Skip to main content

Impact of Climate Change on Soil Microbial Community

  • Chapter
  • First Online:
Plant Biotic Interactions

Abstract

As climate changes endlessly, it becomes more important to understand possible reactions from soils to the climate system. It is a known fact that microorganisms, which are associated with plant, may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors, such as elevated CO2, drought, and temperature on beneficial plant–microorganism interactions are increasingly being explored. Organisms live in concert with thousands of other species, such as some beneficial and pathogenic species which have little to no effect on complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability, it is unlikely that all of the microbial community will respond to climatic change factors in a similar way. Among the different factors related to climate change, elevated CO2 had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant-growth-promoting bacteria and endophytic fungi were more variable. The rise in temperature effects on beneficial plant-associated microorganisms were more variable, positive, neutral, and negative, which were equally common and varied considerably with the temperature range. Likewise, plant-growth-promoting microorganisms (i.e., bacteria and fungi) positively affected plants subjected to drought stress. In this chapter, we explore how climatic change affects soil microbes and plant-associated microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajwa H, Dell CJ, Rice CW (1999) Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol Biochem 31:769–777

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon CW, De Battista J (1991) Endophytic fungi of grasses. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology Vol. 1. Soil and plants. Dekker, New York, pp 231–256

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balser TC, Kinzig A, Firestone MK (2001) Linking soil microbial communities and ecosystem functioning. In: Kinzig A, Pacala S, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, NJ, pp 265–294

    Google Scholar 

  • Baon JB, Smith SE, Alston AM (1994) Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. J Plant Nutr 17:479–492

    Article  Google Scholar 

  • Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert grassland. Microb Ecol 56:153–167

    Article  PubMed  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, Berlin, pp 225–258

    Chapter  Google Scholar 

  • Bradford MA (2013) Thermal adaptation of decomposer communities in temperature soils. Front Microbiol 4:333. https://doi.org/10.3389/fmicb.2013.00333

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  PubMed  Google Scholar 

  • Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Chang Biol 20:2971–2982

    Article  PubMed  Google Scholar 

  • Brosi GB, Nelson JA, McCulley RL, Classen AT, Norby R (2009) PS 45–40: Global change factors interact with fungal endophyte symbiosis to determine tall fescue litter chemistry. The 94th ESA annual meeting, PS 45–40

    Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves—from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Chen X, Tu C, Burton MG, Watson DM, Burkey KO, Hu S (2007) Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae. Glob Chang Biol 13:1238–1249

    Article  Google Scholar 

  • Compant S, Cl’ement C, Sessitsch A (2010) Colonization of plant growth-promoting bacteria in the rhizo- and endosphere of plants: importance, mechanisms involved and future prospects. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cregger MA, Schadt CW, Mc Dowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78:8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregger MA, Sanders NJ, Dunn RR, Classen AT (2014) Microbial communities respond to experimental temperature, but site matters. Peer J 2

    Google Scholar 

  • Davies FT Jr, Olalde-Portugal V, Aguilera-Gómez L, Alvarado MJ, Ferrera-Cerrato RC, Boutton TW (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92:347–359

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado Comesana A (2014) Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102:1592–1605

    Article  CAS  Google Scholar 

  • Dermody O, Weltzin JF, Engel EC, Allen P, Norby RJ (2007) How do elevated CO2, warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 301:255–266. https://doi.org/10.1007/s11104-007-9443-x

    Article  CAS  Google Scholar 

  • Dhillion S, Roy J, Abrams M (1996) Assessing the impact of elevated CO2 in a Mediterranean model ecosystem. Plant Soil 187:333–342

    Article  CAS  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Drigo B, van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond to elevated atmospheric CO2. ISME J 3:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    Article  CAS  Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398

    Article  CAS  Google Scholar 

  • Furlan V, Fortin J-A (1973) Formation of endomycorrhizae by Endogone calospora on Allium cepa under three temperature regimes. Nat Can 100:467–477

    Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    Article  CAS  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1982) Interaction of light and soil temperature with phosphorus inhibition of vesicular–arbuscular mycorrhiza formation. New Phytol 91:683–690

    Article  CAS  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007) Elevation of atmospheric CO2 and Nnutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    Article  CAS  Google Scholar 

