Skip to main content

Genomic Designing for Biotic Stress Resistance in Pearl Millet [Pennisetum glaucum (L.) R. Br.]

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Cereal Crops

Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a major staple crop of 90 million poor people and is grown on 27 million ha area in arid and semi-arid tropics of Asia and Africa. It is a mutipurpose crop with excellent nutritional and medicinal values. It is a rich source of energy and micronutrients like iron, zinc and vitamins and gluten free with low glycemic index. Pearl millet is affected by different biotic stresses such as fungal, bacterial and viral diseases as well as attack by major insects like shoot fly, stem borer, grasshopper, termite, white grub, grey weevil, cut worm etc. like other cereals resulting in yield losses to the tune of 10–60%. Thus, it is necessary to understand genetics of host plant resistance, pathogen variability and its mechanism of action using advanced tools. Further, there is a need to develop new insect and disease resistant genotypes using genomic tools there by reducing cost of cultivation, environmental pollution and reducing yield losses. There has been a lot of progress in pearl millet genetic improvement using genetic resource conservation and evaluation along with conventional and modern approaches to overcome biotic and abiotic stresses which helped in achieving high level of productivity, quality and profitability. Recently reported genome sequence information and several genomic studies signify the need to further exploit its beneficial attributes. Hence, use of modern genomic tools and genomic designing approaches including, transcriptomics, proteomics, metabolomics, genome editing etc. is very much desired for gene identification, trait mapping to understand several complicated gene pathways and their interactions in order to better identify different genes governing biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AICRP on Pearl millet. www.aicpmip.res.in, www.aicrp.icar.gov.in/pearl

  • Ajeigbe HA, Angarawai II, Inuwa AH, Akinseye FM, Abdul AT (2020) Hand book on improved pearl millet production practices in North Eastern, Nigeria. International Institute of Tropical Agriculture, IITA Abuja Station, Kubwa, Abuja FCT, Nigeria, p 10

    Google Scholar 

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102(8):1200–1205

    Article  CAS  Google Scholar 

  • Ambawat S, Senthivel S, Hash CT, Nepolean T, Rajaram V, Eshwar K et al (2016) QTL mapping for rust resistance in pearl millet using an integrated DArT and SSR-based linkage map. Euphytica 209:461–476. https://doi.org/10.1007/s10681-016-1671-9

    Article  Google Scholar 

  • Ambawat S, Subaran Singh S, Meena RC, Satyavathi CT (2020) Biotechnological applications for improvement of the pearl millet crop. In: Gahlawat SK, Punia S, Siroha AK, Sandhu KS, Kaur M (eds) Pearl millet: properties, functionality and its applications. Taylor & Francis (CRC Press), Boca Raton, Finland, pp 115–138. https://doi.org/10.1201/9780429331732-7

  • Bhat SS (1973) Investigation on the biology and control of Sclerospora graminicola on bajra. PhD thesis, University of Mysore, Mysore, Karnataka, India, 165 p

    Google Scholar 

  • Bollam S, Pujarula V, Srivastava RK, Gupta RK (2018) Genomic approaches to enhance stress tolerance for productivity improvements in pearl millet. In: Biotechnologies of crop improvement, vol 3. Springer, Berlin/Heidelberg, Germany, pp 239–264

    Google Scholar 

  • Bourland FM (1987) Registration of ICML11 rust resistant pearl millet germplasm. Crop Sci 27:367

    Article  Google Scholar 

  • Breese WA, Hash CT, Devos KM, Howarth CJ (2002) Pearl millet genomics-an overview with respect to breeding for resistance to downy mildew. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, Iowa, USA, pp 243–246

    Google Scholar 

  • Brunken JN, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Bot 31:163–174

    Article  Google Scholar 

  • Burton GW, Wilson JP (1995) Registration of Tift 65 parental inbred line of pearl millet. Crop Sci 35:1244

    Article  Google Scholar 

  • Butler EJ (1907) Some diseases of cereals caused by Sclerospora graminicola. Memoirs of the Department of Agriculture. India Bot Ser 2:1–2

    Google Scholar 

  • Chanwala J, Satpati S, Dixit A, Parida A, Giri MK, Dey N (2020) Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genom 21(1):1–16

