Skip to main content

Genomic Selection for Higher Yield and Quality in Alfalfa

  • Chapter
  • First Online:
The Alfalfa Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Genomic selection (GS) has high potential interest for improving alfalfa biomass yield and forage quality, to alleviate challenges for phenotypic selection (PS) represented by low narrow-sense heritability, long selection cycles, high evaluation costs, and multi-trait selection. This report discusses various factors that may affect the prediction ability and the cost-efficient exploitation of GS in breeding programs, considering as well specific aspects relative to genotyping-by-sequencing (GBS)-generated markers. We provided an original comparison of six statistical models for GS and four SNP calling procedures for GBS data (based on M. truncatula or M. sativa genomes, the dDocent-mock reference genome, and the UNEAK pipeline) in terms of predictive ability for biomass yield, leaf protein content, and stem NDF digestibility. Current GBS costs and other considerations support the application of GS to predict additive genetic variation effects (as allowed for by phenotyping half-sib progenies of genotyped parent plants) of plants belonging to relatively broad-based reference populations, following a preliminary stage of stratified mass selection. We outlined a procedure for comparing GS versus PS in terms of selection efficiency according to predicted genetic gains per unit time and same selection cost, which suggested predictive accuracy around 0.15 as a threshold value for considering GS more cost-efficient than PS for biomass yield. A similar threshold may apply to alfalfa forage quality traits selected concurrently with crop yield. Pioneer genomic selection studies for biomass yield or forage quality traits of alfalfa and other perennial forages are generally encouraging for GS implementation. However, information on GS prediction accuracy is still lacking or extremely limited for biomass yield in environments featuring different prevailing stresses (e.g., drought, cold, salinity) or specific crop managements (e.g., severe grazing, intercropping). Crucial research issues for alfalfa GS optimization are represented by cost-efficient allele dosage estimation, quality of cross-population predictions (which may affect GS strategies and the definition of genetic bases by breeding programs), the value of parsimonious GS models incorporated into new genotyping tools (e.g., RAD capture ones), and most of all, the comparison of GS versus PS in terms of actual genetic gains per unit time achieved with similar selection costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya JP, Lopez Y, Gouveia BT, Oliveira IB, Resende MFR Jr., Muñoz PR, Rios EF (2020) Breeding alfalfa (Medicago sativa L.) adapted to subtropical agroecosystems. Agronomy 10:742

    Google Scholar 

  • Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR (2016) RAD Capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400

    Article  CAS  PubMed  Google Scholar 

  • Annicchiarico P (1992) Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J Genet Breed 46:269–278

    Google Scholar 

  • Annicchiarico P (2002) Genotype × environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174, Food and Agricultural Organization, Rome

    Google Scholar 

  • Annicchiarico P (2015) Alfalfa forage yield and leaf/stem ratio: narrow-sense heritability, genetic correlation, and parent selection procedures. Euphytica 205:409–420

    Article  Google Scholar 

  • Annicchiarico P (2021) Breeding gain from exploitation of regional adaptation: an alfalfa case study. Crop Sci (accepted paper; https://doi.org/10.1002/csc2.20423)

  • Annicchiarico P, Pecetti L (2021) Comparison among nine alfalfa breeding schemes based on actual biomass yield gains. Crop Sci (accepted paper; https://doi.org/10.1002/csc2.20464)

  • Annicchiarico P, Piano E (2005) Use of artificial environments to reproduce and exploit genotype × location interaction for lucerne in northern Italy. Theor Appl Genet 110:219–227

    Article  CAS  PubMed  Google Scholar 

  • Annicchiarico P, Pecetti L, Abdelguerfi A, Bouizgaren A, Carroni AM, Hayek T, Bouzina M, Mezni M (2011) Adaptation of landrace and variety germplasm and selection strategies for lucerne in the Mediterranean basin. Field Crops Res 120:283–291

