Skip to main content
Log in

Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis. In IgAN, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the galactose deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. We have previously demonstrated the first direct localization of multiple O-glycosylation sites on a single IgA1 myeloma protein by use of activated ion-electron capture dissociation (AI-ECD) Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry. Here, we report the analysis of IgA1 O-glycan heterogeneity by use of FT-ICR MS and liquid chromatography FT-ICR MS to obtain unbiased accurate mass profiles of IgA1 HR glycopeptides from three different IgA1 myeloma proteins. Additionally, we report the first AI-ECD fragmentation on an individual IgA1 O-glycopeptide from an IgA1 HR preparation that is reproducible for each IgA1 myeloma protein. These results suggest that future analysis of IgA1 HR from IgAN patients and normal healthy controls should be feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Julian BA, Waldo FB, Rifai A, Mestecky J (1988) Am J Med 84:129–132

    Article  CAS  Google Scholar 

  2. Emancipator SN (1998) In: Jennette JC, Olson JL, Schwartz MM, Silva FG (eds) Heptinstall’s pathology of the kidney. Lippincott-Raven, Philadelphia, pp 479–539

    Google Scholar 

  3. Barratt J, Feehally J (2005) J Am Soc Nephrol 16:2088–2097

    Article  CAS  Google Scholar 

  4. Mestecky J, Tomana M, Crowley-Nowick PA, Moldoveanu Z, Julian BA, Jackson S (1993) Contrib Nephrol 104:172–182

    CAS  Google Scholar 

  5. Novak J, Julian BA, Tomana M, Mestecky J (2001) J Clin Immunol 21:310–327

    Article  CAS  Google Scholar 

  6. Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, Emmett MR, Mestecky J, Marshall AG, Novak J (2005) J Biol Chem 280:19136–19145

    Article  CAS  Google Scholar 

  7. Tarelli E, Smith AC, Hendry BM, Challacombe SJ, Pouria S (2004) Carbohydr Res 339:2329–2335

    Article  CAS  Google Scholar 

  8. Coppo R, Amore A (2004) Kidney Int 65:1544–1547

    Article  CAS  Google Scholar 

  9. Allen AC, Bailey EM, Brenchley PEC, Buck KS, Barrat J, Feehally J (2001) Kidney Int 60:969–973

    Article  CAS  Google Scholar 

  10. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K (2001) Kidney Int 59:1077–1085

    Article  CAS  Google Scholar 

  11. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J (1999) J Clin Invest 104:73–81

    Article  CAS  Google Scholar 

  12. Julian BA, Novak J (2004) Curr Opin Nephrol Hypertens 13:171–179

    Article  CAS  Google Scholar 

  13. Julian BA, Tomana M, Novak J, Mestecky J (1999) Adv Nephrol 29:53–72

    CAS  Google Scholar 

  14. Geyer H, Geyer R (2006) Biochim Biophys Acta 1764:1853–1869

    CAS  Google Scholar 

  15. Wuhrer M, Deelder AM, Hokke CH (2005) J Chromatogr B Analyt Technol Biomed Life Sci 825:124–133

    Article  CAS  Google Scholar 

  16. Carr SA, Huddleston MJ, Bean MF (1993) Protein Sci 2:183–196

    Article  CAS  Google Scholar 

  17. Medzihradszky KF (2005) Methods Enzymol 405:116–138

    Article  CAS  Google Scholar 

  18. Wang F, Nakouzi A, Angeletti RH, Casadevall A (2003) Anal Biochem 314:266–280

    Article  CAS  Google Scholar 

  19. Chalkley RJ, Burlingame AL (2001) J Am Soc Mass Spectrom 12:1106–1113

    Article  CAS  Google Scholar 

  20. Itoh S, Kawasaki N, Ohta M, Hayakawa T (2002) J Chromatogr A 978:141–152

    Article  CAS  Google Scholar 

  21. Olson FJ, Backstrom M, Karlsson H, Burchell J, Hansson GC (2005) Glycobiology 15:177–191

    Article  CAS  Google Scholar 

  22. Liu T, Qian WJ, Gritsenko MA, Camp DG, 2nd, Monroe ME, Moore RJ, Smith RD (2005) J Proteome Res 4:2070–2080

    Article  CAS  Google Scholar 

  23. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  24. Zaia J (2004) Mass Spectrom Rev 23:161–227

    Article  CAS  Google Scholar 

  25. Cooper HJ, Håkansson K, Marshall AG (2005) Mass Spectrom Rev 24:201–222

    Article  CAS  Google Scholar 

  26. Zubarev RA, Kelleher NL, McLafferty FW (1998) J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  27. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Proc Natl Acad Sci USA 101:9528–9533

    Article  CAS  Google Scholar 

  28. Håkansson K, Chalmers MJ, Quinn JP, McFarland MA, Hendrickson CL, Marshall AG (2003) Anal Chem 75:3256–3262

    Article  CAS  Google Scholar 

  29. Håkansson K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL (2001) Anal Chem 73:4530–4536

    Article  CAS  Google Scholar 

  30. Hogan JM, Pitteri SJ, Chrisman PA, McLuckey SA (2005) J Proteome Res 4:628–632

    Article  CAS  Google Scholar 

  31. Kjeldsen F, Haselmann KF, Budnik BA, Sorensen ES, Zubarev RA (2003) Anal Chem 75:2355–2361

    Article  CAS  Google Scholar 

  32. Haselmann KF, Budnik BA, Olsen JV, Nielsen ML, Reis CA, Clausen H, Johnsen AH, Zubarev RA (2001) Anal Chem 73:2998–3005