    Article  CAS  Google Scholar 

  • Chelpuri D, Sharma R, Durga KK, Katiyar P, Mahendrakar MD, Singh RB, Yadav RS, Gupta R, Srivastava RK (2019) Mapping quantitative trait loci (QTLs) associated with resistance to major pathotype-isolates of pearl millet downy mildew pathogen. Eur J Plant Pathol 154(4):983–994

    Article  CAS  Google Scholar 

  • Das IK, Rajendrakumar P (2016) Disease resistance in sorghum. In: Das IK, Padmaja PG (eds) Biotic stress resistance in millets. Academic Press, Cambridge, Massachusetts, pp 23–67

    Chapter  Google Scholar 

  • Das IK, Rakshit S (2016) Millets, their importance, and production constraints. In: Das IK, Padmaja PG (eds) Biotic stress resistance in millets. Academic Press, Cambridge, Massachusetts, pp 3–19

    Chapter  Google Scholar 

  • Deepak SA, Raj SN, Umemura K, Kono T, Shetty HS (2003) Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Ann Appl Biol 143:169–173

    Article  CAS  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S, Hash CT (2012) Millets: genetic, and genomic resources. In: Janick J (ed) Plant breeding reviews. Wiley, Hoboken, NJ, pp 247–375

    Google Scholar 

  • Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum (L.) R. Br.) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgen Res 15:313–324. https://doi.org/10.1007/s11248-006-0001-8

    Article  CAS  Google Scholar 

  • Gulia SK, Hash CT, Thakur RP, Breese WA, Sangwan RS (2007) Mapping new QTLs for downy mildew [Sclerospora graminicola (Sacc.) J. Schroet.] resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. In: Singh DS, Tomar VS, Behl RK, Upadhyaya SD, Bhale MS (eds) Crop production in stress environments-genetic and management options. Agrobios International, New Delhi

    Google Scholar 

  • Hanna WW, Hill GM, Gates RN, Wilson JP, Burton GW (1997) Registration of tif leaf 3 pearl millet. Crop Sci 37:1388

    Article  Google Scholar 

  • Hash CT, Witcombe JR (2001) Pearl millet molecular marker research. Intl Sorghum Millets Newsl 42:8–15

    Google Scholar 

  • Hash CT, Witcombe JR (2002) Gene management and breeding for downy mildew resistance. In: Leslie JE (ed) Sorghum and millets diseases. Iowa State Press, Ames, Iowa, USA, pp 27–36

    Google Scholar 

  • Hash CT, Cavan GP, Bidinger FR, Howarth CJ, Singh SD (1995) Downy mildew resistance QTLs from a seedling heat tolerance mapping population. Intl Sorghum Millets Newsl 136:66–67

    Google Scholar 

  • Hash CT, Witcombe JR, Thakur RP, Bhatnagar SK, Singh SD, Wilson JP (1997) Breeding for pearl millet disease resistance. In: Proceedings of international conference on genetic improvement of sorghum and pearl millet held from 22–27 September 1996 at Lubbock, Texas, USA, pp 337–373

    Google Scholar 

  • Hash CT, Singh SD, Thakur RP, Talukdar BS (1999) Breeding for disease resistance. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford & IBH, New Delhi, India, pp 337–379

    Google Scholar 

  • Hash CT, Sharma A, Kolesnikova-Allen MA, Singh SD, Thakur RP, Raj AGB, Ratnajirao M NV, Nijhawan DC, Beniwal CR, Sagar P, Yadav HP, YadavYP, Srikant, Bhatnagar SK, KhairwalI S, Howarth CJ, Cavan GP, Gale MD, Liu C, Devos KM, Breese WA, Witcombe JR (2006) Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers : Pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. J SAT Agric Res 2: 16-20

    Google Scholar 

  • Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programmes. Genetics 132:1199–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hovmøller MS (2007) Source of seedling and adult plant resistance to Puccinia striiformis f. sp. tritici in European wheats. Plant Breed 126:225–233

    Article  CAS  Google Scholar 

  • Hovmøller MS, Ostergard H, Munk L (1997) Modelling virulence dynamics of air-borne plant pathogens in relation to selection by host resistance. In: Crute IR, Holub E, Burdon JJ (eds) The gene-for-gene relationship in plant parasite interactions. CAB International, Wallingford, Oxon, UK, pp 173–190

