections. Surg Endosc. 2019;33(5):1592–9.

    Article  PubMed  Google Scholar 

  54. Kanaji S, Ohyama M, Yasuda T, Sendo H, Suzuki S, Kawasaki K, et al. Can the intraoperative leak test prevent postoperative leakage of esophagojejunal anastomosis after total gastrectomy? Surg Today. 2016;46(7):815–20.

    Article  PubMed  Google Scholar 

  55. Smith S, McGeehin W, Kozol RA, Giles D. The efficacy of intraoperative methylene blue enemas to assess the integrity of a colonic anastomosis. BMC Surg. 2007;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Celik S, Almalı N, Aras A, Yılmaz Ö, Kızıltan R. Intraoperatively testing the anastomotic integrity of esophagojejunostomy using methylene blue. Scand J Surg. 2017;106(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  57. Lieto E, Orditura M, Castellano P, Pinto M, Zamboli A, De Vita F, et al. Endoscopic intraoperative anastomotic testing may avoid early gastrointestinal anastomotic complications. A prospective study. J Gastrointest Surg. 2011;15(1):145–52.

    Article  PubMed  Google Scholar 

  58. Shamiyeh A, Szabo K, Ulf Wayand W, Zehetner J. Intraoperative endoscopy for the assessment of circular-stapled anastomosis in laparoscopic colon surgery. Surg Laparosc Endosc Percutan Tech. 2012;22(1):65–7.

    Article  PubMed  Google Scholar 

  59. Shibuya N, Matsuda T, Yamashita K, Hasegawa H, Yamamoto M, Kanaji S, et al. Clinical significance of intraoperative colonoscopy for anastomotic assessment in rectal cancer surgery. Anticancer Res. 2019;39(10):5761–5.

    Article  PubMed  Google Scholar 

  60. Kryzauskas M, Poskus E, Dulskas A, Bausys A, Jakubauskas M, Imbrasaite U, et al. The problem of colorectal anastomosis safety. Medicine (Baltimore). 2020;99(2):e18560.

    Article  Google Scholar 

  61. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27(8):3003–8.

    Article  PubMed  Google Scholar 

  62. Winkler K, Tygstrup N. Determination of hepatic blood flow in man by cardio green. Scand J Clin Lab Invest. 1960;12:353–6.

    Article  CAS  PubMed  Google Scholar 

  63. Bacin F, Buffet JM. The diagnosis of isolated choroidal hemangioma (author’s transl). J Fr Ophtalmol. 1978;1(3):197–203.

    CAS  PubMed  Google Scholar 

  64. Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, et al. Adverse reactions due to indocyanine green. Ophthalmology. 1994;101(3):529–33.

    Article  CAS  PubMed  Google Scholar 

  65. Terasaki H, Inoue Y, Sugano N, Jibiki M, Kudo T, Lepäntalo M, et al. A quantitative method for evaluating local perfusion using indocyanine green fluorescence imaging. Ann Vasc Surg. 2013;27(8):1154–61.

    Article  PubMed  Google Scholar 

  66. Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA. Indocyanine green: historical context, current applications, and future considerations. Surg Innov. 2016;23(2):166–75.

    Article  PubMed  Google Scholar 

  67. Rudin AV, McKenzie TJ, Thompson GB, Farley DR, Lyden ML. Evaluation of parathyroid glands with indocyanine green fluorescence angiography after thyroidectomy. World J Surg. 2019;43(6):1538–43.

    Article  PubMed  Google Scholar 

  68. Yukaya T, Saeki H, Kasagi Y, Nakashima Y, Ando K, Imamura Y, et al. Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy. J Am Coll Surg. 2015;221(2):e37–42.

    Article  PubMed  Google Scholar 

  69. Ortega CB, Guerron AD, Yoo JS. The use of fluorescence angiography during laparoscopic sleeve gastrectomy. JSLS. 2018;22(2):e2018.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jafari MD, Wexner SD, Martz JE, McLemore EC, Margolin DA, Sherwinter DA, et al. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg. 2015;220(1):82–92.e1.

    Article  PubMed  Google Scholar 

  71. James DR, Ris F, Yeung TM, Kraus R, Buchs NC, Mortensen NJ, et al. Fluorescence angiography in laparoscopic low rectal and anorectal anastomoses with pinpoint perfusion imaging--a critical appraisal with specific focus on leak risk reduction. Colorectal Dis. 2015;17 Suppl 3:16–21.