    Article  CAS  Google Scholar 

  33. Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Anal Chem 71:4431–4436

    Article  CAS  Google Scholar 

  34. Mormann M, Paulsen H, Peter-Katalinic J (2005) Eur J Mass Spectrom (Chichester, Eng) 11:497–511

    Article  CAS  Google Scholar 

  35. Novak J, Vu HL, Novak L, Julian BA, Mestecky J, Tomana M (2002) Kidney Int 62:465–475

    Article  CAS  Google Scholar 

  36. Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J (1997) Kidney Int 52:509–516

    Article  CAS  Google Scholar 

  37. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Kidney Int 71:1148–1154

    Article  CAS  Google Scholar 

  38. Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, Julian BA, Novak J (2007) Mol Immunol 44:2598–2604

    Article  CAS  Google Scholar 

  39. Xu LX, Zhao MH (2005) Kidney Int 68:167–172

    Article  CAS  Google Scholar 

  40. Hiki Y, Tanaka A, Kokubo T, Iwase H, Nishikido J, Hotta K, Kobayashi Y (1998) J Am Soc Nephrol 9:577–582

    CAS  Google Scholar 

  41. Novak J, Tomana M, Kilian M, Coward L, Kulhavy R, Barnes S, Mestecky J (2000) Mol Immunol 37:1047–1056

    Article  CAS  Google Scholar 

  42. Tomana M, Prchal JT, Garner LC, Skalka HW, Barker SA (1984) J Lab Clin Med 103:137–142

    CAS  Google Scholar 

  43. Shevchenko A, Tomas H, Havli Sbreve J, Olsen JV, Mann M (2006) Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  44. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  45. Sullivan B, Addona TA, Carr SA (2004) Anal Chem 76:3112–3118

    Article  CAS  Google Scholar 

  46. Senko MW, Hendrickson CL, Pasa-Tolic L, Marto JA, White FM, Guan S, Marshall AG (1996) Rapid Commun Mass Spectrom 10:1824–1828

    Article  CAS  Google Scholar 

  47. Blakney GT, van der Rest G, Johnson JR, Freitas MA, Drader JJ, Shi SDH, Hendrickson CL, Kelleher NL, Marshall A (2001) in 49th Amer Soc Mass Spectrom Conf on Mass Spectrom Conf on Mass Spectrom & Allied Topics, Chicago, IL

  48. Senko MW, Canterbury JD, Guan S, Marshall AG (1996) Rapid Commun Mass Spectrom 10:1839–1844

    Article  CAS  Google Scholar 

  49. Chowdhury SK, Katta V, Chait BT (1990) Rapid Commun Mass Spectrom 4:81–87

    Article  CAS  Google Scholar 

  50. Senko MW, Hendrickson CL, Emmett MR, Shi SD-H, Marshall AG (1997) J Am Soc Mass Spectrom 8:970–976

    Article  CAS  Google Scholar 

  51. Marshall AG, Verdun FR (1990) Fourier transforms in NMR, optical, and mass spectrometry. A user’s handbook. Elsevier, Amsterdam

    Google Scholar 

  52. Ledford EB, Jr., Rempel DL, Gross ML (1984) Anal Chem 56:2744–2748

    Article  CAS  Google Scholar 

  53. Shi SD-H, Drader JJ, Freitas MA, Hendrickson CL, Marshall AG (2000) Int J Mass Spectrom 195/196:591–598

    Article  CAS  Google Scholar 

  54. Karnoup AS, Turkelson V, Anderson WH (2005) Glycobiology 15:965–981

    Article  CAS  Google Scholar 

  55. Robinson EW, Leib RD, Williams ER (2006) J Am Soc Mass Spectrom 17:1469–1479

    Article  CAS  Google Scholar 

  56. Iwase H, Tanaka A, Hiki Y, Kokubo T, Sano T, Ishii-Karakasa I, Hisatani K, Kobayashi Y, Hotta K (2001) Anal Biochem 288:22–27

    Article  CAS  Google Scholar 

  57. Odani H, Hiki Y, Takahashi M, Nishimoto A, Yasuda Y, Iwase H, Shinzato T, Maeda K (2000) Biochem Biophys Res Commun 271:268–274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Monica Stinnett, Stephanie Wall, John P. Quinn, Stacy Hall, Rose Kulhavy, and Rhubell Brown for their excellent technical assistance. We also thank Dr. Kristina Håkansson for helpful discussions. This work was supported by grants from the National Institutes of Health (RR17261, DK61525, DK71802, DK78244, DE13694, DK64400, and DK47322) the National Science Foundation (DMR-00–841730), the University of Alabama at Birmingham, the National High Magnetic Field Laboratory, and Florida State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Renfrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renfrow, M.B., Mackay, C.L., Chalmers, M.J. et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 389, 1397–1407 (2007). https://doi.org/10.1007/s00216-007-1500-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1500-z

Keywords

Navigation