Skip to main content

Immunoglobulin A Glycosylation and Its Role in Disease

  • Chapter
  • First Online:
Antibody Glycosylation

Part of the book series: Experientia Supplementum ((EXS,volume 112))

Abstract

Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C1GalT1:

Core 1 β1,3-galactosyltransferase

dIgA:

Dimeric IgA

EBV:

Epstein–Barr virus

ECD:

Electron capture dissociation

ETD:

Electron transfer dissociation

FcRL4:

Fc receptor-like 4

Gal:

Galactose

GalNAc:

N-acetylgalactosamine

GalNAc-T:

GalNAc-transferase

Gd-IgA1:

Galactose-deficient IgA1

HC:

Heavy chain

HR:

Hinge region

Ig:

Immunoglobulin

IgAN:

IgA nephropathy

IgAV:

IgA vasculitis

IgAVN:

IgA vasculitis with nephritis

LC:

Light chain

MBL:

Mannose-binding lectin

mIgA:

Monomeric IgA

MS:

Mass spectrometry

pIgA:

Polymeric IgA

RA:

Rheumatoid arthritis

SA:

Sialic acid

SC:

Secretory component

SIgA:

Secretory IgA

SLE:

Systemic lupus erythematosus

TG2:

Transglutaminase 2

V:

Variable

References

  • Abbad L, Monteiro RC, Berthelot L (2020) Food antigens and Transglutaminase 2 in IgA nephropathy: molecular links between gut and kidney. Mol Immunol 121:1–6

    Article  CAS  PubMed  Google Scholar 

  • Aleyd E, Heineke MH, van Egmond M (2015) The era of the immunoglobulin A Fc receptor FcαRI; its function and potential as target in disease. Immunol Rev 268(1):123–138

    Article  CAS  PubMed  Google Scholar 

  • Allen AC, Willis FR, Beattie TJ, Feehally J (1998) Abnormal IgA glycosylation in Henoch-Schönlein purpura restricted to patients with clinical nephritis. Nephrol Dial Transplant 13(4):930–934

    Article  CAS  PubMed  Google Scholar 

  • Amara K, Clay E, Yeo L et al (2017) B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis. J Autoimmun 81:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal RP, Ju T, Cummings RD (2012) Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J Biol Chem 287(19):15317–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin JD, Pleass RJ, Owens RJ, Woof JM (1996) Mutagenesis of the human IgA1 heavy chain tailpiece that prevents dimer assembly. J Immunol 157(1):156–159

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JU, Fiete D (1980) Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22(2 Pt 2):611–620

    Article  CAS  PubMed  Google Scholar 

  • Baenziger J, Kornfeld S (1974) Structure of the carbohydrate units of IgA1 immunoglobulin. II. Structure of the O-glycosidically linked oligosaccharide units. J Biol Chem 249(22):7270–7281

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JU, Maynard Y (1980) Human hepatic lectin. Physiochemical properties and specificity. J Biol Chem 255(10):4607–4613

    Article  CAS  PubMed  Google Scholar 

  • Basset C, Devauchelle V, Durand V et al (1999) Glycosylation of immunoglobulin A influences its receptor binding. Scand J Immunol 50(6):572–579

    Article  CAS  PubMed  Google Scholar 

  • Basset C, Durand V, Jamin C et al (2000) Increased N-linked glycosylation leading to oversialylation of monomeric immunoglobulin A1 from patients with Sjögren’s syndrome. Scand J Immunol 51(3):300–306

    Article  CAS  PubMed  Google Scholar 

  • Bastian A, Kratzin H, Eckart K, Hilschmann N (1992) Intra- and interchain disulfide bridges of the human J chain in secretory immunoglobulin A. Biol Chem Hoppe Seyler 373(12):1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Batten MR, Senior BW, Kilian M, Woof JM (2003) Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect Immun 71(3):1462–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Mkaddem S, Rossato E, Heming N, Monteiro RC (2013) Anti-inflammatory role of the IgA Fc receptor (CD89): from autoimmunity to therapeutic perspectives. Autoimmun Rev 12(6):666–669

    Article  CAS  PubMed  Google Scholar 

  • Ben Mkaddem S, Benhamou M, Monteiro RC (2019) Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front Immunol 10:811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthoux F, Suzuki H, Mohey H et al (2017) Prognostic value of serum biomarkers of autoimmunity for recurrence of IgA nephropathy after kidney transplantation. J Am Soc Nephrol 28(6):1943–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchette KA, Shenoy AT, Milner J 2nd et al (2016) Neuraminidase A-exposed galactose promotes Streptococcus pneumoniae biofilm formation during colonization. Infect Immun 84(10):2922–2932

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondt A, Nicolardi S, Jansen BC et al (2016) Longitudinal monitoring of immunoglobulin A glycosylation during pregnancy by simultaneous MALDI-FTICR-MS analysis of N- and O-glycopeptides. Sci Rep 6:27955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondt A, Nicolardi S, Jansen BC et al (2017) IgA N- and O-glycosylation profiling reveals no association with the pregnancy-related improvement in rheumatoid arthritis. Arthritis Res Ther 19(1):160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borén T, Falk P, Roth KA, Larson G, Normark S (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262(5141):1892–1895

    Article  PubMed  Google Scholar 

  • Boross P, Lohse S, Nederend M et al (2013) IgA EGFR antibodies mediate tumour killing in vivo. EMBO Mol Med 5(8):1213–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosseboeuf A, Seillier C, Mennesson N et al (2020) Analysis of the targets and glycosylation of monoclonal IgAs from MGUS and myeloma patients. Front Immunol 11:854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd JK, Barratt J (2011) Inherited IgA glycosylation pattern in IgA nephropathy and HSP nephritis: where do we go next? Kidney Int 80(1):8–10

