Skip to main content

Oil Palm

  • Chapter
  • First Online:
Cash Crops
  • 872 Accesses

Abstract

Innovative and efficient methods are required to breed the oil palm for yield maximization, in order to meet the increased global demand for vegetable oil while limiting the environmental impacts of oil palm cultivation.

Breeders have been able to develop elite oil palm planting materials from an extremely narrow genetic base. Breeding the oil palm for resilience to global change requires multidisciplinary and collaborative research involving almost all disciplines related to life sciences. Research also relies on identifying genetic variation in the plant responses to stress, and this implies the exploitation of natural variation, germplasm collections, selected genitors from breeding programmes together with material of interest collected from farmers.

Climate change can highly affect the photosynthetic efficiency of oil palm and thus it directly affect yield; in parallel, oil palm cultivation also influences climate change, as the environmental impact of the industry primarily concerns the conversion of tropical rainforests into plantations by both agro-industrial companies and smallholding farmers.

The publication of the oil palm genome sequence has been a major breakthrough in oil palm biotechnology. Even if considerable knowledge and molecular resources had already been made available before this date, the availability of the genome sequence expedited a number of research projects ranging from genomic selection to the deciphering of key components of yield such as sex ratio or oil synthesis. Metagenomics can provide a useful bridging between genomics and environmental science, while addressing key question in the sustainable management of oil palm plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear JW (2006) MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. Journal of Molecular Evolution, 62(1):15–31

    Google Scholar 

  • Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW (2007) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. Journal of experimental Botany, 58(6):1245–1259

    Google Scholar 

  • Armero A, Baudouin L, Bocs S, This D (2017) Improving transcriptome de novo assembly by using a reference genome of a related species: translational genomics from oil palm to coconut. PLoS One 12(3):e0173300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babu BK, Mathur RK, Ravichandran G, Anita P, Venu MVB (2020) Genome wide association study (GWAS) and identification of candidate genes for yield and oil yield related traits in oil palm (Eleaeis guineensis) using SNPs by genotyping-based sequencing. Genomics 112(1):1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Wang L, Zhang YJ, Lee M, Rahmadsyah R et al (2018) Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm. Sci Rep 691:1–7. https://doi.org/10.1038/s41598-017-18613-2

    Article  CAS  Google Scholar 

  • Bakoumé C (2016) Genetic diversity, erosion, and conservation in oil palm (Elaeis guineensis Jacq.). In: Genetic diversity and erosion in plants. Springer, Cham, pp 1–33

    Google Scholar 

  • Bakoumé C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billotte N (2015) Genetic diversity of the world’s largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genet Resour Crop Evol 62:349–360. https://doi.org/10.1007/s10722-014-0156-8

    Article  CAS  Google Scholar 

  • Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LSP (2019) The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 39(3):321–336

    Article  CAS  PubMed  Google Scholar 

  • Barcelos E, de Almeida Rios S, Cunha R, Lopes R, Motoike SY et al (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6:190. https://doi.org/10.3389/fpls.2015.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron V, Rival A, Marichal R (2017) No, palm oil is not responsible for 40% of global deforestation. The Conversation. https://theconversation.com/no-palm-oil-is-not-responsible-for-40-of-global-deforestation-78482

  • Beirnart A, Vanderweyen T (1941) Contribution à l’étude génétique et biométrique des variétés d’Elaeis guineensis Jacq. INEAC, Série Scientifique no. 27

    Google Scholar 

  • Beulé T, Camps C, Debiesse S, Tranchant C, Dussert S, Sabau X, et al (2011) Transcriptome analysis reveals differentially expressed genes associated with the mantled homeotic flowering abnormality in oil palm (Elaeis guineensis). Tree Genet Genomes 7(1):169–182

    Google Scholar 

  • Breton F, Hasan Y, Lubis Z, De Franqueville H (2006) Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. J Oil Palm Res 0406:24–36

    Google Scholar 

  • Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H et al (2019) Intensive tropical land use massively shifts soil fungal communities. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Bronsky J, Campoy C, Embleton N, Fewtrell M, Mis NF, Gerasimidis K et al (2019) Palm oil and beta-palmitate in infant formula: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr 68(5):742–760

    Article  CAS  PubMed  Google Scholar 

  • Chin S, Louise C, de Franqueville H, Cooper RM, Nouy B et al (2017) Objective traits. In: Soh AC, Mayes S, Roberts JA (eds) Oil palm breeding. CRC Press, Boca Raton, pp 85–142

    Google Scholar 

  • Cochard B, Durand-Gasselin T (2018) Advances in conventional breeding techniques for oil palm. In: Alain R (ed) Achieving sustainable cultivation of oil palm. Volume 1: Introduction, breeding and cultivation techniques. Burleigh Dodds Science Publishing, Cambridge, pp 117–144. https://doi.org/10.4324/9781351114387. (Burleigh Dodds Series in Agricultural Science, 27) ISBN 978-1-78676-104-0.