    Article  Google Scholar 

  • Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH (2015a) Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci 34:327–380

    Article  CAS  Google Scholar 

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015b) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genom 16:1020

    Article  CAS  Google Scholar 

  • Annicchiarico P, Nazzicari N, Wei Y, Pecetti L, Brummer EC (2017a) Genotyping-by-sequencing and its exploitation for forage and cool-season grain legume breeding. Front Plant Sci 8:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Annicchiarico P, Wei Y, Brummer EC (2017b) Genetic structure of putative heterotic populations of alfalfa. Plant Breed 136:671–678

    Article  CAS  Google Scholar 

  • Ben Hassen M, Cao TV, Bartholomé J, Orasen G, Colombi C, Rakotomalala J, Razafinimpiasa L, Bertone C, Biselli C, Volante A, Desiderio F, Jacquin L, Valè G, Ahmadi N (2018) Rice diversity panel provides accurate genomic predictions for complex traits in the progenies of biparental crosses involving members of the panel. Theor Appl Genet 131:417–435

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Biazzi E, Nazzicari N, Pecetti L, Brummer EC, Palmonari A, Tava A, Annicchiarico P (2017) Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS ONE 12:e0169234

    Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34:823–829

    Article  Google Scholar 

  • Brummer EC, Li X, Wei Y, Hanson JL, Viands DR (2019) The imperative of improving yield of perennial forage crops: will genomic selection help? Grassl Sci Eur 24:370–372

    Google Scholar 

  • Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q (2020) Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Comm 11:2494

    Article  CAS  Google Scholar 

  • Clark SA, van der Werf J (2013) Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values. In: Gondro C, van der Werf J, Hayes B (eds) Methods in molecular biology. Springer, New York, pp 221–230

    Google Scholar 

  • Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C (2011) Genomic selection and prediction in plant breeding, J Crop Improv 25:239–261

    Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Google Scholar 

  • Cuevas J, Crossa J, Montesinos-López OA, Burgueño J, Pérez-Rodríguez P, de los Campos G (2017) Bayesian genomic prediction with genotype × environment interaction kernel models. G3 (Bethesda) 7:41–53

    Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193:347–365

    Google Scholar 

  • Dekkers JC (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341

    Article  CAS  PubMed  Google Scholar 

  • DeLacy IH, Basford KE, Cooper M, Bull IK, McLaren CG (1996) Analysis of multi-environment trials–an historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CABI, Wallingford, UK, pp 39–124

    Google Scholar 

  • Elbasyoni IS, Lorenz AJ, Guttieri M, Frels K, Baenziger PS, Poland J, Akhunov E (2018) A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci 270:123–130

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Google Scholar 

  • Fahey GC Jr, Hussein HS (1999) Forty years of forage quality research: accomplishments and impact from an animal nutrition perspective. Crop Sci 39:4–12

    Article  Google Scholar 

  • Faville MJ, Ganesh S, Cao M, Jahufer MZZ, Bilton TP, Easton HS, Ryan DL, Trethewey JAK, Rolston MP, Griffiths AG, Moraga R, Flay C, Schmidt J, Tan R, Barrett BA (2018) Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing. Theor Appl Genet 131:703–720

    Article  CAS  PubMed  Google Scholar 

  • Fernandez AL, Sheaffer CC, Tautges NE, Putnam DH, Hunter MC (2019) Alfalfa, wildlife, and the environment, 2nd edn. National Alfalfa and Forage Alliance, St. Paul, MN

    Google Scholar 

  • Fonseca C, Viands D, Hansen J, Pell A (1999) Associations among forage quality traits, vigor, and disease resistance in alfalfa. Crop Sci 39:1271–1276

    Article  Google Scholar 

  • Gianola D, van Kaam JB (2008) Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilliland TJ, Annicchiarico P, Julier B, Ghesquière M (2020) A proposal for enhanced EU herbage VCU and DUS testing procedures. Grass Forage Sci 75:227–241