    Article  CAS  PubMed  Google Scholar 

  72. Boni L, David G, Dionigi G, Rausei S, Cassinotti E, Fingerhut A. Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc. 2016;30(7):2736–42.

    Article  PubMed  Google Scholar 

  73. Keller DS, Ishizawa T, Cohen R, Chand M. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol. 2017;2(10):757–66.

    Article  PubMed  Google Scholar 

  74. Struk S, Honart JF, Qassemyar Q, Leymarie N, Sarfati B, Alkhashnam H, et al. Use of indocyanine green angiography in oncological and reconstructive breast surgery. Ann Chir Plast Esthet. 2018;63(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  75. Daskalaki D, Fernandes E, Wang X, Bianco FM, Elli EF, Ayloo S, et al. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. 2014;21(6):615–21.

    Article  PubMed  Google Scholar 

  76. Hutteman M, van der Vorst JR, Mieog JS, Bonsing BA, Hartgrink HH, Kuppen PJ, et al. Near-infrared fluorescence imaging in patients undergoing pancreaticoduodenectomy. Eur Surg Res. 2011;47(2):90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Beran BD, Shockley M, Arnolds K, Escobar P, Zimberg S, Sprague ML. Laser angiography with indocyanine green to assess vaginal cuff perfusion during total laparoscopic hysterectomy: a pilot study. J Minim Invasive Gynecol. 2017;24(3):432–7.

    Article  PubMed  Google Scholar 

  78. Detter C, Russ D, Kersten JF, Reichenspurner H, Wipper S. Qualitative angiographic and quantitative myocardial perfusion assessment using fluorescent cardiac imaging during graded coronary artery bypass stenosis. Int J Cardiovasc Imaging. 2018;34(2):159–67.

    Article  PubMed  Google Scholar 

  79. Hoesli R, Brennan JR, Rosko AJ, Birkeland AC, Malloy KM, Moyer JS, et al. Intraoperative fluorescent angiography predicts pharyngocutaneous fistula after salvage laryngectomy. Ann Surg Oncol. 2019;26(5):1320–5.

    Article  PubMed  Google Scholar 

  80. Liot E, Assalino M, Buchs NC, Schiltz B, Douissard J, Morel P, et al. Does near-infrared (NIR) fluorescence angiography modify operative strategy during emergency procedures? Surg Endosc. 2018;32(10):4351–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  83. Alesina PF, Meier B, Hinrichs J, Mohmand W, Walz MK. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbecks Arch Surg. 2018;403(3):395–401.

    Article  CAS  PubMed  Google Scholar 

  84. Di Meo G, Karampinis I, Gerken A, Lammert A, Pellicani S, Nowak K. Indocyanine green fluorescence angiography can guide intraoperative localization during parathyroid surgery. Scand J Surg. 2021;110:59–65. 1457496919877581.

    Article  PubMed  Google Scholar 

  85. Chu W, Chennamsetty A, Toroussian R, Lau C. Anaphylactic shock after intravenous administration of indocyanine green during robotic partial nephrectomy. Urol Case Rep. 2017;12:37–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Silva GS, Saffaf K, Sanchez LA, Zayed MA. Amputation stump perfusion is predictive of post-operative necrotic eschar formation. Am J Surg. 2018;216(3):540–6.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Joh JH, Park HC, Han SA, Ahn HJ. Intraoperative indocyanine green angiography for the objective measurement of blood flow. Ann Surg Treat Res. 2016;90(5):279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Colvard B, Itoga NK, Hitchner E, Sun Q, Long B, Lee G, et al. SPY technology as an adjunctive measure for lower extremity perfusion. J Vasc Surg. 2016;64(1):195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Connolly PH, Meltzer AJ, Spector JA, Schneider DB. Indocyanine green angiography aids in prediction of limb salvage in vascular trauma. Ann Vasc Surg. 2015;29(7):1453.e1–4.

    Article  Google Scholar 

  90. Koyanagi K, Ozawa S, Oguma J, Kazuno A, Yamazaki Y, Ninomiya Y, et al. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: new predictive evaluation of anastomotic leakage after esophagectomy. Medicine (Baltimore). 2016;95(30):e4386.