    Article  CAS  PubMed  Google Scholar 

  • Brandsma AM, Bondza S, Evers M et al (2019) Potent Fc receptor signaling by IgA leads to superior killing of cancer cells by neutrophils compared to IgG. Front Immunol 10:704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breedveld A, van Egmond M (2019) IgA and FcαRI: pathological roles and therapeutic opportunities. Front Immunol 10:553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brittan JL, Buckeridge TJ, Finn A, Kadioglu A, Jenkinson HF (2012) Pneumococcal neuraminidase A: an essential upper airway colonization factor for Streptococcus pneumoniae. Mol Oral Microbiol 27(4):270–283

    Article  CAS  PubMed  Google Scholar 

  • Castilho A, Beihammer G, Pfeiffer C et al (2018) An oligosaccharyltransferase from Leishmania major increases the N-glycan occupancy on recombinant glycoproteins produced in Nicotiana benthamiana. Plant Biotechnol J 16(10):1700–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi YC, Rahkola JT, Kendrick AA et al (2017) Streptococcus pneumoniae IgA1 protease: a metalloprotease that can catalyze in a split manner in vitro. Protein Sci 26(3):600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Usui K, Honda S, Tahara-Hanaoka S, Shibuya K, Shibuya A (2006) Molecular characteristics of IgA and IgM Fc binding to the Fcalpha/muR. Biochem Biophys Res Commun 345(1):474–478

    Article  CAS  PubMed  Google Scholar 

  • Chuang PD, Morrison SL (1997) Elimination of N-linked glycosylation sites from the human IgA1 constant region: effects on structure and function. J Immunol 158(2):724–732

    Article  CAS  PubMed  Google Scholar 

  • Conley ME, Delacroix DL (1987) Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med 106(6):892–899

    Article  CAS  PubMed  Google Scholar 

  • Corthésy B (2013) Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 4:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crottet P, Corthésy B (1998) Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab’)2: a possible implication for mucosal defense. J Immunol 161(10):5445–5453

    Article  CAS  PubMed  Google Scholar 

  • Daniel EJP, Las Rivas M, Lira-Navarrete E et al (2020) Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 30(11):910–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey RT Jr, Dodd L, Proschan MA et al (2016) A randomized, controlled trial of ZMapp for Ebola virus infection. N Engl J Med 375(15):1448–1456

    Article  CAS  PubMed  Google Scholar 

  • de Haan N, Falck D, Wuhrer M (2019) Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 30(4):226–240

    Article  PubMed Central  CAS  Google Scholar 

  • de Las RM, Lira-Navarrete E, Daniel EJP et al (2017) The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nat Commun 8(1):1959

    Article  CAS  Google Scholar 

  • de Sousa-Pereira P, Woof JM (2019) IgA: structure, function, and developability. Antibodies (Basel) 8(4)

    Google Scholar 

  • de Tymowski C, Heming N, Correia MDT et al (2019) CD89 is a potent innate receptor for bacteria and mediates host protection from sepsis. Cell Rep 27(3):762–775.e765

    Google Scholar 

  • Delacroix DL, Dive C, Rambaud JC, Vaerman JP (1982) IgA subclasses in various secretions and in serum. Immunology 47(2):383–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande N, Jensen PH, Packer NH, Kolarich D (2010) GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 9(2):1063–1075

    Article  CAS  PubMed  Google Scholar 

  • Diana J, Moura IC, Vaugier C et al (2013) Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol 191(5):2335–2343

    Article  CAS  PubMed  Google Scholar 

  • Dicker M, Tschofen M, Maresch D et al (2016) Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants. Front Plant Sci 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Dueymes M, Bendaoud B, Pennec YL, Youinou P (1995) IgA glycosylation abnormalities in the serum of patients with primary Sjögren’s syndrome. Clin Exp Rheumatol 13(2):247–250

    CAS  PubMed  Google Scholar 

  • Field MC, Dwek RA, Edge CJ, Rademacher TW (1989) O-linked oligosaccharides from human serum immunoglobulin A1. Biochem Soc Trans 17(6):1034–1035

    Article  CAS  PubMed  Google Scholar 

  • Franc V, Řehulka P, Raus M et al (2013) Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteome 92:299–312

    Article  CAS  Google Scholar 

  • Frandsen EV, Reinholdt J, Kilian M (1987) Enzymatic and antigenic characterization of immunoglobulin A1 proteases from Bacteroides and Capnocytophaga spp. Infect Immun 55(3):631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frandsen EV, Reinholdt J, Kjeldsen M, Kilian M (1995) In vivo cleavage of immunoglobulin A1 by immunoglobulin A1 proteases from Prevotella and Capnocytophaga species. Oral Microbiol Immunol 10(5):291–296

    Article  CAS  PubMed  Google Scholar 

  • Frandsen EV, Kjeldsen M, Kilian M (1997) Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum. Clin Diagn Lab Immunol 4(4):458–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA (2004) The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Proc Natl Acad Sci USA 101(43):15307–15312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gala FA, Morrison SL (2002) The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J Biol Chem 277(32):29005–29011