  • Haase S, Philippot L, Neumann G, Marhan S, Kandeler E (2008) Local response of bacterial densities and enzyme activities to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L. Soil Biol Biochem 40:1225–1234

    Article  CAS  Google Scholar 

  • Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with temperature in soil. Nat Clim Chang 4:903–906

    Article  CAS  Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Chang Biol 14:1181–1190

    Article  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    Article  CAS  PubMed  Google Scholar 

  • Henry HA, Clelad EE, Field CB, Vitousek PM (2005) Interactive effects of CO2, N deposition, and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    Article  PubMed  Google Scholar 

  • Horz HP, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci USA 101:15136–15141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horz HP, Rich V, Avrahami S, Bohannan BJM (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungate BA, Lund CP, Pearson HL, Chapin FS (1997) Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89–109

    Article  CAS  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2460

    Article  CAS  Google Scholar 

  • Kapoor R, Mukerji KG (2006) Rhizosphere microbial community dynamics. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 55–66

    Chapter  Google Scholar 

  • Karhu K et al (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN, Allen MF, Rillig MC, Piotrowski J, MakvandiNejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature 433:621–624

    Article  CAS  PubMed  Google Scholar 

  • Koide R (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  PubMed  Google Scholar 

  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185

    Article  Google Scholar 

  • Lehto T (1992) Mycorrhizas and drought resistance of Picea sitchensis (bong) Carr. I. in conditions of nutrient deficiency. New Phytol 122:669–673

    Article  CAS  Google Scholar 

  • Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promorting Rhizobacteria. Annu Rev Microbiol 63(1):541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, West Sussex, pp 1–10

    Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    Article  CAS  PubMed  Google Scholar 

  • Mayr C, Miller M, Insam H (1999) Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grassland. J Microbiol Methods 36:35–43

    Article  CAS  PubMed  Google Scholar 

  • Monz CA, Kunt HW, Reeves FB, Elliot ET (1994) The response ofmycorrhizal colonization to elevated CO2 and climate change in Pascopyrum smithii and Bouteloua gracilis. Plant Soil 165:75–80

    Article  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multifunctionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Niinisto SM, Silvola J, Kellomaki S (2004) Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air temperature. Glob Chang Biol 10:1–14

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260

    Chapter  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90:649–662

    Article  PubMed  Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Chang Biol 13:28–39

    Article  Google Scholar 

  • Sherwood M, Carroll G (1974) Fungal succession on needles and young twigs of old-growth Douglas fir. Mycologia 66:499–506

    Article  Google Scholar 

  • Shi S, Condron L, Larsen S, Richardson AE, Jones E, Jiao J, O’Callaghan M, Stewart A (2011) In situ sampling of low molecular weight organic anions from rhizosphere of Pinus radiata grown in a rhizotron system. Environ Exp Bot 70:131–142

    Article  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism definded. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 3–29

    Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  PubMed  Google Scholar 

  • van der Putten WH (2012) Climate change, aboveground-belowground interactions and species range shifts. Annu Rev Ecol Evol Syst 43:365–383

    Article  Google Scholar 

  • van Veen K, Liljeroth E, Lekkerkerk J (1991) Carbon fluxes in plant-soil systems at elevated atmospheric carbon dioxide levels. Ecol Appl 1:175–181

    Article  PubMed  Google Scholar 

  • Waldon HB, Jenkins MB, Virginia RA, Harding EE (1989) Characteristics of woodland rhizobial population from surface- and deep-soil environments of the Sonoran Desert. Appl Environ Microbiol 55:3058–3064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • White JF Jr (1994) Taxonomic relationships among the members of the Balansiae (Clavicipitales). In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic Fungi of Grasse. CRC Press, Boca Raton, FL, pp 3–20

    Google Scholar 

  • White JF Jr, Reddy PV (1998) Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloë and Parepichloë. Mycologia 90:226–234

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil temperature. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mekala, S., Polepongu, S. (2019). Impact of Climate Change on Soil Microbial Community. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Biotic Interactions . Springer, Cham. https://doi.org/10.1007/978-3-030-26657-8_3

Download citation

Publish with us

Policies and ethics