    Article  Google Scholar 

  • Guines F, Julier B, Ecalle C, Huyghe C (2002) Genetic control of quality traits of lucerne (Medicago sativa L.). Aust J Agric Res 53:401–407

    Article  CAS  Google Scholar 

  • Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B, Xu Z, Wang D, Gay G (2014) The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127:749–762

    Article  PubMed  Google Scholar 

  • Guo X, Cericola F, Fè D, Pedersen MG, Lenk I, Jensen CS, Jensen J, Janss LL (2018) Genomic prediction in tetraploid ryegrass using allele frequencies based on genotyping by sequencing. Front Plant Sci 9:1165

    Article  PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakl J, Mofidian SMA, Kozová Z, Fuksa P, Jaromír Š (2019) Estimation of lucerne yield stability for enabling effective cultivar selection under rainfed conditions. Grass Forage Sci 74:687–695

    Article  Google Scholar 

  • Hall MH, Smiles WS, Dickerson RA (2000) Morphological development of alfalfa cultivars selected for higher quality. Agron J 92:1077–1080

    Article  Google Scholar 

  • Hawkins C, Yu LX (2018) Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop J 6:565–575

    Article  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009a) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009b) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60

    Article  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Google Scholar 

  • Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Article  Google Scholar 

  • Hill RR, Barnes RF (1977) Genetic variability for chemical composition of alfalfa. II. Yield and traits associated with digestibility. Crop Sci 17:948–952

    Article  CAS  Google Scholar 

  • Holland JB, Bingham ET (1994) Genetic improvement for yield and fertility of alfalfa cultivars representing different eras of breeding. Crop Sci 34:953–957

    Article  Google Scholar 

  • Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158

    Google Scholar 

  • Jia Y, Jannink J-L (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522

    Google Scholar 

  • Jia C, Wu X, Chen M, Wang Y, Liu X, Gong P, Xu Q, Wang X, Gao H, Wang Z (2018) Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping. BMC Plant Biol 17:97

    Article  CAS  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgueño J, de los Campos G (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    Google Scholar 

  • Julier B, Huyghe C (1997) Effect of growth and cultivar on alfalfa digestibility in a multi-site trial. Agronomie 17:481–489

    Article  Google Scholar 

  • Julier B, Huyghe C, Ecalle C (2000) Within- and among-cultivar genetic variation in alfalfa: forage quality, morphology, and yield. Crop Sci 40:365–369

    Google Scholar 

  • Julier B, Gastal F, Louarn G, Badenhausser I, Annicchiarico P, Crocq G, Le Chatelier D, Guillemot E, Emile JC (2017) Alfalfa (lucerne) in European cropping systems. In: Murphy-Bokern D, Stoddard F, Watson C (eds) Legumes in Cropping Systems. CAB International, Wallingford, UK, pp 168–191

    Chapter  Google Scholar 

  • Kephart KD, Buxton DR, Hill RR (1990) Digestibility and cell-wall components of alfalfa following selection for divergent herbage lignin concentration. Crop Sci 30:207–212

    Article  Google Scholar 

  • Lamb JFS, Sheaffer CC, Rhodes LH, Sulc RM, Undersander DJ, Brummer EC (2006) Five decades of alfalfa cultivar improvement: impact on forage yield, persistence, and nutritive value. Crop Sci 46:902–909

    Article  Google Scholar 

  • Lara LAC, Santos MF, Jank J, Chiari L, Vilela M, Amadeu RR, dos Santos JPR, Pereira G, Zeng Z-B, Garcia AAF (2019) Genomic selection with allele dosage in Panicum maximum Jacq. G3 (Bethesda) 9:2463–2475

    Google Scholar 

  • Lehermeier C, Schön CC, de Los Campos G (2015) Assessment of genetic heterogeneity in structured plant populations using multivariate whole-genome regression models. Genetics 201:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Brummer EC (2012) Applied genetics and genomics in alfalfa breeding. Agronomy 2:40–61