    Article  CAS  PubMed  Google Scholar 

  • Gale DP, Molyneux K, Wimbury D et al (2017) Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol 28(7):2158–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbe J, Collin M (2012) Bacterial hydrolysis of host glycoproteins – powerful protein modification and efficient nutrient acquisition. J Innate Immun 4(2):121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner AL, Fullagar JL, Day JA, Cohen SM, Janda KD (2013) Development of a high-throughput screen and its use in the discovery of Streptococcus pneumoniae immunoglobulin A1 protease inhibitors. J Am Chem Soc 135(27):10014–10017

    Article  CAS  PubMed  Google Scholar 

  • Gharavi AG, Moldoveanu Z, Wyatt RJ et al (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19(5):1008–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes MM, Wall SB, Takahashi K, Novak J, Renfrow MB, Herr AB (2008) Analysis of IgA1 N-glycosylation and its contribution to FcαRI binding. Biochemistry 47(43):11285–11299

    Article  CAS  PubMed  Google Scholar 

  • Gomes MM, Suzuki H, Brooks MT et al (2010) Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study. Biochemistry 49(27):5671–5682

    Article  CAS  PubMed  Google Scholar 

  • Goonatilleke E, Smilowitz JT, Mariño KV, German BJ, Lebrilla CB, Barboza M (2019) Immunoglobulin A N-glycosylation presents important body fluid-specific variations in lactating mothers. Mol Cell Proteomics 18(11):2165–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Göritzer K, Maresch D, Altmann F, Obinger C, Strasser R (2017) Exploring site-specific N-glycosylation of HEK293 and plant-produced human IgA isotypes. J Proteome Res 16(7):2560–2570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Göritzer K, Turupcu A, Maresch D et al (2019) Distinct Fcα receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. J Biol Chem 294(38):13995–14008

    Article  PubMed  PubMed Central  Google Scholar 

  • Göritzer K, Goet I, Duric S et al (2020) Efficient N-glycosylation of the heavy chain tailpiece promotes the formation of plant-produced dimeric IgA. Front Chem 8:346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govinden G, Parker JL, Naylor KL, Frey AM, Anumba DOC, Stafford GP (2018) Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis. Arch Microbiol 200(7):1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Basu S, Bal V, Rath S, George A (2019) Gut IgA abundance in adult life is a major determinant of resistance to dextran sodium sulfate-colitis and can compensate for the effects of inadequate maternal IgA received by neonates. Immunology 158(1):19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1):S3–S9

    Article  PubMed  Google Scholar 

  • Hansen IS, Krabbendam L, Bernink JH et al (2018) FcαRI co-stimulation converts human intestinal CD103(+) dendritic cells into pro-inflammatory cells through glycolytic reprogramming. Nat Commun 9(1):863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen IS, Baeten DLP, den Dunnen J (2019) The inflammatory function of human IgA. Cell Mol Life Sci 76(6):1041–1055

    Article  CAS  PubMed  Google Scholar 

  • Hanson LA (1998) Breastfeeding provides passive and likely long-lasting active immunity. Ann Allergy Asthma Immunol 81(6):523–533; quiz 533–524, 537

    Google Scholar 

  • Hastings MC, Moldoveanu Z, Julian BA et al (2010) Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol 5(11):2069–2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastings MC, Rizk DV, Kiryluk K et al (2021) IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatr Nephrol

    Google Scholar 

  • Heemskerk N, van Egmond M (2018) Monoclonal antibody-mediated killing of tumour cells by neutrophils. Eur J Clin Invest 48(Suppl 2):e12962

    Google Scholar 

  • Heineke MH, van Egmond M (2017) Immunoglobulin A: magic bullet or Trojan horse? Eur J Clin Investig 47(2):184–192

    Article  CAS  Google Scholar 

  • Heineke MH, van der Steen LPE, Korthouwer RM et al (2017) Peptide mimetics of immunoglobulin A (IgA) and FcαRI block IgA-induced human neutrophil activation and migration. Eur J Immunol 47(10):1835–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herr AB, Ballister ER, Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 423(6940):614–620

    Article  CAS  PubMed  Google Scholar 

  • Hiki Y, Tanaka A, Kokubo T et al (1998) Analyses of IgA1 hinge glycopeptides in IgA nephropathy by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Nephrol 9(4):577–582

    Article  CAS  PubMed  Google Scholar 

  • Hiki Y, Odani H, Takahashi M et al (2001) Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 59(3):1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Honda S, Sato K, Totsuka N et al (2016) Marginal zone B cells exacerbate endotoxic shock via interleukin-6 secretion induced by Fcα/μR-coupled TLR4 signalling. Nat Commun 7:11498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie A, Hiki Y, Odani H et al (2003) IgA1 molecules produced by tonsillar lymphocytes are under-O-glycosylated in IgA nephropathy. Am J Kidney Dis 42(3):486–496

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Guerrero A, Parker E et al (2015) Site-specific glycosylation of secretory immunoglobulin A from human colostrum. J Proteome Res 14(3):1335–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Iijima H, Tajiri M et al (2012) Deficiency of N-acetylgalactosamine in O-linked oligosaccharides of IgA is a novel biologic marker for Crohn’s disease. Inflamm Bowel Dis 18(9):1723–1734

    Article  PubMed  Google Scholar 

  • Iwasaki H, Zhang Y, Tachibana K et al (2003) Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem 278(8):5613–5621

    Article  CAS  PubMed  Google Scholar 

  • Iwase H, Tanaka A, Hiki Y et al (1996a) Estimation of the number of O-linked oligosaccharides per heavy chain of human serum IgA1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the hinge glycopeptide. J Biochem 120(2):393–397

