Skip to main content

Direct and Indirect Impacts of Climatic Change on Soil Communities and Plants

  • Chapter
  • First Online:
Climate Change and the Microbiome

Part of the book series: Soil Biology ((SOILBIOL,volume 63))

  • 1519 Accesses

Abstract

Climate change is one of the most important environmental issues that may lead to changes in the biotic and abiotic components of the planet. The soil communities and plants are affected directly and indirectly by the changing climate, such as increasing average temperatures, increasing CO2 content in the atmosphere, and disturbed rainfall patterns. Climate plays a significant role, right from the development of the soil to its maintenance. The changes in the terrestrial ecosystems that dwell in the soil are a result of the global climate change. The species distribution as well as their interaction with other species in the ecosystem is being altered due to the global climate change. The natural communities are composed of organisms with varying traits and abilities. This chapter aims at comprehensive description of the direct and indirect impacts of climate change on the soil communities and plants and how climate change disturbed or changed soil structure and the microbial communities present in the soil. Further, the chapter also deals about how climate change affects the interaction of soil microbial communities among themselves and with the plant. The discussion also throws light on the extent of effects climate has on the soil degradation, biodiversity in soil community, and other soil dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahirvar BP, Chaudhry S, Kumar M, Das P (2020) Climate change impact on forest and agrobiodiversity: a special reference to Amarkantak area, Madhya Pradesh. In: Contemporary environmental issues and challenges in era of climate change. Springer, Singapore, pp 65–76. https://doi.org/10.1007/978-981-32-9595-7_3

  • Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Ahmad R, Iqbal MA (2018) Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress—a review. J Plant Nutr 1734–1743

    Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  • Amedie FA (2013) Impacts of climate change on plant growth, ecosystem services, biodiversity, and potential adaptation measure. Master Thesis in Atmospheric Science, Department of Biological and Environmental Sciences, University of Gothenburg, Sweden

    Google Scholar 

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global. New Phytol 147:141–154. https://doi.org/10.1046/j.1469-8137.2000.00683.x

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Article  Google Scholar 

  • Awal MA, Ikeda T, Itoh R (2003) The effect of soil temperature on source-sink economy in peanut (Arachis hypogaea) environ. Exp Bot 50:41–50

    Article  Google Scholar 

  • Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos Trans R Soc B 367:1226–1234

    Article  CAS  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:0980–0989. https://doi.org/10.1371/journal.pgen.0020106

    Article  CAS  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 154:365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Berggren A, Björkman C, Bylund H, Ayres MP (2009) The distribution and abundance of animal populations in a climate of uncertainty. Oikos 118:1121–1126

    Article  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  Google Scholar 

  • Botkin DB, Saxe H, Araujo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Hansen AS, Hilbert DW, Loehle C, Margules C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57:227–236

    Article  Google Scholar 

  • Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Chang Biol 20:2971–2982

    PubMed  Google Scholar 

  • Chao Q, Feng A (2018) Scientific basis of climate change and its response. Glob Energy Interconnect 1:420–427. https://doi.org/10.14171/j.2096-5117.gei.2018.04.002

    Article  Google Scholar 

  • Classen AE, Sundqvist MK, Henning JA, Newman GS, Moore JA, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6(8). https://doi.org/10.1890/ES15-00217.1

  • Cohn AS, Vanwey LK, Spera SA, Mustard JF (2016) Cropping frequency and area response to climate variability can exceed yield response. Nat Clim Chang 6:601–604. https://doi.org/10.1038/NCLIMATE2934

    Article  Google Scholar 

  • Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol. https://doi.org/10.1111/j.1574-6941.2010.00900.x

  • Cotton TEA, Fitter AH, Miller RM, Dumbrell AJ, Helgason T (2015) Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytol 205:1598–1607. https://doi.org/10.1111/nph.13224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vries FT, Griffiths RI (2018) Impacts of climate change on soil microbial communities and their functioning. Dev Soil Sci 35. https://doi.org/10.1016/B978-0-444-63865-6.00005-3

  • DeAngelis KMG, Pold BD, Topcuoglu L, van Diepen TA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6

    Google Scholar 

  • Deltedesco E, Keiblinger KM, Piepho H-P, Antonielli L, P€, E. M., Zechmeister-Boltenstern, S., Gorfer, M. (2020) Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol Biochem 142:107704. https://doi.org/10.1016/j.soilbio.2020.107704

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, Leite da Silva Dias P, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry (PDF). In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) IPCC. 2007. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. Accessed 31 Aug 2009

    Google Scholar 

  • Dhankher A (2018) Climate resilient crops for improving global food security and safety, vol 2018. Wiley

    Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P, Brander LM, Erda L, Howden SM et al (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 273–313