    Google Scholar 

  • Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP (2015) Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16(1):1048

    Google Scholar 

  • Iwata M (2001) Probenazole a plant defence activator. Pestic Outlook 12:2831

    Article  Google Scholar 

  • Jogaiah S, Soshee AK, Hunthrike SS (2008) Characterization of downy mildew isolates of Sclerospora graminicola by using differential cultivars and molecular markers. J Cell Mol Biol 7:41–755. https://doi.org/10.1094/PHYTO.1998.88.4.292

    Article  CAS  Google Scholar 

  • Jogaiah S, Sharathchandra RG, Raj N (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41:7815–7824. https://doi.org/10.1007/s11033-014-3675-7

    Article  CAS  PubMed  Google Scholar 

  • Jogaiah S, Shetty HS, Ito SI, Tran LP (2016) Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiol Biochem 105:109–117. https://doi.org/10.1016/j.plaphy.2016.04.006. Epub 2016 Apr 4

  • Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor and Appl Genet 91:448–456

    Article  CAS  Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Kato H (2001) Rice blast control. Pesticide Outlook 23–25. Japan Crop Protection Association (JCPA), Japan

    Google Scholar 

  • Khairwal IS, Yadav OP (2005) Pearl millet (Pennisetum glaucum) improvement in India-retrospect and prospects. Indian J Agric Sci 75:183–191

    Google Scholar 

  • Khairwal IS, Rai KN, Yadav OP, Bhatnagar SK (2004) Pearl millet cultivars. Mandor, Jodhpur, Rajasthan, India: All India Coordinated Pearl Millet Improvement Project, Indian Council of Agricultural Research, New Delhi, India, p 22

    Google Scholar 

  • Krishnamurthy K, Gnanamanickam SS (1998) Biological control of rice blast by pseudomonas fluorescens strain Pf7-14: evaluation of a marker gene and formulations. Biol Control 3:158–165

    Article  Google Scholar 

  • Kulkarni KS, Zala HN, Bosamia TC, Shukla YM, Kumar S, Fougat RS, Patel MS, Narayanan S, Joshi CG (2016) De novo transcriptome sequencing to dissect candidate genes associated with pearl millet-downy mildew (Sclerospora graminicola Sacc.) interaction. Front Plant Sci 7:847. https://doi.org/10.3389/fpls.2016.00847

  • Kumar A (2008) Biocontrol of plant diseases: need to tap the options. J Arid Legumes 5:99–108

    CAS  Google Scholar 

  • Kumar A, Manga VK, Gour HN, Purohit AK (2012) Pearl millet downy mildew: challenges and prospects. Annu Rev Plant Pathol 5:139–177

    Google Scholar 

  • Kurahashi Y (2001) Melanin biosynthesis inhibitors (MBIs) for control of rice blast. Pestic Outlook 12:32–35

    Article  CAS  Google Scholar 

  • Latha AM, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935. https://doi.org/10.1007/s00299-006-0141-6

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP- based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    Article  CAS  PubMed  Google Scholar 

  • Malik S (2015) Pearl millet-nutritional value and medicinal use. Intl J Adv Res Innov Ideas Educ 1:414–418

    Google Scholar 

  • McDonald BA, Linde C (2003) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  Google Scholar 

  • Mishra MK, Srivastava M, Singh G, Tiwari S, Niranjan A, Kumari N, Misra P (2017) Over expression of Withania somnifera SGTL1 gene resists the interaction of fungus Alternaria brassicicola in Arabidopsis thaliana. Physiol Mol Plant Pathol 97:11–19

    Article  CAS  Google Scholar 

  • Morgan RN, Wilson JP, Hanna WW, Ozias-Akins P (1998) Molecular markers for rust and Pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420. https://doi.org/10.1007/s001220050757

    Article  CAS  PubMed  Google Scholar 

  • Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BI, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35(1) 5–10

    Google Scholar 

  • Nagaraja A, Das IK (2016) Disease resistance in pearl millet and small millets. In: Das IK, Padmaja PG (eds) Biotic stress resistance in millets. Academic Press Cambridge, Massachusetts, pp 69–104

    Chapter  Google Scholar 

  • Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS (2019) Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protec 121:103–112