    Article  CAS  PubMed  Google Scholar 

  • Iwase H, Tanaka A, Hiki Y et al (1996b) Abundance of Gal beta 1,3GalNAc in O-linked oligosaccharide on hinge region of polymerized IgA1 and heat-aggregated IgA1 from normal human serum. J Biochem 120(1):92–97

    Article  CAS  PubMed  Google Scholar 

  • Iwase H, Tanaka A, Hiki Y et al (1998) Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to the analysis of glycopeptide-containing multiple O-linked oligosaccharides. J Chromatogr B Biomed Sci Appl 709(1):145–149

    Article  CAS  PubMed  Google Scholar 

  • Iwase H, Tanaka A, Hiki Y et al (1999) Aggregated human serum immunoglobulin A1 induced by neuraminidase treatment had a lower number of O-linked sugar chains on the hinge portion. J Chromatogr B Biomed Sci Appl 724(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Jackson S, Mestecky J, Moldoveanu Z, Spearman PW (2005) Appendix I – Collection and processing of human mucosal secretions. In: Mestecky J, Lamm ME, McGhee JR, Bienenstock J, Mayer L, Strober W (eds) Mucosal immunology, 3rd edn. Academic, Burlington, pp 1829–1839

    Chapter  Google Scholar 

  • Janoff EN, Rubins JB, Fasching C et al (2014) Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol 7(2):249–256

    Article  CAS  PubMed  Google Scholar 

  • Johnson TA, Qiu J, Plaut AG, Holyoak T (2009) Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of Haemophilus influenzae immunoglobulin A1 protease. J Mol Biol 389(3):559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju T, Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci U S A 99(26):16613–16618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 277(1):178–186

    Article  CAS  PubMed  Google Scholar 

  • Ju T, Zheng Q, Cummings RD (2006) Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans. Glycobiology 16(10):947–958

    Article  CAS  PubMed  Google Scholar 

  • Kahya HF, Andrew PW, Yesilkaya H (2017) Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog 13(3):e1006263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kallolimath S, Steinkellner H (2015) Glycosylation of plant produced human antibodies. Hum Antibodies 23(3–4):45–48

    Article  CAS  PubMed  Google Scholar 

  • Kallolimath S, Castilho A, Strasser R et al (2016) Engineering of complex protein sialylation in plants. Proc Natl Acad Sci USA 113(34):9498–9503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallolimath S, Hackl T, Gahn R et al (2020) Expression profiling and glycan engineering of IgG subclass 1-4 in Nicotiana benthamiana. Front Bioeng Biotechnol 8:825

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilian M, Holmgren K (1981) Ecology and nature of immunoglobulin A1 protease-producing streptococci in the human oral cavity and pharynx. Infect Immun 31(3):868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian M, Mestecky J, Schrohenloher RE (1979) Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect Immun 26(1):143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian M, Thomsen B, Petersen TE, Bleeg HS (1983) Occurrence and nature of bacterial IgA proteases. Ann N Y Acad Sci 409:612–624

    Article  CAS  PubMed  Google Scholar 

  • King SJ, Hippe KR, Weiser JN (2006) Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59(3):961–974

    Article  CAS  PubMed  Google Scholar 

  • Kiryluk K, Moldoveanu Z, Sanders JT et al (2011) Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int 80(1):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiryluk K, Li Y, Moldoveanu Z et al (2017) GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet 13(2):e1006609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoppova B, Reily C, Maillard N et al (2016) The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol 7:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koshland ME (1985) The coming of age of the immunoglobulin J chain. Annu Rev Immunol 3:425–453

    Article  CAS  PubMed  Google Scholar 

  • Kosowska K, Reinholdt J, Rasmussen LK et al (2002) The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidase. J Biol Chem 277(14):11987–11994

    Article  CAS  PubMed  Google Scholar 

  • Kratz EM, Borysewicz K, Katnik-Prastowska I (2010) Terminal monosaccharide screening of synovial immunoglobulins G and A for the early detection of rheumatoid arthritis. Rheumatol Int 30(10):1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Kurowska W, Kuca-Warnawin EH, Radzikowska A, Maśliński W (2017) The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis. Cent Eur J Immunol 42(4):390–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau KK, Wyatt RJ, Moldoveanu Z et al (2007) Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol 22(12):2067–2072

    Article  PubMed  Google Scholar 

  • Lau KK, Suzuki H, Novak J, Wyatt RJ (2010) Pathogenesis of Henoch-Schönlein purpura nephritis. Pediatr Nephrol 25(1):19–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebreton C, Ménard S, Abed J et al (2012) Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143(3):698–707.e694

    Google Scholar 

  • Levinsky RJ, Barratt TM (1979) IgA immune complexes in Henoch-Schönlein purpura. Lancet 2(8152):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Levy Y, Dueymes M, Pennec YL, Shoenfeld Y, Youinou P (1994) IgA in Sjögren’s syndrome. Clin Exp Rheumatol 12(5):543–551

    CAS  PubMed  Google Scholar 

  • Lewis WG, Robinson LS, Perry J et al (2012) Hydrolysis of secreted sialoglycoprotein immunoglobulin A (IgA) in ex vivo and biochemical models of bacterial vaginosis. J Biol Chem 287(3):2079–2089

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhu Z, Chen W, Feng Y, Dimitrov DS (2017) Crystallizable fragment glycoengineering for therapeutic antibodies development. Front Immunol 8:1554–1554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin C-W, Tsai M-H, Li S-T et al (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci USA 112(34):10611–10616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindfors K, Suzuki H, Novak J et al (2011) Galactosylation of serum IgA1 O-glycans in celiac disease. J Clin Immunol 31(1):74–79