    Google Scholar 

  • Erda L, Wei X, Hui J, Yinlong X, Yue L, Liping B, Liyong X (2005) Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc B: Biol Sci 3601463:2149–2154. https://doi.org/10.1098/rstb.2005.1743

    Article  CAS  Google Scholar 

  • Fao (2017) Adaptation to climate change in agriculture, forestry and fisheries: perspective, framework and priorities. In: Food and agriculture organisation of the united nations rome. https://www.google.com/url?sa=t&source=web&rct=j&url=http://www.fao.org/3/a-au030e.pdf&ved=2ahUKEwiVjJiG6L3rAhVJyTgGHeDOC54QFjABegQIDBAG&usg=AOvVaw0-rB_qVizHBxya7hSXCZC3

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50(S1):S-85-S-98. https://doi.org/10.2135/cropsci2009.10.0564

  • Granier C, Massonnet C, Turc O, Muller B, Chenu K, Tardieu F (2002) Individual leaf development in Arabidopsis thaliana: a stable thermal-time-based programme. Ann Bot 89:595–604

    Article  Google Scholar 

  • Gray SB, Strellner RS, Puthuval KK, Shulman R, Siebers M, Rogers A, Leakey ADB (2013) Nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct Plant Biol 40(2):137–147

    Article  Google Scholar 

  • Gray SB, Siebers M, Locke AM, Rosenthal DR, Strellner RS, Paul RE, Klein SP, Ruiz UM, McGrath VJ, Dermody O, Ainsworth EA, Bernacchi CJ, Long SP, Ort DR, Leakey ADB (2016) Intensifying drought eliminates the expected benefits of elevated [CO2] for soybean. Nat Plan Theory. https://doi.org/10.1038/NPLANTS.2016.132

  • Gross EM, Lombardo P (2018) Limited effect of gizzard sand on consumption of the macrophyte Myriophyllum spicatum by the great pond snail Lymnaea stagnalis. Hydrobiologia 812:131–145. https://doi.org/10.1007/s10750-016-2890-8

    Article  CAS  Google Scholar 

  • Haase S, Philippot L, Neumann G, Marhan S, Kandeler E (2008) Local response of bacterial densities and enzyme activities to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L. Soil Biol Biochem 40:1225–1234

    Article  CAS  Google Scholar 

  • Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW et al (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Chang 4:903–906. https://doi.org/10.1038/nclimate2361

    Article  CAS  Google Scholar 

  • Hammond ST, Brown JH, Burger JR, Flanagan TP, Fristoe TS, Mercado-Silva N, Nekola JC, Okie JG (2015) Food spoilage, storage, and transport: implications for a sustainable. Future Biosci 65(8):758–776

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370. https://doi.org/10.2134/agronj2010.0303

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Chang Biol 14:1–10

    Article  Google Scholar 

  • Hedhly A (2011) Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ Exp Bot 74:9–16

    Article  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 151 pp

    Google Scholar 

  • Isobe KK, Koba S, Otsuka, Senoo. K. (2011) Nitrification and nitrifying microbial communities in forest soils. J For Res 16:351–362

    Article  CAS  Google Scholar 

  • Jansson JK, Hofmockel KS (2019) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46. https://doi.org/10.1038/s41579-019-0265-7

    Article  CAS  PubMed  Google Scholar 

  • Janus LR, Angeloni NL, McCormack J, Rier ST, Tuchman NC, Kelly JJ (2005) Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microb Ecol 50:102–109. https://doi.org/10.1007/s00248-004-0120-9

    Article  PubMed  Google Scholar 

  • Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security – a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  • Kardol P, Cregger MA, Campany CE, Classen AT (2010) Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91(3):767–781. https://doi.org/10.1890/09-0135.1

    Article  PubMed  Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 42:51–73. https://doi.org/10.17311/sciintl.2016.51.73

  • Kellner H, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One 5:E10971. https://doi.org/10.1371/journal.pone.0010971

  • Kleinhesselink AR (2017) Direct and indirect effects of climate change on plant populations and communities in Sagebrush Steppe. In All Graduate Theses and Dissertations. https://digitalcommons.usu.edu/etd/5417

  • Kulmatiski A, Kardol P (2008) Getting plant–soil feedbacks out of the greenhouse: experimental and conceptual approaches. In: Luttge UE, Esser K, Beyschlag W, Murata J (eds) Progress in botany-69 (Review genetic physiology ecology). Springer, Berlin, pp 449–472

    Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82(8):1016–1045. https://doi.org/10.1139/b04-060

    Article  Google Scholar 

  • Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc R Soc B: Biol Sci 276:2333–2343

    Article  CAS  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Ort DR, Long SP (2006) Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant Cell Environ 29:1794–1800

    Article  CAS  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    Google Scholar 

  • Mahato A (2014) Climate change and its impact on agriculture. Int J Sci Res 4:1–6

    Google Scholar 

  • McGrath JM, Lobell DB (2013) Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ Res Lett 8(1):014054. https://doi.org/10.1088/1748-9326/8/1/014054