    Article  CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Nandini B, Puttaswamy H, Prakash HS, Adhikari S, Jogaiah S, Nagaraja G (2020) Elicitation of novel trichogenic-lipid nanoemulsion signaling resistance against pearl millet downy mildew disease. Biomolecules 10(1):25

    Article  CAS  Google Scholar 

  • Nayaka SC, Shetty HS, Satyavathi CT, Yadav RS, Kavi Kishor PB, Nagarajud M et al (2017a) Draft genome sequence of Sclerospora graminicola the pearl millet downy mildew pathogen. Biotechnol Rep 16:18–20

    Article  Google Scholar 

  • Nayaka SC, Srivastava RK, Udayashankar AC, Lavanya SN, Prakash G, Bishnoi HR, Kadvani DL, Singh OV, Niranjana SR, Prakash HS, Satyavathi CT (2017b) Magnaporthe blast of pearl millet in India—present status and future prospects. All India Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research), Mandor, Jodhpur, India, 51 p

    Google Scholar 

  • Ngom B, Sarr I, Kimatu J, Mamati E, Kane NA (2017) Genome-wide analysis of cytosine DNA methylation revealed salicylic acid promotes defense pathways over seedling development in pearl millet. Plant Signal Behav 12(9):1356967

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Smith G, Botha FC (2004) Improved regeneration efficiency of a pearl millet [Pennisetum glaucum (L.)] R. Br.] breeding line. S Afr J Bot 70:502–508

    Google Scholar 

  • Prakash G, Kumar A, Sheoran N, Aggarwal R, Satyavathi CT, Chikara SK, Ghosh A, Jain RK (2019) First draft genome sequence of a pearl millet blast pathogen, Magnaporthe grisea strain PMg_Dl, obtained using PacBio single-molecule real-time and Illumina NextSeq 500 sequencing. Microbiol Resour Announc 8:e01499-18. https://doi.org/10.1128/MRA.01499-18

  • Punnauri SM, Wallace JG, knoll JE, Hyma KE, Mitchell SE, Buckler ES, Varshney K, Singh BP (2016) Development of a high-density linkage map and tagging leaf spot resistance in pearl millet using genotyping-by-sequencing markers. Plant Genome 9 (2):1–13

    Google Scholar 

  • Pushpavathi B, Thakur RP, Chandrashekar Rao K, Rao VP (2006) Characterization of Sclerospora graminicola isolates from pearl millet for virulence and genetic diversity. Plant Pathol J 22:28–35

    Article  Google Scholar 

  • Rai KN, Talukdar BS, Rao AS (1998a) Registration of pearl millet parental lines ICMA 92666 and ICMB 92666 with multiple disease resistance. Crop Sci 38:575

    Google Scholar 

  • Rai KN, Thakur RP, Rao AS (1998b) Registration of pearl millet parental lines ICMA 88006 and ICMB 88006. Crop Sci 38:575–576

    Google Scholar 

  • Raj SN, Shetty NP, Shetty HS (2005) Synergistic effects of trichoshield on enhancement of growth and resistance to downy mildew in pearl millet. Biol Control 50:493–509

    Google Scholar 

  • Raj K, Arya RK, Kumar R (2014) Pearl millet improvement for disease resistance. Forage Res 40(3):133–146

    Google Scholar 

  • Ramineni R, Sadumpati V, Khareedu VR, Vudem DR (2014) Transgenic pearl millet male fertility restorer line (ICMP451) and hybrid (ICMH451) expressing Brassica juncea nonexpressor of pathogenesis related genes 1 (BjNPR1) exhibit resistance to downy mildew disease. PLoS ONE 9(3):90839

    Article  CAS  Google Scholar 

  • Rao VP, Kadwani DL, Sharma YK, Sharma R, Thakur RP (2007) Prevalence of pearl millet downy mildew, Sclerospora graminicola in Gujarat and pathogenic characterization of its isolates. Indian J Plant Protec 35:291–295

    Google Scholar 

  • Sankar SM, Singh SP, Prakash G, Satyavathi CT, Soumya SL, Yadav Y, Sharma LD, Rao AR, Singh N and Srivastava RK (2021) Deciphering Genotype-By- Environment Interaction for Target Environmental Delineation and Identification of Stable Resistant Sources Against Foliar Blast Disease of Pearl Millet. Front. Plant Sci. 12:656158. https://doi.org/10.3389/fpls.2021.656158