    Chapter  Google Scholar 

  • Cochard B, Amblard P, Durand-Gasselin T (2005) Oil palm genetic improvement and sustainable development. OCL 12(2):141–147. https://doi.org/10.1051/ocl.2005.0141

    Article  Google Scholar 

  • Corley RHV (2016) Climate change—what does it mean for oil palm? Planter 92(1086):631–654

    Google Scholar 

  • Corley RHV, Tinker PBH (2015) The oil palm, 5th edn. Wiley-Blackwell, Hoboken. 674 pp. ISBN: 978-1-405-18939-2

    Book  Google Scholar 

  • Cramb RA, McCarthy JF (eds) (2016) The oil palm complex: smallholders, agribusiness and the state in Indonesia and Malaysia. NUS Press, Singapore

    Google Scholar 

  • Cros D, Bocs S, Riou V, Ortega-Abboud E, Tisné S, Argout X et al (2017) Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses. BMC Genomics 18(1):839

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruden RW (1988) Temporal dioecism: systematic breadth, associated traits, and temporal patterns. Bot Gaz 149:1–15

    Article  Google Scholar 

  • Delisle H (2017) The nutritional value of red palm oil. In: Rival A (ed) Achieving sustainable cultivation of oil palm. Burleigh-Dodds Science Publishing, Cambridge, pp 217–231

    Google Scholar 

  • Domonhédo H, Nodichao L, Billotte N, Ahanhanzo C, Cros D (2017) Genetic variability and understanding of inheritance of palm oil acidity in mature fruits of oil palm (E. guineensis, Jacq.). J Appl Biosci 119:11871–11887

    Article  Google Scholar 

  • Duangpan S, Buapet P, Sujitto S, Eksomtramage T (2018) Early assessment of drought tolerance in oil palm D× P progenies using growth and physiological characters in seedling stage. Plant Genet Resour 16(6):544–554

    Article  CAS  Google Scholar 

  • Durand-Gasselin T, Asmady H, Flori A, Jacquemard JC, Hayun Z et al (2005) Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq.) to basal stem rot caused by Ganoderma boninense—prospects for future breeding. Mycopathologia 159:93–100

    Article  CAS  PubMed  Google Scholar 

  • Forster BP, Sitepu B, Setiawati U, Kelanaputra ES, Nur F et al (2017) Oil palm (Elaeis guineensis). In: Campos H, Caligari PDS (eds) Genetic improvement of tropical crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_8

    Chapter  Google Scholar 

  • Gan ST, Wong WC, Wong CK, Soh AK, Kilian A et al (2018) High density SNP and DArT-based genetic linkage maps of two closely related oil palm populations. J Appl Genet 59:23. https://doi.org/10.1007/s13353-017-0420-7

    Article  CAS  PubMed  Google Scholar 

  • Germer J, Sauerborn J (2008) Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10(6):697–716. https://doi.org/10.1007/s10668-006-9080-1

    Article  Google Scholar 

  • Goh CS (2016) Can we get rid of palm oil? Trends Biotechnol 34(12):948–950

    Article  CAS  PubMed  Google Scholar 

  • Hashim AT, Ishak Z, Rosli SK, Ong-Abdullah M, Ooi SE, Husri MN, Bakar DA (2018) Oil palm (Elaeis guineensis Jacq.) somatic embryogenesis. In: Step wise protocols for somatic embryogenesis of important woody plants. Springer, Cham, pp 209–229

    Chapter  Google Scholar 

  • Ho CL, Tan YC, Yeoh KA, Lee WK, Ghazali AK, Yee WY, Hoh CC (2018) Transcriptional response of oil palm (Elaeis guineensis Jacq.) inoculated simultaneously with both Ganoderma boninense and Trichoderma harzianum. Plant Genet 13:56–63

    Article  CAS  Google Scholar 

  • Ho CL, Tan YC, Yeoh KA, Lee WK, Ghazali AK, Yee WY, Hoh CC (2019) Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense. Trees 33(3):943–950

    Article  CAS  Google Scholar 

  • Husin NA, Khairunniza-Bejo S, Abdullah AF, Kassim MS, Ahmad D, Azmi AN (2020) Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of basal stem rot (BSR) disease. Sci Rep 10(1):1–16