    Article  CAS  PubMed  Google Scholar 

  • Liu H, May K (2012) Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. mAbs 4(1):17–23

    Google Scholar 

  • Liu Y, McDaniel JR, Khan S et al (2018) Antibodies encoded by FCRL4-bearing memory B cells preferentially recognize commensal microbial antigens. J Immunol 200(12):3962–3969

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Goroshko S, Leung LYT et al (2020) FCRL4 is an Fc receptor for systemic IgA, but not mucosal secretory IgA. J Immunol 205(2):533–538

    Article  CAS  PubMed  Google Scholar 

  • Lomholt H, Kilian M (1994) Antigenic relationships among immunoglobulin A1 proteases from Haemophilus, Neisseria, and Streptococcus species. Infect Immun 62(8):3178–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomholt H, Poulsen K, Caugant DA, Kilian M (1992) Molecular polymorphism and epidemiology of Neisseria meningitidis immunoglobulin A1 proteases. Proc Natl Acad Sci USA 89(6):2120–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillard N, Wyatt RJ, Julian BA et al (2015) Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 26(7):1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maixnerova D, Ling C, Hall S et al (2019) Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS One 14(2):e0212254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marion C, Limoli DH, Bobulsky GS, Abraham JL, Burnaugh AM, King SJ (2009) Identification of a pneumococcal glycosidase that modifies O-linked glycans. Infect Immun 77(4):1389–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matei L, Matei I (2000) Lectin-binding profile of serum IgA in women suffering from systemic autoimmune rheumatic disorders. Rom J Intern Med 38–39:73–82

    Google Scholar 

  • Mathias A, Corthésy B (2011a) N-Glycans on secretory component: mediators of the interaction between secretory IgA and gram-positive commensals sustaining intestinal homeostasis. Gut Microbes 2(5):287–293

    Article  PubMed  Google Scholar 

  • Mathias A, Corthésy B (2011b) Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. J Biol Chem 286(19):17239–17247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattu TS, Pleass RJ, Willis AC et al (1998) The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J Biol Chem 273(4):2260–2272

    Article  CAS  PubMed  Google Scholar 

  • Maurer MA, Meyer L, Bianchi M et al (2018) Glycosylation of human IgA directly inhibits influenza A and other sialic-acid-binding viruses. Cell Rep 23(1):90–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestecky J, Russell MW, Jackson S, Brown TA (1986) The human IgA system: a reassessment. Clin Immunol Immunopathol 40(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Nederend M, Jansen JH et al (2016) Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting. MAbs 8(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Mistry DV, Stockley RA (2011) The cleavage specificity of an IgA1 protease from Haemophilus influenzae. Virulence 2(2):103–110

    Article  PubMed  Google Scholar 

  • Moldoveanu Z, Wyatt RJ, Lee JY et al (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71(11):1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Moldoveanu Z, Suzuki H, Reily C et al (2021) Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J Autoimmun 118:102593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncla BJ, Chappell CA, Debo BM, Meyn LA (2016) The effects of hormones and vaginal microflora on the glycome of the female genital tract: cervical-vaginal fluid. PLoS One 11(7):e0158687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monteiro RC (2014) Immunoglobulin A as an anti-inflammatory agent. Clin Exp Immunol 178(Suppl 1):108–110

    Google Scholar 

  • Monteiro RC, Van De Winkel JG (2003) IgA Fc receptors. Annu Rev Immunol 21:177–204

    Article  CAS  PubMed  Google Scholar 

  • Monteiro RC, Kubagawa H, Cooper MD (1990) Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in humans. J Exp Med 171(3):597–613

    Article  CAS  PubMed  Google Scholar 

  • Montero-Morales L, Steinkellner H (2018) Advanced plant-based glycan engineering. Front Bioeng Biotechnol 6:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Montero-Morales L, Maresch D, Crescioli S et al (2019) In planta glycan engineering and functional activities of IgE antibodies. Front Bioeng Biotechnol 7:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore JS, Kulhavy R, Tomana M et al (2007) Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol 44(10):2598–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura IC, Centelles MN, Arcos-Fajardo M et al (2001) Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 194(4):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura IC, Arcos-Fajardo M, Sadaka C et al (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15(3):622–634

    Article  CAS  PubMed  Google Scholar 

  • Mummert E, Fritzler MJ, Sjöwall C, Bentow C, Mahler M (2018) The clinical utility of anti-double-stranded DNA antibodies and the challenges of their determination. J Immunol Methods 459:11–19

    Article  CAS  PubMed  Google Scholar 

  • Murphy TF, Kirkham C, Jones MM, Sethi S, Kong Y, Pettigrew MM (2015) Expression of IgA proteases by Haemophilus influenzae in the respiratory tract of adults with chronic obstructive pulmonary disease. J Infect Dis 212(11):1798–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima A, Vogelzang A, Maruya M et al (2018) IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J Exp Med 215(8):2019–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa S, Imamura R, Kawamura M et al (2019) Evaluation of IgA1 O-glycosylation in Henoch-Schönlein purpura nephritis using mass spectrometry. Transplant Proc 51(5):1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Newburg DS, Ruiz-Palacios GM, Morrow AL (2005) Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25:37–58