  • Satyavathi CT, Sharma R, Singhal T (2016) Generation of mapping populations and identification of QTL(S) for downy mildew resistance in pearl millet [Pennisetum glaucum (L.) R. Br.] (BT/PR-11035/AGR/02/622/2008), Project Report submitted to DBT, GOI (unpublished data)

    Google Scholar 

  • Satyavathi CT (2020) Proceeding of 55th annual group meet, ICAR-AICRP on pearl millet, Jodhpur, Rajasthan, India

    Google Scholar 

  • Satyavathi CT, Khandelwal V, Beniwal BR, Ambawat S, Kumar A, Kumar M, Meena RC, Nayaka SC, Vishnoi JP, Juneja RK et al (2019) Summary of research experiments 2018–19. ICAR-AICRP on Pearl Millet, Jodhpur, Rajasthan, India

    Google Scholar 

  • Satyavathi CT, Khandelwal V, Beniwal BR, Ambawat S, Kumar A, Kumar M, Meena RC, Nayaka SC, Vishnoi JP, Juneja RK et al (2020) Summary of research experiments 2019-20. ICAR-AICRP on Pearl Millet, Jodhpur, Rajasthan, India

    Google Scholar 

  • Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10(5):e0122165

    Google Scholar 

  • Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash CT (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilvel S, Nepolean T, Supriya A, Rajaram V, Kumar S, Hash CT et al (2010) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. In: Proceedings of the plant and animal genome 18 conference, San Diego, CA, p 368

    Google Scholar 

  • Sharma YK, Yadav SK, Khairwal IS (2007) Evaluation of pearl millet germplasm lines against downy mildew incited by Sclerospora graminicola in western Rajasthan. J SAT Agri 3:2

    Google Scholar 

  • Sharma R, Rao VP, Varshney RK, Prasanth VP, Kannan S, Thakur RP (2010) Characterization of pathogenic and molecular diversity in Sclerospora graminicola, the causal agent of pearl millet downy mildew. Arch Phytopathol Plant Protec 43:538–551. https://doi.org/10.1080/03235400801939896

    Article  CAS  Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rai KN, Gupta SK, Thakur RP (2013) Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Dis 97(2):189–195. https://doi.org/10.1094/PDIS-05-12-0481-RE

    Article  PubMed  Google Scholar 

  • Sharma S, Sharma R, Govindaraj M, Mahala RS, Satyavathi CT, Srivastava RK, Gumma MK, Kilian B (2020a) Harnessing wild relatives of pearl millet (Pennisetum glaucum LR Br) for germplasm enhancement: challenges and opportunities. Crop Sci. https://doi.org/10.1002/csc2.20343

    Article  Google Scholar 

  • Sharma R, Sharma S, Gate VL (2020b) Tapping Pennisetum violaceum, a wild relative of pearl millet (Pennisetum glaucum), for resistance to Blast (caused by Magnaporthe grisea) and rust (caused by Puccinia substriata var. indica). Plant Dis 104(5):1487–1491

    Google Scholar 

  • Sharma S, Sharma R, Pujara M, Yadav D, Yadav Y et al (2020c) Use of wild Pennisetum species for improving biotic and abiotic stress tolerance in pearl millet (Pennisetum glaucum L.). Crop Sci. https://doi.org/10.1002/csc2.20408

  • Shaw EG (1981) Taxonomy and evolution. In: Spencer DM (ed) the downy mildews. Academic Press, London, UK, pp 17–29

    Google Scholar 

  • Shetty HS, Ahmad R (1981) Physiologic specialization in Sclerospora graminicola. Indian Phytopathol 34:307–309

    Google Scholar 

  • Shetty HS, Kumar VU (2000) Biological control of pearl millet downy mildew: present status and future prospects. In: Upadhyay R, Mukerji KG, Chamola BP (eds) Biocontrol potential and its exploitation in sustainable agriculture, vol 1. Springer, Heidelberg, Germany, pp 251–265

    Google Scholar 

  • Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069. https://doi.org/10.3389/fpls.2016.02069

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivhare R, Asif MH, Lata C (2020a) Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant Mol Biol 103:639–652. https://doi.org/10.1007/s11103-020-01015-w