    Article  CAS  Google Scholar 

  • Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands DR, Michaud R, Claessens A, Brummer EC (2015) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8:2

    Article  CAS  Google Scholar 

  • Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages: a review. Crop Pasture Sci 65:1177–1191

    Article  Google Scholar 

  • Lin S, Medina CA, Boge B, Hu J, Fransen S, Norberg S, Yu LX (2020) Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol 20:303

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Google Scholar 

  • Lyra DH, Granato ÍSC, Morais PPP, Alves FC, dos Santos ARM, Yu X, G T, Yu J, Fritsche-Neto R (2018) Controlling population structure in the genomic prediction of tropical maize hybrids. Mol Breed 38:126

    Google Scholar 

  • Marten GC, Buxton DR, Barnes RF (1988) Feeding value (forage quality). In: Hanson AA, Barnes DK, Hill RR Jr (eds) Alfalfa and Alfalfa improvement. ASA, CSSA, SSSA, Madison, WI, pp 463–491

    Google Scholar 

  • Matias FI, Alves FC, Meireles KGX, Barrios SCL, do Valle CB, Endelman JB, Fritsche-Neto R (2019) On the accuracy of genomic prediction models considering multi-trait and allele dosage in Urochloa spp. interspecific tetraploid hybrids. Mol Breed 39:100

    Google Scholar 

  • Melo ATO, Bartaula R, Hale I (2016) GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinf 17:29

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller MH, Poncet C, Prosperi JM, Santoni S, Ronfort J (2005) Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol Ecol 15:1589–1602

    Article  CAS  Google Scholar 

  • Nazzicari N, Biscarini F, Cozzi P, Brummer EC, Annicchiarico P (2016) Marker imputation efficiency for genotyping-by-sequencing data in rice (Oryza sativa) and alfalfa (Medicago sativa). Mol Breed 36:69

    Article  CAS  Google Scholar 

  • Noland RL, Wells MS, Coulter JA, Tiede T, Baker JM, Martinson KL, Sheaffer CC (2018) Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Res 222:189–196

    Article  Google Scholar 

  • Oba M, Allen MS (1999) Evaluation of the importance of the digestibility of neutral detergent fiber from forage: effects on dry matter intake and milk yield of dairy cows. J Dairy Sci 82:589–596

    Article  CAS  PubMed  Google Scholar 

  • Oliveira IB, Resende MF, Ferrão LFV, Amadeu RR, Endelman JB, Kirst M, Coelho ASG, Munoz PR (2019) Genomic prediction of autotetraploids; influence of relationship matrices, allele dosage, and continuous genotyping calls in phenotype prediction. G3 (Bethesda) 9:1189–1198

    Google Scholar 

  • Park T, Casella G (2008) The bayesian lasso. J Am Stat Assoc 103:681–686

    Article  CAS  Google Scholar 

  • Pembleton KG, Smith RS, Rawnsley RP, Donaghy DJ, Humphries AW (2010) Genotype by environment interactions of lucerne (Medicago sativa L.) in a cool temperate climate. Crop Pasture Sci 61:493–502

    Article  Google Scholar 

  • Pereira GS, Garcia AAF, Margarido GRA (2018) A fully automated pipeline for quantitative genotype calling from next generation sequencing data in autopolyploids. BMC Bioinf 19:398

    Article  CAS  Google Scholar 

  • Pilorgé E, Muel F (2016) What vegetable oils and proteins for 2030? Would the protein fraction be the future of oil and protein crops? OCL 23:D402

    Article  Google Scholar 

  • Pittman JJ, Arnall DB, Interrante SM, Moffet CA, Butler TJ (2015) Estimation of biomass and canopy height in bermudagrass, alfalfa, and wheat using ultrasonic, laser, and spectral sensors. Sensors 15:2920–2943