    Article  CAS  PubMed  Google Scholar 

  • Nikolova EB, Tomana M, Russell MW (1994) The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA. Immunology 82(2):321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norderhaug IN, Johansen FE, Schjerven H, Brandtzaeg P (1999) Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol 19(5–6):481–508

    CAS  PubMed  Google Scholar 

  • Novak J, Tomana M, Kilian M et al (2000) Heterogeneity of O-glycosylation in the hinge region of human IgA1. Mol Immunol 37(17):1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Tomana M, Matousovic K et al (2005) IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67(2):504–513

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Moldoveanu Z, Renfrow MB et al (2007) IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol 157:134–138

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Julian BA, Tomana M, Mestecky J (2008) IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 28(1):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak J, Raskova Kafkova L, Suzuki H et al (2011a) IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrol Dial Transplant 26(11):3451–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak J, Moldoveanu Z, Julian BA et al (2011b) Aberrant glycosylation of IgA1 and anti-glycan antibodies in IgA nephropathy: role of mucosal immune system. Adv Otorhinolaryngol 72:60–63

    PubMed  Google Scholar 

  • Novak J, Julian BA, Mestecky J, Renfrow MB (2012) Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 34(3):365–382

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Rizk D, Takahashi K et al (2015) New insights into the pathogenesis of IgA nephropathy. Kidney Dis 1(1):8–18

    Article  Google Scholar 

  • Novak J, Barratt J, Julian BA, Renfrow MB (2018) Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol 38(5):461–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odani H, Hiki Y, Takahashi M et al (2000) Direct evidence for decreased sialylation and galactosylation of human serum IgA1 Fc O-glycosylated hinge peptides in IgA nephropathy by mass spectrometry. Biochem Biophys Res Commun 271(1):268–274

    Article  CAS  PubMed  Google Scholar 

  • Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K (2020a) Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 17(4):275–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama Y, Yamaguchi H, Nakajima K et al (2020b) Analysis of O-glycoforms of the IgA1 hinge region by sequential deglycosylation. Sci Rep 10(1):671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen NJ, Choi MY, Fritzler MJ (2017) Emerging technologies in autoantibody testing for rheumatic diseases. Arthritis Res Ther 19(1):172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oortwijn BD, Roos A, Royle L et al (2006) Differential glycosylation of polymeric and monomeric IgA: a possible role in glomerular inflammation in IgA nephropathy. J Am Soc Nephrol 17(12):3529–3539

    Article  CAS  PubMed  Google Scholar 

  • Pabst O, Slack E (2020) IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 13(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Pagan JD, Kitaoka M, Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172(3):564–577.e513

    Google Scholar 

  • Papista C, Gerakopoulos V, Kourelis A et al (2012) Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Investig 92(4):625–635

    Article  CAS  PubMed  Google Scholar 

  • Papista C, Lechner S, Ben Mkaddem S et al (2015) Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction. Kidney Int 88(2):276–285

    Article  CAS  PubMed  Google Scholar 

  • Perman JA, Modler S (1982) Glycoproteins as substrates for production of hydrogen and methane by colonic bacterial flora. Gastroenterology 83(2):388–393

    Article  CAS  PubMed  Google Scholar 

  • Peterson R, Cheah WY, Grinyer J, Packer N (2013) Glycoconjugates in human milk: protecting infants from disease. Glycobiology 23(12):1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthésy B (2002) Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Pillebout E, Jamin A, Ayari H et al (2017) Biomarkers of IgA vasculitis nephritis in children. PLoS One 12(11):e0188718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M (2018) Comparative glycomics of immunoglobulin A and G from saliva and plasma reveals biomarker potential. Front Immunol 9:2436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posgai MT, Tonddast-Navaei S, Jayasinghe M, Ibrahim GM, Stan G, Herr AB (2018) FcαRI binding at the IgA1 C(H)2-C(H)3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc Natl Acad Sci USA 115(38):E8882–e8891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen K, Brandt J, Hjorth JP, Thøgersen HC, Kilian M (1989) Cloning and sequencing of the immunoglobulin A1 protease gene (iga) of Haemophilus influenzae serotype b. Infect Immun 57(10):3097–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen K, Reinholdt J, Kilian M (1996) Characterization of the Streptococcus pneumoniae immunoglobulin A1 protease gene (IgA) and its translation product. Infect Immun 64(10):3957–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouria S, Corran PH, Smith AC et al (2004) Glycoform composition profiling of O-glycopeptides derived from human serum IgA1 by matrix-assisted laser desorption ionization-time of flight-mass spectrometry. Anal Biochem 330(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Wong G, Audet J et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514(7520):47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raska M, Moldoveanu Z, Suzuki H et al (2007) Identification and characterization of CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase in IgA1-producing cells. J Mol Biol 369(1):69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reily C, Rizk DV, Julian BA, Novak J (2018) Assay for galactose-deficient IgA1 enables mechanistic studies with primary cells from IgA nephropathy patients. BioTechniques 65(2):71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15(6):346–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinholdt J, Kilian M (1997) Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains. Infect Immun 65(11):4452–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinholdt J, Tomana M, Mortensen SB, Kilian M (1990) Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun 58(5):1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renegar KB, Small PA Jr (1994) Passive immunization: systemic and mucosal. Handb Mucosal Immunol:347–356

    Google Scholar 

  • Renfrow MB, Cooper HJ, Tomana M et al (2005) Determination of aberrant O-glycosylation in the IgA1 hinge region by electron capture dissociation fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 280(19):19136–19145