    Article  CAS  Google Scholar 

  • Ithnin M, Serdari NM, Abdullah N, Kushairi A, Singh R (2017) Biodiversity and conservation of Elaeis species. In: Ahuja M, Jain S (eds) Biodiversity and conservation of woody plants. Sustainable development and biodiversity, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-66426-2_9

    Chapter  Google Scholar 

  • Jaligot E, Rival A (2015) Epigenetic variations: a trade-off between genome stability and phenotypic plasticity. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_6

    Chapter  Google Scholar 

  • Jaligot E, Adler S, Debladis E, Beulé T, Richaud F et al (2011) Epigenetic imbalance and the floral developmental abnormality of oil palm. Ann Bot 108:1453–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaligot E, Hooi WY, Debladis E, Richaud F, Beulé T et al (2014) DNA methylation and transcriptional activity of the EgDEF1 gene and neighboring retrotransposons in mantled somaclonal variants of oil palm. PLoS One 9:e91896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanchi MM, Shanmugam MK, Rane G, Sethi G, Kumar AP (2017) Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discov Today 22(12):1765–1781

    Article  CAS  PubMed  Google Scholar 

  • Kwong QB, Teh CK, Ong AL, Chew FT, Mayes S, Kulaveerasingam H et al (2017) Evaluation of methods and marker systems in genomic selection of oil palm (Elaeis guineensis Jacq.). BMC Geneti 18(1):107

    Article  Google Scholar 

  • Lee M, Xia JH, Zou Z, Ye J, Alfiko Y et al (2015) A consensus linkage map of oil palm and a major QTL for stem height. Sci Rep 5:8232. https://doi.org/10.1038/srep08232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee FC, Ong-Abdullah M, Ooi SE, Ho CL, Namasivayam P (2019) Cloning and characterization of Somatic Embryogenesis Receptor Kinase I (EgSERK I) and its association with callus initiation in oil palm. In Vitro Cell Dev Biol Plant 55(2):153–164

    Article  CAS  Google Scholar 

  • Li K, Tscharntke T, Saintes B, Buchori D, Grass I (2019) Critical factors limiting pollination success in oil palm: a systematic review. Agric Ecosyst Environ 280:152–160

    Article  Google Scholar 

  • Lieb VM, Kerfers MR, Kronmüller A, Esquivel P, Alvarado A, Jiménez VM, et al (2017) Characterization of mesocarp and kernel lipids from Elaeis guineensis Jacq, Elaeis oleifera [Kunth] Cortés, and their interspecific hybrids. J Agric Food Chem 65(18):3617–3626

    Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E (Eds). (2018) The handbook of metabolic phenotyping. Elsevier Amsterdam

    Google Scholar 

  • Luo T, Xia W, Gong S, Mason AS, Li Z, Liu R et al (2019) Identifying vitamin E biosynthesis genes in Elaeis guineensis by genome-wide association study. J Agric Food Chem 68(2):678–685. https://doi.org/10.1021/acs.jafc.9b03832

    Article  CAS  Google Scholar 

  • Madon M, Clyde MM, Cheah SC (1998) Cytological analysis of Elaeis guineensis and Elaeis oleifera chromosomes. J Oil Palm Res 10:68–91

    Google Scholar 

  • Masani MYA, Izawati AMD, Rasid OA, Parveez GKA (2018) Biotechnology of oil palm: current status of oil palm genetic transformation. Biocatal Agric Biotechnol 15:335–347. https://doi.org/10.1016/j.bcab.2018.07.008

    Article  Google Scholar 

  • Meijide A, de la Rua C, Guillaume T, Röll A, Hassler E, Stiegler C et al (2020) Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat Commun 11(1):1–11

    Article  CAS  Google Scholar 

  • Mercière M, Laybats A, Carasco-Lacombe C, Tan JS, Klopp C, Durand-Gasselin T, Alwee SSRS, Camus-Kulandaivelu L, Breton F (2015) Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. Mycol Prog 14(11):103

    Article  Google Scholar 

  • Montoya C, Lopes R, Flori A, Cros D, Cuellar T et al (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (HBK) Cortés and oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 9:1207–1225

    Article  Google Scholar 

  • Murphy DJ (2009) Oil palm: future prospects for yield and quality improvements. Lipid Technol 21:257–260

    Article  Google Scholar 

  • Neoh BK, Teh HF, Wong YC, Ooi TEK, Cheah SS, Appleton DR (2017) Study of oil palm photosynthesis using omics technologies. In: Crop improvement. Springer, Cham, pp 27–46