    Article  CAS  PubMed  Google Scholar 

  • Shivhare R, Lakhwani D, Asif MH, Chauhan PS, Lata C (2020b) De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing. Nucleus. https://doi.org/10.1007/s13237-020-00324-1

  • Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK, Satyavati T, Dai XF, Chen JY, Mocan A, Singh BP (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci rep 8(1):1–14

    Article  CAS  Google Scholar 

  • Singh SD (1995) Downy mildew of pearl millet. Plant Dis 79:545–550

    Article  Google Scholar 

  • Singh DS, Pavgi MS (1974) Evaluation of some fungicides against Pyricularia penniseti causing brown leaf spot of bajra. Hindustan Antibiot Bull 16(2–3):97–100 (PMID: 4807862)

    Google Scholar 

  • Singh SD, Gopinath R (1985) A seedling inoculation technique for detecting downy mildew resistance in pearl millet. Plant Dis 69:582–584. https://doi.org/10.1094/PD-69-582

    Article  Google Scholar 

  • Singh SD, King SB (1988) Recovery resistance to downy mildew in pearl millet. Plant Dis 72:425–428

    Article  Google Scholar 

  • Singh SD, Navi SS (2000) Genetic resistance to pearl millet downy mildew II. Resistance in wild relatives. J Mycol Plant Pathol 30(2):167–171

    Google Scholar 

  • Singh SD, Williams RJ, Reddy PM (1988) In isolation of downy mildew resistant lines from a highly susceptible cultivar of pearl millet. Indian Phytopathol l41:450–456

    Google Scholar 

  • Singh SD, King SB, Werder J (1993) Downy mildew disease of pearl millet. Inf Bull No 37, 36 (International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India)

    Google Scholar 

  • Singh SD, Wilson JP, Navi SS, Talukdar BS, Hess DE, Reddy KN (1997) Screening techniques and sources of resistance to downy mildew and rust in pearl millet. Inf Bull No 48 36:110 (International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India)

    Google Scholar 

  • Sivaramakrishnan S, Thakur RP, Kannan S, Rao VP (2003) Pathogenic and genetic diversity among Indian isolates of Sclerospora graminicola. Indian Phytopathol l56:392–397

    Google Scholar 

  • Srivastava S, Kothari SL (2003) Assessment of somaclonal variations in two lines of pearl millet [Pennisetum glaucum (L.) R. Br.]. Indian J Genet 63:295–298

    Google Scholar 

  • Sudisha J, Kumar SA, Thakur RP, Rao VP, Shetty HK (2009) Molecular characterization of Sclerospora graminicola, the incitant of pearl millet downy mildew using ISSR markers. J Phytopathol 157:748–755. https://doi.org/10.1111/j.1439-0434.2009.01547

    Article  CAS  Google Scholar 

  • Supriya A, Senthilvel S, Nepolean Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250

    Article  CAS  PubMed  Google Scholar 

  • Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya A, Kumar S, Kumari BR, Bhanuprakash A (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14(1):159

    Google Scholar 

  • Taunk J, Sehgal D, Yadav NR, Howarth C, Yadav RC, Yadav RS (2018) Mapping of easy to screen SSR markers for selection of RFLP markers-bracketed downy mildew resistance QTLs in pearl millet. Eur J Plant Pathol 151:401–411. https://doi.org/10.1007/s10658-017-1381-8

    Article  Google Scholar 

  • Thakur RP, King SB (1988a) Registration of four ergot resistant germplasms of pearl millet. Crop Sci 28:382. https://doi.org/10.2135/cropsci1988.0011183X002800020057x

    Article  Google Scholar 

  • Thakur RP, King SB (1988b) Registration of six smut resistant germplasms of pearl millet. Crop Sci 28:382–383

    Google Scholar 

  • Thakur RP, King SB (1988c) Smut disease of pearl millet. ICRISAT, ICRISAT Infor Bulletin, Patancheru, p 25

    Google Scholar 

  • Thakur RP, Williams RJ, Rao VP (1982) Development of resistance to ergot in pearl millet. Phytopathology 72:406–408. https://doi.org/10.1094/Phyto-72-406

    Article  Google Scholar 

  • Thakur RP, King SB, Rai KN, Rao VP (1992) Identification and utilization of smut resistance in pearl millet. ICRISAT, Patancheru, Hyderabad, India