    Article  CAS  PubMed  Google Scholar 

  • Renfrow MB, Mackay CL, Chalmers MJ et al (2007) Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 389(5):1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR (2000) The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med 191(12):2171–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizk DV, Saha MK, Hall S et al (2019) Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J Am Soc Nephrol 30(10):2017–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robb M, Hobbs JK, Woodiga SA et al (2017) Molecular characterization of N-glycan degradation and transport in Streptococcus pneumoniae and its contribution to virulence. PLoS Pathog 13(1):e1006090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson LS, Schwebke J, Lewis WG, Lewis AL (2019) Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J Biol Chem 294(14):5230–5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167(5):2861–2868

    Article  CAS  PubMed  Google Scholar 

  • Royle L, Roos A, Harvey DJ et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems*. J Biol Chem 278(22):20140–20153

    Article  CAS  PubMed  Google Scholar 

  • Russell MW (2007) Biological functions of IgA. Mucosal Immune Defense: Immunoglobulin A:144–172

    Google Scholar 

  • Schroten H, Stapper C, Plogmann R, Köhler H, Hacker J, Hanisch FG (1998) Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli are mediated by sialyloligosaccharides. Infect Immun 66(8):3971–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selewski DT, Ambruzs JM, Appel GB et al (2018) Clinical characteristics and treatment patterns of children and adults with IgA nephropathy or IgA vasculitis: findings from the CureGN study. Kidney Int Rep 3(6):1373–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Senior BW, Woof JM (2005) Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases. Infect Immun 73(3):1515–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior BW, Dunlop JI, Batten MR, Kilian M, Woof JM (2000) Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases. Infect Immun 68(2):463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjögren J, Collin M (2014) Bacterial glycosidases in pathogenesis and glycoengineering. Future Microbiol 9(9):1039–1051

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Ravel J (2017) The vaginal microbiota, host defence and reproductive physiology. J Physiol 595(2):451–463

    Article  CAS  PubMed  Google Scholar 

  • Sørensen V, Rasmussen IB, Sundvold V, Michaelsen TE, Sandlie I (2000) Structural requirements for incorporation of J chain into human IgM and IgA. Int Immunol 12(1):19–27

    Article  PubMed  Google Scholar 

  • Steffen U, Koeleman CA, Sokolova MV et al (2020) IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 11(1):120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart TJ, Takahashi K, Whitaker RH et al (2019) IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology 29(7):543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart TJ, Takahashi K, Xu N et al (2021) Quantitative assessment of successive carbohydrate additions to the clustered O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology 31(5):540–556

    Google Scholar 

  • Stockert RJ, Kressner MS, Collins JC, Sternlieb I, Morell AG (1982) IgA interaction with the asialoglycoprotein receptor. Proc Natl Acad Sci USA 79(20):6229–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser R, Stadlmann J, Schähs M et al (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6(4):392–402

    Article  CAS  PubMed  Google Scholar 

  • Strasser R, Seifert G, Doblin MS et al (2021) Cracking the “Sugar Code”: a snapshot of N- and O-glycosylation pathways and functions in plants cells. Front Plant Sci 12:640919

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuchlova Horynova M, Vrablikova A, Stewart TJ et al (2015) N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant 30(2):234–238

    Article  PubMed  CAS  Google Scholar 

  • Sudhakara P, Sellamuthu I, Aruni AW (2019) Bacterial sialoglycosidases in virulence and pathogenesis. Pathogens 8(1)

    Google Scholar 

  • Sugiyama M, Wada Y, Kanazawa N et al (2020) A cross-sectional analysis of clinicopathologic similarities and differences between Henoch-Schönlein purpura nephritis and IgA nephropathy. PLoS One 15(4):e0232194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Moldoveanu Z, Hall S et al (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118(2):629–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Fan R, Zhang Z et al (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119(6):1668–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Raska M, Yamada K et al (2014) Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem 289(8):5330–5339

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Yasutake J, Makita Y et al (2018) IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int 93(3):700–705

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Moldoveanu Z, Julian BA, Wyatt RJ, Novak J (2019) Autoantibodies specific for galactose-deficient IgA1 in IgA vasculitis with nephritis. Kidney Int Rep 4(12):1717–1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Syed S, Hakala P, Singh AK et al (2019) Role of pneumococcal NanA neuraminidase activity in peripheral blood. Front Cell Infect Microbiol 9:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Wall SB, Suzuki H et al (2010) Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 9(11):2545–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Smith AD, Poulsen K et al (2012) Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res 11(2):692–702

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Raska M, Stuchlova Horynova M et al (2014) Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy. PLoS One 9(2):e99026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ten Hagen KG, Fritz TA, Tabak LA (2003) All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13(1):1r-16r

    Google Scholar 

  • Terai I, Kobayashi K, Vaerman JP, Mafune N (2006) Degalactosylated and/or denatured IgA, but not native IgA in any form, bind to mannose-binding lectin. J Immunol 177(3):1737–1745

    Article  CAS  PubMed  Google Scholar 

  • Tomana M, Niedermeier W, Mestecky J, Skvaril F (1976) The differences in carbohydrate composition between the subclasses of IgA immunoglobulins. Immunochemistry 13(4):325–328

    Article  CAS  PubMed  Google Scholar 

  • Tomana M, Kulhavy R, Mestecky J (1988) Receptor-mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology 94(3):762–770

    Article  CAS  PubMed  Google Scholar 

  • Tomana M, Zikan J, Moldoveanu Z, Kulhavy R, Bennett JC, Mestecky J (1993) Interactions of cell-surface galactosyltransferase with immunoglobulins. Mol Immunol 30(3):265–275