    Chapter  Google Scholar 

  • Neoh BK, Wong YC, Teh HF, Ng TLM, Tiong SH, Ooi TEK et al (2019) Diurnal biomarkers reveal key photosynthetic genes associated with increased oil palm yield. PLoS One 14(3):e0213591. https://doi.org/10.1371/journal.pone.0213591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyouma A, Bell JM, Jacob F, Cros D (2019) From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 15(5):69

    Article  Google Scholar 

  • Ohimain EI, Izah SC (2017) A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew Sust Energ Rev 70:242–253

    Article  CAS  Google Scholar 

  • Ollivier J, Flori A, Cochard B, Amblard P, Turnbull N et al (2016) Genetic variation in nutrient uptake and nutrient use efficiency of oil palm. J Plant Nutr 40:558–573. https://doi.org/10.1080/01904167.2016.1262415

    Article  CAS  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature, 525(7570):533–537

    Google Scholar 

  • Ooi LCL, Low ETL, Abdullah MO, Nookiah R, Ting NC, Nagappan J et al (2016) Non-tenera contamination and the economic impact of SHELL genetic testing in the Malaysian independent oil palm industry. Front Plant Sci 7:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooi SE, Sarpan N, Aziz NA, Nuraziyan A, Ong-Abdullah M (2019) Differential expression of heat shock and floral regulatory genes in pseudocarpel initials of mantled female inflorescences from Elaeis guineensis Jacq. Plant Reprod 32(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Guarín JA, Garzón-Martínez GA, Delgadillo-Duran P, Bastidas S, Moreno LP, Enciso-Rodríguez FE et al (2019) Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid (Elaeis oleifera x Elaeis guineensis) population. BMC Plant Biol 19(1):533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pádua MS, Santos RS, Labory CRG, Stein VC, Mendonça EG, Alves E, Paiva LV (2018) Histodifferentiation of oil palm somatic embryo development at low auxin concentration. Protoplasma 255(1):285–295

    Article  PubMed  CAS  Google Scholar 

  • Pamornnak B, Limsiroratana S, Khaorapapong T, Chongcheawchamnan M, Ruckelshausen A (2017) An automatic and rapid system for grading palm bunch using a Kinect camera. Comput Electron Agric 143:227–237

    Article  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2018) Parthenocarpy in crop plants. Annu Plant Rev Online 38:326–345

    Google Scholar 

  • Paterson RRM, Sariah M, Lima N (2013) How will climate change affect oil palm fungal diseases? Crop Prot 46:113–120

    Article  Google Scholar 

  • Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C et al (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295. https://doi.org/10.1016/j.ygeno.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  • Rajanaidu N, Din AM, Marjuni M, Abdullah N (2018) Diversity in the genetic resources of oil palm. In: Rival A (ed) Achieving sustainable cultivation of oil palm. Volume 1: Introduction. Breeding and cultivation techniques, 1st edn. Burleigh Dodds Science Publishing, Cambridge, pp 93–116

    Chapter  Google Scholar 

  • Rival A (2017) Breeding the oil palm (Elaeis guineensis Jacq.) for climate change. OCL 24:D107, 7 p

    Article  Google Scholar 

  • Rival A (2020) 4.2 Elaeis guineensis oil palm. In: Litz RE, Pliego-Alfaro F, Hormaza JI (eds) Biotechnology of fruit and nut crops, 2nd edn. CABI, Wallingford, pp 92–106

    Chapter  Google Scholar 

  • Rival A, Jaligot E (2011) Epigenetics and plant breeding. CAB Rev 6:48

    CAS  Google Scholar 

  • Rival A, Levang P (2014) Palms of controversy: oil palm and development challenges. CIFOR, Bogor. ISBN:978-602-1504-41-3

    Google Scholar 

  • Rival A, Beulé T, Barre P, Hamon S, Duval Y, Noirot M (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq.) tissue cultures and seed-derived plants. Plant Cell Rep 16:884–887

    Article  CAS  PubMed  Google Scholar 

  • Rival A, Jaligot E, Beulé T, Finnegan J (2008) Isolation and differential expression of MET, CMT and DRM methyltransferase genes from oil palm (Elaeis guineensis Jacq.) in relation with the “mantled” somaclonal variation. J Exp Bot 59:3271–3281

    Article  CAS  PubMed  Google Scholar 

  • Rival A, Ilbert P, Labeyrie A, Torres E, Doulbeau S et al (2013) Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32:359–368. https://doi.org/10.1007/s00299-012-1369-y

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist EA (1986) The genetic base of oil palm breeding populations. In International Workshop on Oil Palm Germplasm and Utilisation, Bangi, Selangor (Malaysia), 26–27 Mar 1985. IPMKSM.