    Article  CAS  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00112

  • Miller D (2001) Distributing responsibilities. J Polit Philos 9(4). https://doi.org/10.1111/1467-9760.00136

  • Miller RM, Jastrow JD, Reinhardt DR (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  CAS  Google Scholar 

  • Mishra T (2016) Climate change and production of secondary metabolites in medicinal plants: a review. Int J Herb Med 4:27–30

    Google Scholar 

  • Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K et al (2014) Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10:3–19. https://doi.org/10.1016/j.funeco.2014.01.005

    Article  Google Scholar 

  • Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, Elliott J, Fujimori S, Hasegawa T, Heyhoe E, Kyle P, Von Lampe M, Lotze-Campen H, Mason D’croz D, Van Meijl H, Van Der Mensbrugghe D, Müller C, Popp A, Robertson R, Performed DW (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Soc Sci 111:3274–3279. https://doi.org/10.1073/pnas.1222465110

    Article  CAS  Google Scholar 

  • Pandey D (2020) Agricultural sustainability and climate change nexus. In: Contemporary environmental issues and challenges in era of climate change. Springer Nature, Singapore. https://doi.org/10.1007/978-981-32-9595-7_4

  • Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Wardle DA, Van Der Putten WH (2019) Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci Adv 5–11. https://doi.org/10.1126/sciadv.aaz1834

  • Rai R (2020) Heat stress in crops: driver of climate change impacting global food supply. In: Contemporary environmental issues and challenges in era of climate change. Springer Nature, Singapore, pp 99–117. https://doi.org/10.1007/978-981-32-9595-7_5

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34. https://doi.org/10.3390/plants8020034

    Article  CAS  Google Scholar 

  • Rosenthal DM, Ort DR (2012) Examining cassava’s potential to enhance food security under climate change trop. Plant Biol 5:30–38

    Google Scholar 

  • Rosenthal DM, Slattery RA, Miller RE, Grennan AK, Cavagnaro TR, Fauquet CM, Gleadow RM, Ort DR (2012) Cassava about-FACE: greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. Glob Change Biol 18:2661–2675

    Article  Google Scholar 

  • Salam MA, Noguchi T (2005) Impact of human activities on carbon dioxide (CO2) emissions: a statistical analysis. Environmentalist 25:19–30

    Article  Google Scholar 

  • Sanders IR, Streitwolf-Engel R, Van Der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117:496–503

    Article  CAS  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00348

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Tang J, Xu L, Chen X, Hu S (2009) Interaction between C4 barnyard grass and C3 upland rice under elevated CO2: impact of mycorrhizae. Acta Oecol 35:227–235

    Article  Google Scholar 

  • Van Der Putten WH, Bardgett RD, Bever JD, Martijn Bezemer T, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van De Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276. https://doi.org/10.1111/1365-2745.12054

    Article  Google Scholar 

  • Veresoglou SD, Anderson IC, de Sousa NMF, Hempel S, Rillig MC (2016) Resilience of fungal communities to elevated CO2. Microb Ecol 72:493–495

    Article  CAS  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17:2145–2161

    Article  Google Scholar 

  • Warren R (2011) The role of interactions in a world implementing adaptation and mitigation solutions to climate change. Trans R Soc A 369:217–241. https://doi.org/10.1098/rsta.2010.0271

    Article  CAS  Google Scholar 

  • Whitaker JN, Ostle AT, Nottingham A, Ccahuana N, Salinas RD, Bardgett P, Meirand NP, McNamara (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102:1058–1071

    Article  CAS  Google Scholar 

  • Whittle CA, Otto SP, Johnston MO, Krochko JE (2009) Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany (Botanique) 87:650–657

    Google Scholar 

  • Wilson H, Johnson BR, Bohannan B, Pfeifer-Meister L, Mueller R, Bridgham SD (2016) Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient. Peer J 4:e2083. https://doi.org/10.7717/peerj.2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  Google Scholar 

  • Zavalloni C, Vicca S, Büscher M et al (2012) Exposure to warming and CO2 enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant Soil 359:121–136

    Article  CAS  Google Scholar 

  • Zhang T, Yang X, Gu R, Guo J (2016) Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Sci Rep 6:24749. https://doi.org/10.1038/srep24749

  • Ziska LH (2008) Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. In: Kleinman DL, Cloud-Hansen KA et al (eds) Controversies in science and technology, from climate to chromosomes. Liebert, New Rochele, 379–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Kumari, M., Pathak, M., Kamboj, J.S. (2021). Direct and Indirect Impacts of Climatic Change on Soil Communities and Plants. In: Choudhary, D.K., Mishra, A., Varma, A. (eds) Climate Change and the Microbiome. Soil Biology, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-76863-8_11

Download citation

Publish with us

Policies and ethics