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pootakham W, Sonthirod C, Naktang C, Jomchai N, Sangsrakru D, Tangphatsornruang S (2016) Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: a case study in oil palm (Elaeis guineensis). Mol Breed 36:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posselt UK (2010) Breeding methods in cross-pollinated species. In: Boller B, Posselt UK, Veronesi F (eds) Fodder crops and amenity grasses. Handbook of Plant Breeding, Springer, New York, pp 39–87

    Chapter  Google Scholar 

  • Puritz JB, Hollenbeck CM, Gold JR (2014) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2:e431

    Google Scholar 

  • Rajsic P, Weersink A, Navabi A, Pauls KP (2016) Economics of genomic selection: the role of prediction accuracy and relative genotyping costs. Euphytica 210:259–276

    Article  Google Scholar 

  • Ramstein GP, Evans J, Kaeppler SM, Mitchell RB, Vogel KP, Buell CR, Casler MD (2016) Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium. G3 (Bethesda) 6:1049–1062

    Google Scholar 

  • Ray IM, Han YEL, Meenach CD, Santantonio N, Sledge MK, Pierce CA, Sterling TM, Kersey RK, Bhandari HS, Monteros MJ (2015) Identification of quantitative trait loci for alfalfa forage biomass productivity during drought stress. Crop Sci 55:2012–2033

    Article  CAS  Google Scholar 

  • Riday H, Brummer EC (2005) Heterosis in a broad range of alfalfa germplasm. Crop Sci 45:8–17

    Article  Google Scholar 

  • Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, Hansen JL, Brummer EC (2007) Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci 47:1–10

    Article  CAS  Google Scholar 

  • Rumbaugh MD, Caddel JL, Rowe DE (1988) Breeding and quantitative genetics. In: Hanson AA, Barnes DK, Hill RR (eds) Alfalfa and alfalfa improvement. CSSA, SSSA Publishers, Madison, WI, ASA, pp 777–808

    Google Scholar 

  • Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA

    Google Scholar 

  • Sheaffer CC, Cash D, Ehlke NJ, Henning JC, Jewett JG, Johnson KD, Peterson MA, Smith M, Hansen JL, Viands DR (1998) Entry × environment interactions for alfalfa forage quality. Agron J 90:774–780

    Article  Google Scholar 

  • Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KF, Schwartz DC, Town CD (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312

    Google Scholar 

  • Uitdewilligen JGAML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE 8:e62355

    Google Scholar 

  • Viana JMS, Piepho H-P, Fonseca F (2016) Quantitative genetics theory for genomic selection and efficiency of genotypic value prediction in open-pollinated populations. Sci Agric 74:41–50

    Article  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 5:309–327

    Article  PubMed  Google Scholar 

  • Woodfield DR, Bingham ET (1995) Improvement in two-allele autotetraploid populations of alfalfa explained by accumulation of favorable alleles. Crop Sci 35:988–994

    Article  Google Scholar 

  • Yu LX, Zheng P, Bhamidimarri S, Liu XP, Main D (2017) The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Front Plant Sci 8:89

    Google Scholar 

Download references

Acknowledgements

The experimental data currently object of original analyses were produced by the FP7-ArimNet project ‘Resilient, water- and energy-efficient forage and feed crops for Mediterranean agricultural systems (Reforma)’ funded by the Italian Ministry of Agriculture, Food and Forestry Policy, the project ‘High quality alfalfa for the dairy chain (Qual&Medica)’ funded by Fondazione Cassa di Risparmio di Bologna and Regione Emilia-Romagna, and genotyping work funded by the Samuel Roberts Noble Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Annicchiarico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Annicchiarico, P., Nazzicari, N., Pecetti, L. (2021). Genomic Selection for Higher Yield and Quality in Alfalfa. In: Yu, LX., Kole, C. (eds) The Alfalfa Genome . Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74466-3_12

Download citation

Publish with us

Policies and ethics