    Google Scholar 

  • Sarkar MSK, Begum RA, Pereira JJ (2020) Impacts of climate change on oil palm production in Malaysia. Environ Sci Pollut Res 27:9760–9770

    Article  Google Scholar 

  • Shearman J R, Jantasuriyarat C, Sangsrakru D, Yoocha T, Vannavichit A, Tragoonrung S et al (2013) Transcriptome analysis of normal and mantled developing oil palm flower and fruit. Genomics 101(5):306–312

    Google Scholar 

  • Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192

    Article  PubMed  Google Scholar 

  • Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Chin TN et al (2013a) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500:340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R et al (2013b) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, Nookiah R et al (2019) Variation for heterodimerization and nuclear localization among known and novel oil palm SHELL alleles. New Phytol 226(2):426–440. https://doi.org/10.1111/nph.16387

    Article  CAS  Google Scholar 

  • Sodano V, Riverso R, Scafuto F (2018) Investigating the intention to reduce palm oil consumption. CAL 19(S1):500–505

    Google Scholar 

  • Soh AC, Mayes S, Roberts JA (2017) Oil palm breeding: genetics and genomics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Sonicha U, Limsriwilai A, Ukoskit K (2018) Intron length polymorphism markers of flower developmental genes for genetic diversity and QTL mapping for oil yield in African oil palm. Genomics Genet 11(3):35–45

    Google Scholar 

  • Suwanto A, Chua NH, Yue GH, Bai B, Wang L, Zhang YJ et al (2018) Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm. Sci Rep 8:691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas RL, Seth AK, Chan KW, Ooi SC (1973) Induced parthenocarpy in the oil-palm. Ann Bot 37(3):447–452

    Article  CAS  Google Scholar 

  • Ting N-C (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 15:309. http://www.biomedcentral.com/1471-2164/15/309

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting NC, Yaakub Z, Kamaruddin K, Mayes S, Massawe F, Sambanthamurthi R et al (2016) Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm. BMC Genomics 17(1):289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisné S, Pomiès V, Riou V, Syahputra I, Cochard B, Denis M (2017) Identification of Ganoderma disease resistance loci using natural field infection of an oil palm multiparental population. G3: Genes Genomes Genet 7:1683–1692

    Article  CAS  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture—sustainable by nature. Curr Opin Environ Sustain 8:53–61. https://doi.org/10.1016/j.cosust.2014.08.006

    Article  Google Scholar 

  • Tranbarger TJ, Kluabmongkol W, Sangsrakru D, Morcillo F, Tregear WJ et al (2012) SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol 12:1. http://www.biomedcentral.com/1471-2229/12/1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tregear JW, Rival A, Pintaud J-C (2011) A family portrait: unravelling the complexities of palms. Ann Bot 108:1387–1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetaryan S, Kwan YY, Namasivayam P, Ho CL, Syed Alwee SSR (2018) Isolation and characterisation of oil palm LEAFY transcripts. Biotechnol Biotechnol Equip 32(4):888–898

    Article  CAS  Google Scholar 

  • Weckx S, Inzé D, Maene L (2019) Tissue culture of oil palm: finding the balance between mass propagation and somaclonal variation. Front Plant Sci 10:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Woittiez LS, van Wijk MT, Slingerland M, van Noordwijk M, Giller KE (2017) Yield gaps in oil palm: a quantitative review of contributing factors. Eur J Agron 83:57–77

    Article  Google Scholar 

  • Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL et al (2017) Differential gene expression at different stages of mesocarp development in high-and low-yielding oil palm. BMC Genomics 18(1):470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yarra R, Jin L, Zhao Z, Cao H (2019) Progress in tissue culture and genetic transformation of oil palm: an overview. Int J Mol Sci 20(21):5353

    Article  CAS  PubMed Central  Google Scholar 

  • Zeven AC (1972) The partial and complete domestication of the oil palm (Elaeis guineensis). Econ Bot 26:274

    Article  Google Scholar 

  • Zheng Y, Chen C, Liang Y, Sun R, Gao L, Liu T, Li D (2019) Genome-wide association analysis of the lipid and fatty acid metabolism regulatory network in the mesocarp of oil palm (Elaeis guineensis Jacq.) based on small noncoding RNA sequencing. Tree Physiol 39(3):356–371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Rival .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rival, A. (2022). Oil Palm. In: Priyadarshan, P., Jain, S.M. (eds) Cash Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-74926-2_8

Download citation

Publish with us

Policies and ethics