    Article  CAS  PubMed  Google Scholar 

  • Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J (1997) Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int 52(2):509–516

    Article  CAS  PubMed  Google Scholar 

  • Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104(1):73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underdown BJ, Mestecky J (1994) Mucosal immunoglobulins. In: Ogra PL, Mestecky J, Lamm ME, Strober W, McGhee JR, Bienenstock J (eds) Handbook of mucosal immunology. Academic, Boston, pp 79–97

    Chapter  Google Scholar 

  • UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–d169

    Google Scholar 

  • van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JG (2001) IgA and the IgA Fc receptor. Trends Immunol 22(4):205–211

    Article  PubMed  Google Scholar 

  • Wada Y, Dell A, Haslam SM et al (2010a) Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics 9(4):719–727

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Tajiri M, Ohshima S (2010b) Quantitation of saccharide compositions of O-glycans by mass spectrometry of glycopeptides and its application to rheumatoid arthritis. J Proteome Res 9(3):1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Wandall HH, Irazoqui F, Tarp MA et al (2007) The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology 17(4):374–387

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Rahkola J, Redzic JS et al (2020) Mechanism and inhibition of Streptococcus pneumoniae IgA1 protease. Nat Commun 11(1):6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo EM, Coloma MJ, Trinh KR et al (1999) Structural requirements for polymeric immunoglobulin assembly and association with J chain. J Biol Chem 274(47):33771–33777

    Article  CAS  PubMed  Google Scholar 

  • Westerhof LB, Wilbers RH, van Raaij DR et al (2015) Transient expression of secretory IgA in planta is optimal using a multi-gene vector and may be further enhanced by improving joining chain incorporation. Front Plant Sci 6:1200

    PubMed  Google Scholar 

  • Wold AE, Mestecky J, Tomana M et al (1990) Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 58(9):3073–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Kobayashi N, Ikeda T et al (2010) Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 25(12):3890–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Huang ZQ, Raska M et al (2020) Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis (Basel) 6(3):168–180

    Article  Google Scholar 

  • Yamada K, Huang ZQ, Raska M et al (2017) Inhibition of STAT3 signaling reduces IgA1 autoantigen production in IgA nephropathy. Kidney Int Rep 2(6):1194–1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Hou P, Lv J et al (2012) The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 82(7):790–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhao Q, Zhu L, Zhang W (2013) The three complementarity-determining region-like loops in the second extracellular domain of human Fc alpha/mu receptor contribute to its binding of IgA and IgM. Immunobiology 218(5):798–809

    Article  CAS  PubMed  Google Scholar 

  • Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208(2):270–282

    Article  CAS  PubMed  Google Scholar 

  • Wilson TJ, Fuchs A, Colonna M (2012) Cutting edge: human FcRL4 and FcRL5 are receptors for IgA and IgG. J Immunol 188(10):4741–4745

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara T, Brown R, Hall S et al (2012) In vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results Immunol 2:166–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu F, Franc V, Halim LA, Schellekens H, Heck AJR (2016) Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat Commun 7(1):13397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Peng L, Yang D et al (2020) Immunostaining of galactose-deficient IgA1 by KM55 is not specific for immunoglobulin A nephropathy. Clin Immunol 217:108483

    Article  CAS  PubMed  Google Scholar 

  • Westra J, Brouwer E, Raveling-Eelsing E et al (2021) Arthritis autoantibodies in individuals without rheumatoid arthritis: follow-up data from a Dutch population-based cohort (Lifelines). Rheumatology (Oxford) 60(2):658–666

    Article  CAS  Google Scholar 

  • Zickerman AM, Allen AC, Talwar V et al (2000) IgA myeloma presenting as Henoch-Schönlein purpura with nephritis. Am J Kidney Dis 36(3):E19

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lachmann PJ (1994) Glycosylation of IgA is required for optimal activation of the alternative complement pathway by immune complexes. Immunology 81(1):137–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wani JH, Gilbert JV, Plaut AG, Weiser JN (1996) Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect Immun 64(10):3967–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci USA 100(7):4215–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wren JT, Blevins LK, Pang B et al (2017) Pneumococcal Neuraminidase A (NanA) promotes biofilm formation and synergizes with influenza A virus in nasal colonization and middle ear infection. Infect Immun 85(4)

    Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to the colleagues and collaborators as well as to all volunteers participating in the cited studies. The authors apologize to their colleagues in the field whose work is not adequately discussed or cited in this review due to the space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Novak or Matthew B. Renfrow .

Editor information

Editors and Affiliations

Ethics declarations

Funding

The authors of this study were supported in part by NIH grants AR069516, DK106341, CD122194, GM098539, DK078244, and DK082753 and by a gift from the IGA Nephropathy Foundation of America.

Conflict of Interest

MBR and JN are co-founders and co-owners of and consultants for Reliant Glycosciences, LLC. MBR and JN are co-inventors on US patent application 14/318,082 (assigned to UAB Research Foundation). ALH and CR declare no conflict of interest.

Ethical Approval

Not applicable, as this is a review article and, thus, there are no human subjects recruited for this study or any animals used.

Informed Consent

Not applicable, as this is a review article and, thus, there are no human subjects recruited for this study.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansen, A.L., Reily, C., Novak, J., Renfrow, M.B. (2021). Immunoglobulin A Glycosylation and Its Role in Disease. In: Pezer, M. (eds) Antibody Glycosylation. Experientia Supplementum, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-76912-3_14

Download citation

Publish with us

Policies and ethics