    Article  Google Scholar 

  91. Kudszus S, Roesel C, Schachtrupp A, Höer JJ. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395(8):1025–30.

    Article  PubMed  Google Scholar 

  92. Ris F, Hompes R, Cunningham C, Lindsey I, Guy R, Jones O, et al. Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc. 2014;28(7):2221–6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Grone J, Koch D, Kreis ME. Impact of intraoperative microperfusion assessment with Pinpoint Perfusion Imaging on surgical management of laparoscopic low rectal and anorectal anastomoses. Colorectal Dis. 2015;17 Suppl 3:22–8.

    Article  CAS  PubMed  Google Scholar 

  94. Protyniak B, Dinallo AM, Boyan WP Jr, Dressner RM, Arvanitis ML. Intraoperative indocyanine green fluorescence angiography--an objective evaluation of anastomotic perfusion in colorectal surgery. Am Surg. 2015;81(6):580–4.

    Article  PubMed  Google Scholar 

  95. Kim JC, Lee JL, Yoon YS, Alotaibi AM, Kim J. Utility of indocyanine-green fluorescent imaging during robot-assisted sphincter-saving surgery on rectal cancer patients. Int J Med Robot. 2016;12(4):710–7.

    Article  PubMed  Google Scholar 

  96. Kawada K, Hasegawa S, Wada T, Takahashi R, Hisamori S, Hida K, et al. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc. 2017;31(3):1061–9.

    Article  PubMed  Google Scholar 

  97. Armstrong G, Croft J, Corrigan N, Brown JM, Goh V, Quirke P, et al. IntAct: intra-operative fluorescence angiography to prevent anastomotic leak in rectal cancer surgery: a randomized controlled trial. Colorectal Dis. 2018;20(8):O226–o34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brescia A, Pezzatini M, Romeo G, Cinquepalmi M, Pindozzi F, Dall’Oglio A, et al. Indocyanine green fluorescence angiography: a new ERAS item. Updates Surg. 2018;70(4):427–32.

    Article  PubMed  Google Scholar 

  99. Du X, Xing X. Prevention of anastomotic leakage after robotic surgery for rectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2018;21(4):395–8.

    PubMed  Google Scholar 

  100. Mizrahi I, de Lacy FB, Abu-Gazala M, Fernandez LM, Otero A, Sands DR, et al. Transanal total mesorectal excision for rectal cancer with indocyanine green fluorescence angiography. Tech Coloproctol. 2018;22(10):785–91.

    Article  CAS  PubMed  Google Scholar 

  101. Ris F, Liot E, Buchs NC, Kraus R, Ismael G, Belfontali V, et al. Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg. 2018;105(10):1359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amagai H, Miyauchi H, Muto Y, Uesato M, Ohira G, Imanishi S, et al. Clinical utility of transanal indocyanine green near-infrared fluorescence imaging for evaluation of colorectal anastomotic perfusion. Surg Endosc. 2020;34:5283–93.

    Article  PubMed  Google Scholar 

  103. Buxey K, Lam F, Muhlmann M, Wong S. Does indocyanine green improve the evaluation of perfusion during laparoscopic colorectal surgery with extracorporeal anastomosis? ANZ J Surg. 2019;89(11):E487–e91.

    Article  PubMed  Google Scholar 

  104. Carus T, Pick P. Intraoperative fluorescence angiography in colorectal surgery. Chirurg. 2019;90(11):887–90.

    Article  CAS  PubMed  Google Scholar 

  105. Chang YK, Foo CC, Yip J, Wei R, Ng KK, Lo O, et al. The impact of indocyanine-green fluorescence angiogram on colorectal resection. Surgeon. 2019;17(5):270–6.

    Article  PubMed  Google Scholar 

  106. Hayami S, Matsuda K, Iwamoto H, Ueno M, Kawai M, Hirono S, et al. Visualization and quantification of anastomotic perfusion in colorectal surgery using near-infrared fluorescence. Tech Coloproctol. 2019;23(10):973–80.

    Article  CAS  PubMed  Google Scholar 

  107. Kobiela J, Bertani E, Petz W, Crosta C, De Roberto G, Borin S, et al. Double indocyanine green technique of robotic right colectomy: introduction of a new technique. J Minim Access Surg. 2019;15(4):357–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Langer D, Vočka M, Kalvach J, Ryska M. Assessment of anastomosis perfusion by fluorescent angiography in robotic low rectal resection: the results of a non-randomized study. Rozhl Chir. 2019;98(3):110–4.

    CAS  PubMed  Google Scholar 

  109. Mangano A, Fernandes E, Gheza F, Bustos R, Chen LL, Masrur M, et al. Near-infrared indocyanine green-enhanced fluorescence and evaluation of the bowel microperfusion during robotic colorectal surgery: a retrospective original paper. Surg Technol Int. 2019;34:93–100.