    Google Scholar 

  • Thakur RP, Rao VP, Amruthesh KN, Shetty HS, Datar VV (2003) Field surveys of pearl millet downy mildew-effects of hybrids, fungicide and cropping sequence. J Mycol Plant Pathol 33:387–394

    Google Scholar 

  • Thakur RP, Shetty HS, Khairwal IS (2006) Pearl millet downy mildew research in India: progress and perspectives. J SAT Agric Res 2:6

    Google Scholar 

  • Thakur RP, Rai KN, Khairwal IS, Mahala RS (2008) Strategy for downy mildew resistance breeding in pearl millet in India. J SAT Agric Res 6:1–11

    Google Scholar 

  • Timper P, Wilson JP, Johnson AW, Hanna WW (2002) Evaluation of pearl millet grain hybrids for resistance to Meloidogyne spp. and leaf blight caused by Pyricularia grisea. Plant Dis 86:909–914

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C (2019) Genome engineering in rice: applications, advancements and future perspectives. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 323–337

    Chapter  Google Scholar 

  • Uesugi Y (2001) Fungal choline biosynthesis a target for controlling rice blast. Pestic Outlook 12:2627

    Article  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35(10):969–976. https://doi.org/10.1038/nbt.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veena M, Melvin P, Prabhu SA, Shailasree S, Shetty HS, Kini KR (2016) Molecular cloning of a coiled-coil-nucleotide-binding-site-leucine-rich repeat gene from pearl millet and its expression pattern in response to the downy mildew pathogen. Mol Biol Rep 43(3):117–128

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ, Singh SD, Pawar MN (1981) An improved field screening technique for downy mildew resistance in pearl millet. Plant Dis 65:239–241

    Article  Google Scholar 

  • Willingale J, Mantle PG, Thakur RP (1986) Post-pollination stigmatic constriction, the basis of ergot resistance in selected lines of pearl millet. Phytopathology 76:536–539. https://doi.org/10.1094/Phyto-76-536

    Article  Google Scholar 

  • Wilson JP, Burton GW (1991) Registration of Tift 3 and Tift 4 rust resistant pearl millet germplasms. Crop Sci 31:1713

    Article  Google Scholar 

  • Wilson JP, Hanna WW (1992) Disease resistance in wild Pennisetum species. Plant Dis 76(11):1171–1175

    Article  Google Scholar 

  • Wilson JP, Gates RN (1993) Forage yield losses in hybrid pearl millet due to leaf blight caused primarily by Pyricularia grisea. Phytopathology 83:739–743

    Article  Google Scholar 

  • Witcombe JR, Hash CT (2000) Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids, and synthetic parent populations. Euphytica 112:175–186

    Article  Google Scholar 

  • Yadav MS, Duhan JC (1996) Screening of pearl millet genotypes for resistance to smut. Plant Dis Res 11:95–96

    Google Scholar 

  • Yoshihiro T, Mitsuo H, Hayato H, Futoshi K (2003) Biological control of rice blast disease by Bacillus subtilis IK-1080. Ann Phytopathol Soc Japan 69:85–93

    Article  Google Scholar 

  • Zahid M (1997) Genetical variation in the downy mildew fungus, Sclerospora graminicola. PhD thesis, School of Biological Sciences, University of Wales, UK, 213 p

    Google Scholar 

  • Zala HN, Kulkarni KS, Bosamia TC, Shukla YM, Kumar S, Fougat RS, Patel A (2017) Development and validation of EST derived SSR markers with relevance to downy mildew (Sclerospora graminicola Sacc.) resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Plant Biochem Biotechnol 26(3):356–365

    Google Scholar 

  • Zarandi EH, Bonjar GH, Dehkaei FP, Moosavi SAA, Farokhi PR, Aghighi S (2009) Biological control of rice blast (Magnaporthe oryzae) by use of Streptomyces sindeneusis isolate 263 in Greenhouse. Amer J Appl Sci 6:194–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tara Satyavathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tara Satyavathi, C., Ambawat, S., Singh, S., Lata, C., Tiwari, S., Siddaiah, C.N. (2021). Genomic Designing for Biotic Stress Resistance in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-75879-0_6

Download citation

Publish with us

Policies and ethics