    PubMed  Google Scholar 

  110. Morales-Conde S, Alarcon I, Yang T, Licardie E, Camacho V, Aguilar Del Castillo F, et al. Fluorescence angiography with indocyanine green (ICG) to evaluate anastomosis in colorectal surgery: where does it have more value? Surg Endosc. 2020;34:3897–907.

    Article  PubMed  Google Scholar 

  111. Ogino T, Hata T, Kawada J, Okano M, Kim Y, Okuyama M, et al. The risk factor of anastomotic hypoperfusion in colorectal surgery. J Surg Res. 2019;244:265–71.

    Article  PubMed  Google Scholar 

  112. Santi C, Casali L, Franzini C, Rollo A, Violi V. Applications of indocyanine green-enhanced fluorescence in laparoscopic colorectal resections. Updates Surg. 2019;71(1):83–8.

    Article  PubMed  Google Scholar 

  113. Shapera E, Hsiung RW. Assessment of anastomotic perfusion in left-sided robotic assisted colorectal resection by indocyanine green fluorescence angiography. Minim Invasive Surg. 2019;2019:3267217.

    PubMed  PubMed Central  Google Scholar 

  114. Son GM, Kwon MS, Kim Y, Kim J, Kim SH, Lee JW. Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg Endosc. 2019;33(5):1640–9.

    Article  PubMed  Google Scholar 

  115. van den Bos J, Jongen A, Melenhorst J, Breukink SO, Lenaerts K, Schols RM, et al. Near-infrared fluorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study. Surg Endosc. 2019;33(11):3766–74.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wada T, Kawada K, Hoshino N, Inamoto S, Yoshitomi M, Hida K, et al. The effects of intraoperative ICG fluorescence angiography in laparoscopic low anterior resection: a propensity score-matched study. Int J Clin Oncol. 2019;24(4):394–402.

    Article  PubMed  Google Scholar 

  117. Alekseev M, Rybakov E, Shelygin Y, Chernyshov S, Zarodnyuk I. A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial. Colorectal Dis. 2020;22:1147–53.

    Article  CAS  PubMed  Google Scholar 

  118. De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, Cassinotti E, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020;34(1):53–60.

    Article  PubMed  Google Scholar 

  119. Impellizzeri HG, Pulvirenti A, Inama M, Bacchion M, Marrano E, Creciun M, et al. Near-infrared fluorescence angiography for colorectal surgery is associated with a reduction of anastomotic leak rate. Updates Surg. 2020;72:991–8.

    Article  PubMed  Google Scholar 

  120. Iwamoto H, Matsuda K, Hayami S, Tamura K, Mitani Y, Mizumoto Y, et al. Quantitative indocyanine green fluorescence imaging used to predict anastomotic leakage focused on rectal stump during laparoscopic anterior resection. J Laparoendosc Adv Surg Tech A. 2020;30(5):542–6.

    Article  PubMed  Google Scholar 

  121. Ryu S, Suwa K, Kitagawa T, Aizawa M, Ushigome T, Okamoto T, et al. Evaluation of anastomosis with ICG fluorescence method using VISERA ELITE2 during laparoscopic colorectal cancer surgery. Anticancer Res. 2020;40(1):373–7.

    Article  CAS  PubMed  Google Scholar 

  122. van den Bos J, Al-Taher M, Schols RM, van Kuijk S, Bouvy ND, Stassen LPS. Near-infrared fluorescence imaging for real-time intraoperative guidance in anastomotic colorectal surgery: a systematic review of literature. J Laparoendosc Adv Surg Tech A. 2018;28(2):157–67.

    Article  PubMed  Google Scholar 

  123. Shen R, Zhang Y, Wang T. Indocyanine green fluorescence angiography and the incidence of anastomotic leak after colorectal resection for colorectal cancer: a meta-analysis. Dis Colon Rectum. 2018;61(10):1228–34.

    Article  PubMed  Google Scholar 

  124. Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2018;22(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  125. Rausa E, Zappa MA, Kelly ME, Turati L, Russo A, Aiolfi A, et al. A standardized use of intraoperative anastomotic testing in colorectal surgery in the new millennium: is technology taking over? A systematic review and network meta-analysis. Tech Coloproctol. 2019;23(7):625–31.

    Article  CAS  PubMed  Google Scholar 

  126. Arezzo A, Bonino MA, Ris F, Boni L, Cassinotti E, Foo DCC, et al. Intraoperative use of fluorescence with indocyanine green reduces anastomotic leak rates in rectal cancer surgery: an individual participant data analysis. Surg Endosc. 2020;34:4281–90.

    Article  PubMed  Google Scholar 

  127. Slooter MD, Eshuis WJ, Cuesta MA, Gisbertz SS, van Berge Henegouwen MI. Fluorescent imaging using indocyanine green during esophagectomy to prevent surgical morbidity: a systematic review and meta-analysis. J Thorac Dis. 2019;11(Suppl 5):S755–s65.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Van Daele E, Van Nieuwenhove Y, Ceelen W, Vanhove C, Braeckman BP, Hoorens A, et al. Near-infrared fluorescence guided esophageal reconstructive surgery: a systematic review. World J Gastrointest Oncol. 2019;11(3):250–63.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ladak F, Dang JT, Switzer N, Mocanu V, Tian C, Birch D, et al. Indocyanine green for the prevention of anastomotic leaks following esophagectomy: a meta-analysis. Surg Endosc. 2019;33(2):384–94.

    Article  PubMed  Google Scholar 

  130. Tsang YP, Leung LA, Lau CW, Tang CN. Indocyanine green fluorescence angiography to evaluate anastomotic perfusion in colorectal surgery. Int J Colorectal Dis. 2020;35:1133–9.

    Article  PubMed  Google Scholar 

  131. Nerup N, Svendsen MBS, Svendsen LB, Achiam MP. Feasibility and usability of real-time intraoperative quantitative fluorescent-guided perfusion assessment during resection of gastroesophageal junction cancer. Langenbecks Arch Surg. 2020;405(2):215–22.

    Article  PubMed  Google Scholar 

  132. Schlottmann F, Patti MG. Evaluation of gastric conduit perfusion during esophagectomy with indocyanine green fluorescence imaging. J Laparoendosc Adv Surg Tech A. 2017;27(12):1305–8.

    Article  PubMed  Google Scholar 

  133. Kumagai Y, Hatano S, Sobajima J, Ishiguro T, Fukuchi M, Ishibashi KI, et al. Indocyanine green fluorescence angiography of the reconstructed gastric tube during esophagectomy: efficacy of the 90-second rule. Dis Esophagus. 2018;31(12):doy052.

    Article  Google Scholar 

  134. Kamiya K, Unno N, Miyazaki S, Sano M, Kikuchi H, Hiramatsu Y, et al. Quantitative assessment of the free jejunal graft perfusion. J Surg Res. 2015;194(2):394–9.

    Article  PubMed  Google Scholar 

  135. Huh YJ, Lee HJ, Kim TH, Choi YS, Park JH, Son YG, et al. Efficacy of assessing intraoperative bowel perfusion with near-infrared camera in laparoscopic gastric cancer surgery. J Laparoendosc Adv Surg Tech A. 2019;29(4):476–83.

    Article  PubMed  Google Scholar 

  136. Kitagawa H, Namikawa T, Iwabu J, Fujisawa K, Uemura S, Tsuda S, et al. Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg Endosc. 2018;32(4):1749–54.

    Article  PubMed  Google Scholar 

  137. Degett TH, Andersen HS, Gogenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg. 2016;401(6):767–75.

    Article  PubMed  Google Scholar 

  138. Campbell C, Reames MK, Robinson M, Symanowski J, Salo JC. Conduit vascular evaluation is associated with reduction in anastomotic leak after esophagectomy. J Gastrointest Surg. 2015;19(5):806–12.

    Article  PubMed  Google Scholar 

  139. Iinuma Y, Hirayama Y, Yokoyama N, Otani T, Nitta K, Hashidate H, et al. Intraoperative near-infrared indocyanine green fluorescence angiography (NIR-ICG AG) can predict delayed small bowel stricture after ischemic intestinal injury: report of a case. J Pediatr Surg. 2013;48(5):1123–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia L. Ramamoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramamoorthy, S.L., Matson, J.S. (2021). ICG Image-Guided Surgery with the Assessment for Anastomotic Safety. In: Horgan, S., Fuchs, KH. (eds) Innovative Endoscopic and Surgical Technology in the GI Tract . Springer, Cham. https://doi.org/10.1007/978-3-030-78217-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78217-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78216-0

  • Online ISBN: 978-3-030-78217-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics