Skip to main content

Monitoring Respiratory Muscle Function

  • Chapter
  • First Online:
Cardiopulmonary Monitoring

Abstract

Activity of the respiratory muscles is disturbed by virtually every respiratory disorder. Clinical manifestations of respiratory muscle involvement are subtle and commonly missed. The critical step in diagnosing problems is for a clinician to suspect a muscle problem when the presentation is camouflaged by obscuring features. This chapter provides a detailed discussion of methods to detect and monitor respiratory muscle function. Screening tools consist of physical examination, pulmonary function testing, and recordings of inspiratory and expiratory pressures. Precise quantification of diaphragmatic contractility is provided by recordings of transdiaphragmatic pressure in response to phrenic-nerve stimulation. Mechanical load on the respiratory muscles is best captured by computation of work of breathing and its subfractions. Electromyographic recordings of electrical activity of the diaphragm help in assessing neuromuscular coupling. Burgeoning reports on ultrasound and airway pressure recordings reflect a craving for easy-to-use noninvasive tools, but the techniques are beset by poor reproducibility and failure to validate proposed threshold values. The greatest challenge for improving patient care remains physician understanding of the basic physiology that underpins methods used to diagnose and monitor respiratory muscle pathology.

Supported by grants from the Veterans Administration Research Service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah SJ, Chan DS, Glicksman R, et al. Abdominal binding improves neuromuscular efficiency of the human diaphragm during exercise. Front Physiol. 2017;8:345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdallah SJ, Smith BM, Wilkinson-Maitland C, et al. Effect of abdominal binding on diaphragmatic neuromuscular efficiency, exertional breathlessness, and exercise endurance in chronic obstructive pulmonary disease. Front Physiol. 2018;9:1618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Agostoni E. Action of the respiratory muscles. In: Fenn WO, Rahn H, editors. Handbook of physiology. Washington: American Physiological Society; 1964. p. 377–86.

    Google Scholar 

  • Agostoni P, Mead J. Statics of the respiratory system. In: Fenn WO, Rahn H, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1964. p. 387–409.

    Google Scholar 

  • Agostoni P, Rahn H. Abdominal and thoracic pressures at different lung volumes. J Appl Physiol. 1960;15:1087–92.

    Article  CAS  PubMed  Google Scholar 

  • Agostoni E, Sant'Ambrogio G, Del Portillo Carrasco H. Electromyography of the diaphragm in man and transdiaphragmatic pressure. J Appl Physiol. 1960;15:1093–7.

    Article  CAS  PubMed  Google Scholar 

  • Agostoni E, Campbell E, Freedman S. Energetics. In: EJM C, Agostoni E, Newsom-Davis J, editors. The respiratory muscles. Philadelphia: Saunders; 1970. p. 115–37.

    Google Scholar 

  • Aldrich TK, Spiro P. Maximal inspiratory pressure: does reproducibility indicate full effort? Thorax. 1995;50:40–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander C. Diaphragm movements and the diagnosis of diaphragmatic paralysis. Clin Radiol. 1966;17:79–83.

    Article  CAS  PubMed  Google Scholar 

  • Allen SM, Hunt B, Green M. Fall in vital capacity with posture. Br J Dis Chest. 1985;79:267–71.

    Article  CAS  PubMed  Google Scholar 

  • Allen GM, McKenzie DK, Gandevia SC, Bass S. Reduced voluntary drive to breathe in asthmatic subjects. Respir Physiol. 1993;93:29–40.

    Article  CAS  PubMed  Google Scholar 

  • Allen GM, Gandevia SC, Neering IR, et al. Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis. Brain. 1994;117(Pt 4):661–70.

    Article  PubMed  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287–332.

    Article  CAS  PubMed  Google Scholar 

  • Allo JC, Beck JC, Brander L, et al. Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury. Crit Care Med. 2006;34:2997–3004.

    Article  PubMed  Google Scholar 

  • Al-Shekhlee A, Shapiro BE, Preston DC. Iatrogenic complications and risks of nerve conduction studies and needle electromyography. Muscle Nerve. 2003;27:517–26.

    Article  PubMed  Google Scholar 

  • American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.

    Article  Google Scholar 

  • Antenora F, Fantini R, Iattoni A, et al. Prevalence and outcomes of diaphragmatic dysfunction assessed by ultrasound technology during acute exacerbation of COPD: a pilot study. Respirology. 2017;22:338–44.

    Article  PubMed  Google Scholar 

  • Araujo PR, Resqueti VR, Nascimento JJ, et al. Reference values for sniff nasal inspiratory pressure in healthy subjects in Brazil: a multicenter study. J Bras Pneumol. 2012;38:700–7.

    PubMed  Google Scholar 

  • Arnulf I, Similowski T, Salachas F, et al. Sleep disorders and diaphragmatic function in patients with amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2000;161:849–56.

    Article  CAS  PubMed  Google Scholar 

  • Assy J, Mauriat P, Tafer N, et al. Neurally adjusted ventilatory assist for children on veno-venous ECMO. J Artif Organs. 2019;22:118–25.

    Article  PubMed  Google Scholar 

  • Aubier M, Farkas G, De Troyer A, et al. Detection of diaphragmatic fatigue in man by phrenic stimulation. J Appl Physiol. 1981a;50:538–44.

    Article  CAS  PubMed  Google Scholar 

  • Aubier M, Trippenbach T, Roussos C. Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol. 1981b;51:499–508.

    Article  CAS  PubMed  Google Scholar 

  • Aubier M, Murciano D, Lecocguic Y, et al. Bilateral phrenic stimulation: a simple technique to assess diaphragmatic fatigue in humans. J Appl Physiol. 1985;58:58–64.

    Article  CAS  PubMed  Google Scholar 

  • Babcock M, Pegelow D, McClaran S, et al. Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol. 1995;78:1710–9.

    Article  CAS  PubMed  Google Scholar 

  • Bachasson D, Wuyam B, Pepin JL, et al. Quadriceps and respiratory muscle fatigue following high-intensity cycling in COPD patients. PLoS One. 2013;8:e83432.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bachasson DDM, Niérat MC, Gennisson JL, Hogrel JY, Doorduin J, Similowski T. Diaphragm shear modulus reflects transdiaphragmatic pressure during isovolumetric inspiratory efforts and ventilation against inspiratory loading. J Appl Physiol. 2019;126:699–707.

    Article  PubMed  Google Scholar 

  • Barry DT. Acoustic signals from frog skeletal muscle. Biophys J. 1987;51:769–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolo A, Roberts C, Dzwonczyk RR, Goldman E. Analysis of diaphragm EMG signals: comparison of gating vs. subtraction for removal of ECG contamination. J Appl Physiol. 1996;80:1898–902.

    Article  CAS  PubMed  Google Scholar 

  • Barwing J, Pedroni C, Olgemoller U, et al. Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care. 2013;17:R182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazzy AR, Haddad GG. Diaphragmatic fatigue in unanesthetized adult sheep. J Appl Physiol. 1984;57:182–90.

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Sinderby C, Weinberg J, Grassino A. Effects of muscle-to-electrode distance on the human diaphragm electromyogram. J Appl Physiol. 1995;79:975–85.

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Sinderby C, Lindstrom L, Grassino A. Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm electromyogram. J Appl Physiol. 1996;81:1434–49.

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Sinderby C, Lindstrom L, Grassino A. Diaphragm interference pattern EMG and compound muscle action potentials: effects of chest wall configuration. J Appl Physiol. 1997;82:520–30.

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Sinderby C, Lindstrom L, Grassino A. Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol. 1998;85:1123–34.

    Article  CAS  PubMed  Google Scholar 

  • Beck J, Gottfried SB, Navalesi P, et al. Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;164:419–24.

    Article  CAS  PubMed  Google Scholar 

  • Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol. 1981;51:1131–5.

    Article  CAS  PubMed  Google Scholar 

  • Bellani G, Mauri T, Coppadoro A, et al. Estimation of patient's inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41:1483–91.

    Article  PubMed  Google Scholar 

  • Bellemare F. Strength of the respiratory muscles. In: Roussos C, editor. The thorax. New York: Marcel Dekker; 1995. p. 1161–97.

    Google Scholar 

  • Bellemare F, Bigland-Ritchie B. Assessment of human diaphragm strength and activation using phrenic nerve stimulation. Respir Physiol. 1984;58:263–77.

    Article  CAS  PubMed  Google Scholar 

  • Bellemare F, Bigland-Ritchie B. Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. J Appl Physiol. 1987;62:1307–16.

    Article  CAS  PubMed  Google Scholar 

  • Bellemare F, Grassino A. Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol. 1982;53:1190–5.

    Article  CAS  PubMed  Google Scholar 

  • Bellemare F, Wight D, Lavigne CM, Grassino A. Effect of tension and timing of contraction on the blood flow of the diaphragm. J Appl Physiol. 1983a;54:1597–606.

    Article  CAS  PubMed  Google Scholar 

  • Bellemare F, Woods JJ, Johansson R, Bigland-Ritchie B. Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J Neurophysiol. 1983b;50:1380–92.

    Article  CAS  PubMed  Google Scholar 

  • Bellemare F, Bigland-Ritchie B, Woods JJ. Contractile properties of the human diaphragm in vivo. J Appl Physiol. 1986;61:1153–61.

    Article  CAS  PubMed  Google Scholar 

  • Bigland B, Lippold OCJ. The relation between force, velocity and integrated electrical activity in human muscles. J Physiol Lond. 1954;123:214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigland-Ritchie B, Woods JJ. Integrated EMG and oxygen uptake during dynamic contractions of human muscles. J Appl Physiol. 1974;36:475–9.

    Article  CAS  PubMed  Google Scholar 

  • Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969;99:696–702.

    CAS  PubMed  Google Scholar 

  • Blankman P, Hasan D, van Mourik MS, Gommers D. Ventilation distribution measured with EIT at varying levels of pressure support and Neurally adjusted Ventilatory assist in patients with ALI. Intensive Care Med. 2013;39:1057–62.

    Article  PubMed  Google Scholar 

  • Boon AJ, Harper CJ, Ghahfarokhi LS, et al. Two-dimensional ultrasound imaging of the diaphragm: quantitative values in normal subjects. Muscle Nerve. 2013;47:884–9.

    Article  PubMed  Google Scholar 

  • Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009;135:391–400.

    Article  PubMed  Google Scholar 

  • Boussuges A, Brégeon F, Blanc P, et al. Characteristics of the paralysed diaphragm studied by M-mode ultrasonography. Clin Physiol Funct Imaging. 2019;39:143–9.

    Article  PubMed  Google Scholar 

  • Brander L, Leong-Poi H, Beck J, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.

    Article  PubMed  Google Scholar 

  • Braun NM, Arora NS, Rochester DF. Force-length relationship of the normal human diaphragm. J Appl Physiol Respir Environ Exerc Physiol. 1982;53:405–12.

    CAS  PubMed  Google Scholar 

  • Braun NM, Arora NS, Rochester DF. Respiratory muscle and pulmonary function in polymyositis and other proximal myopathies. Thorax. 1983;38:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce EN, Loring SH. Methods for assessing chest wall behavior. In: Roussos C, Macklem PT, editors. The thorax. New York: Marcell Dekker; 1985. p. 235–55.

    Google Scholar 

  • Butler JE, McKenzie DK, Gandevia SC. Impaired reflex responses to airway occlusion in the inspiratory muscles of asthmatic subjects. Thorax. 1996;51:490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buyse B, Demedts M, Meekers J, et al. Respiratory dysfunction in multiple sclerosis: a prospective analysis of 60 patients. Eur Respir J. 1997;10:139–45.

    Article  CAS  PubMed  Google Scholar 

  • Cammarota G, Sguazzotti I, Zanoni M, et al. Diaphragmatic ultrasound assessment in subjects with acute hypercapnic respiratory failure admitted to the emergency department. Respir Care. 2019;64:1469–77.

    Article  PubMed  Google Scholar 

  • Campbell EJM. The respiratory muscles and the mechanics of breathing. London: Lloyd-Luke; 1958.

    Google Scholar 

  • Cardenas LZ, Santana PV, Caruso P, et al. Diaphragmatic ultrasound correlates with inspiratory muscle strength and pulmonary function in healthy subjects. Ultrasound Med Biol. 2018;44:786–93.

    Article  PubMed  Google Scholar 

  • Carrillo-Esper R, Perez-Calatayud AA, Arch-Tirado E, et al. Standardization of sonographic diaphragm thickness evaluations in healthy volunteers. Respir Care. 2016;61:920–4.

    Article  PubMed  Google Scholar 

  • Cassart M, Pettiaux N, Gevenois PA, et al. Effect of chronic hyperinflation on diaphragm length and surface area. Am J Respir Crit Care Med. 1997;156:504–8.

    Article  CAS  PubMed  Google Scholar 

  • Cattapan SE, Laghi F, Tobin MJ. Can diaphragmatic contractility be assessed by airway twitch pressure in mechanically ventilated patients? Thorax. 2003;58:58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Durand LG, Bellemare F. Time and frequency domain analysis of acoustic signals from a human muscle. Muscle Nerve. 1997;20:991–1001.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Kayser B, Yan S, Macklem PT. Twitch transdiaphragmatic pressure depends critically on thoracoabdominal configuration. J Appl Physiol. 2000;88:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Chevrolet JC, Deleamont P. Repeated vital capacity measurements as predictive parameters for mechanical ventilation need and weaning success in the Guillain-Barre syndrome. Am Rev Respir Dis. 1991;144:814–8.

    Article  CAS  PubMed  Google Scholar 

  • Chino K, Ohya T, Katayama K, Suzuki Y. Diaphragmatic shear modulus at various submaximal inspiratory mouth pressure levels. Respir Physiol Neurobiol. 2018;252:52–7.

    Article  PubMed  Google Scholar 

  • Clanton TL, Diaz PT. Clinical assessment of the respiratory muscles. Phys Ther. 1995;75:983–95.

    Article  CAS  PubMed  Google Scholar 

  • Clanton TL, Dixon GF, Drake J, Gadek JE. Effects of breathing pattern on inspiratory muscle endurance in humans. J Appl Physiol. 1985;59:1834–41.

    Article  CAS  PubMed  Google Scholar 

  • Clergue F, Whitelaw WA, Charles JC, et al. Inferences about respiratory muscle use after cardiac surgery from compartmental volume and pressure measurements. Anesthesiology. 1995;82:1318–27.

    Article  CAS  PubMed  Google Scholar 

  • Cluzel P, Similowski T, Chartrand-Lefebvre C, et al. Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging—preliminary observations. Radiology. 2000;215:574–83.

    Article  CAS  PubMed  Google Scholar 

  • Cohen CA, Zagelbaum G, Gross D, et al. Clinical manifestations of inspiratory muscle fatigue. Am J Med. 1982;73:308–16.

    Article  CAS  PubMed  Google Scholar 

  • Coisel Y, Chanques G, Jung B, et al. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 2010;113:925–35.

    Article  PubMed  Google Scholar 

  • Criner GJ, Celli BR. Effect of unsupported arm exercise on ventilatory muscle recruitment in patients with severe chronic airflow obstruction. Am Rev Respir Dis. 1988;138:856–61.

    Article  CAS  PubMed  Google Scholar 

  • D'Angelo E, Pecchiari M, Acocella F, et al. Effects of abdominal distension on breathing pattern and respiratory mechanics in rabbits. Respir Physiol Neurobiol. 2002;130:293–304.

    Article  PubMed  Google Scholar 

  • Daube JR. Electrodiagnosis of muscle disorders. In: Engel AG, Banker BQ, editors. Myology: basic and clinical. New York: McGraw Hill; 1986. p. 1081–121.

    Google Scholar 

  • Daubenspeck JA, Leiter JC, McGovern JF, et al. Diaphragmatic electromyography using a multiple electrode array. J Appl Physiol. 1989;67:1525–34.

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Goldman M, Loh L, Casson M. Diaphragm function and alveolar hypoventilation. Q J Med. 1976;45:87–100.

    CAS  PubMed  Google Scholar 

  • De Troyer A, Estenne M. Limitations of measurement of transdiaphragmatic pressure in detecting diaphragmatic weakness. Thorax. 1981;36:169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Troyer AD, Estenne M. Coordination between rib cage muscles and diaphragm during quiet breathing in humans. J Appl Physiol. 1984;57:899–906.

    Article  PubMed  Google Scholar 

  • De Troyer A, Estenne M. Chest wall motion in paraplegic subjects. Am Rev Respir Dis. 1990;141:332–6.

    Article  PubMed  Google Scholar 

  • De Troyer A, Borenstein S, Cordier R. Analysis of lung volume restriction in patients with respiratory muscle weakness. Thorax. 1980;35:603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Troyer A, Estenne M, Ninane V, et al. Transversus abdominis muscle function in humans. J Appl Physiol. 1990;68:1010–6.

    Article  PubMed  Google Scholar 

  • De Troyer A, Leeper JB, McKenzie DK, Gandevia SC. Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med. 1997;155:1335–40.

    Article  PubMed  Google Scholar 

  • De Troyer A, Kirkwood PA, Wilson TA. Respiratory action of the intercostal muscles. Physiol Rev. 2005;85:717–56.

    Article  PubMed  Google Scholar 

  • Demoule A, Verin E, Locher C, et al. Validation of surface recordings of the diaphragm response to transcranial magnetic stimulation in humans. J Appl Physiol. 2003;94:453–61.

    Article  PubMed  Google Scholar 

  • Demoule A, Jung B, Prodanovic H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med. 2013;188:213–9.

    Article  PubMed  Google Scholar 

  • Demoule A, Clavel M, Rolland-Debord C, et al. Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial. Intensive Care Med. 2016;42:1723–32.

    Article  CAS  PubMed  Google Scholar 

  • Di MR, Spadaro S, Mirabella L, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016;20:1.

    Google Scholar 

  • Diehl JL, Lofaso F, Deleuze P, et al. Clinically relevant diaphragmatic dysfunction after cardiac operations. J Thorac Cardiovasc Surg. 1994;107:487–98.

    Article  CAS  PubMed  Google Scholar 

  • DiNino E, Gartman EJ, Sethi JM, McCool FD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69:431–5.

    Article  Google Scholar 

  • Doorduin J, Sinderby CA, Beck J, et al. The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med. 2012;185:90–5.

    Article  CAS  PubMed  Google Scholar 

  • Doorduin J, Roesthuis LH, Jansen D, et al. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation. Anesthesiology. 2018;129:490–501.

    Article  PubMed  Google Scholar 

  • Doud JR, Walsh JM. Muscle temperature alters the EMG power spectrum of the canine diaphragm. Respir Physiol. 1993;94:241–50.

    Article  CAS  PubMed  Google Scholar 

  • Doud JR, Walsh JM. Muscle fatigue and muscle length interaction: effect on the EMG frequency components. Electromyogr Clin Neurophysiol. 1995;35:331–9.

    CAS  PubMed  Google Scholar 

  • Dres M, Schmidt M, Ferre A, et al. Diaphragm electromyographic activity as a predictor of weaning failure. Intensive Care Med. 2012;38:2017–25.

    Article  PubMed  Google Scholar 

  • Dres M, Dube BP, Mayaux J, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195:57–66.

    Article  PubMed  Google Scholar 

  • Dubé B-P, Dres M, Mayaux J, et al. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax. 2017;72:811–8.

    Article  PubMed  Google Scholar 

  • Duiverman ML, Van Eykern LA, Vennik PW, et al. Reproducibility and responsiveness of a noninvasive EMG technique of the respiratory muscles in COPD patients and in healthy subjects. J Appl Physiol. 2004;96:1723–9.

    Article  PubMed  Google Scholar 

  • Edwards RH, Hill DK, Jones DA. Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol. 1975;251:287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia D, Kelly JL, Martolini D, et al. Respiratory muscle fatigue following exercise in patients with interstitial lung disease. Respiration. 2013;85:220–7.

    Article  PubMed  Google Scholar 

  • Emeriaud G, Beck J, Tucci M, et al. Diaphragm electrical activity during expiration in mechanically ventilated infants. Pediatr Res. 2006;59:705–10.

    Article  PubMed  Google Scholar 

  • Enright PL, Kronmal RA, Manolio TA, et al. Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular health study research group. Am J Respir Crit Care Med. 1994;149:430–8.

    Article  CAS  PubMed  Google Scholar 

  • Epstein SK, Celli BR, Williams J, et al. Ventilatory response to arm elevation. Its determinants and use in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;152:211–6.

    Article  CAS  PubMed  Google Scholar 

  • Esau SA, Bellemare F, Grassino A, et al. Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol. 1983;54:1353–60.

    Article  CAS  PubMed  Google Scholar 

  • Estenne M, Gevenois PA, Kinnear W, et al. Lung volume restriction in patients with chronic respiratory muscle weakness: the role of microatelectasis. Thorax. 1993;48:698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson GT. Use of twitch pressures to assess diaphragmatic function and central drive. J Appl Physiol. 1994;77:1705–15.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari G, De Filippi G, Elia F, et al. Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J. 2014;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Field S, Sanci S, Grassino A. Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol. 1984;57:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Fitch S, McComas A. Influence of human muscle length on fatigue. J Physiol. 1985;362:205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitting JW. Sniff nasal inspiratory pressure: simple or too simple? Eur Respir J. 2006;27:881–3.

    Article  PubMed  Google Scholar 

  • Fitting JW, Grassino A. Diagnosis of diaphragmatic dysfunction. Clin Chest Med. 1987;8:91–103.

    Article  CAS  PubMed  Google Scholar 

  • Fiz JA, Montserrat JM, Picado C, et al. How many manoeuvres should be done to measure maximal inspiratory mouth pressure in patients with chronic airflow obstruction? Thorax. 1989;44:419–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleury B, Murciano D, Talamo C, et al. Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis. 1985;131:822–7.

    CAS  PubMed  Google Scholar 

  • Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81:1725–89.

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, McKenzie DK. Activation of the human diaphragm during maximal static efforts. J Physiol. 1985;367:45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC, McKenzie DK. Human diaphragmatic EMG: changes with lung volume and posture during supramaximal phrenic stimulation. J Appl Physiol. 1986;60:1420–8.

    Article  CAS  PubMed  Google Scholar 

  • Gandevia SC, McKenzie DK, Plassman BL. Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol. 1990;428:387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC, Gorman RB, McKenzie DK, Southon FC. Dynamic changes in human diaphragm length: maximal inspiratory and expulsive efforts studied with sequential radiography. J Physiol. 1992;457:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennisson J-L, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94:487–95.

    Article  PubMed  Google Scholar 

  • Gerscovich EO, Cronan M, McGahan JP, et al. Ultrasonographic evaluation of diaphragmatic motion. J Ultrasound Med. 2001;20:597–604.

    Article  CAS  PubMed  Google Scholar 

  • Gibson GJ. Measurement of respiratory muscle strength. Respir Med. 1995;89:529–35.

    Article  CAS  PubMed  Google Scholar 

  • Gibson GJ, Clark E, Pride NB. Static transdiaphragmatic pressures in normal subjects and in patients with chronic hyperinflation. Am Rev Respir Dis. 1981;124:685–9.

    CAS  PubMed  Google Scholar 

  • Gierada DS, Curtin JJ, Erickson SJ, et al. Diaphragmatic motion: fast gradient-recalled-echo MR imaging in healthy subjects. Radiology. 1995;194:879–84.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R, Auchincloss JH Jr, Peppi D. Relationship of rib cage and abdomen motion to diaphragm function during quiet breathing. Chest. 1981;80:607–12.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert R, Auchincloss JH, Peppi D. Significance of relative rib cage and abdomen motion in patients with chronic obstructive pulmonary disease. Lung. 1983;161:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41:642–9.

    Article  PubMed  Google Scholar 

  • Goligher EC, Dres M, Fan E, et al. Mechanical ventilation–induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197:204–13.

    Article  CAS  PubMed  Google Scholar 

  • Gorman RB, McKenzie DK, Butler JE, et al. Diaphragm length and neural drive after lung volume reduction surgery. Am J Respir Crit Care Med. 2005;172:1259–66.

    Article  PubMed  Google Scholar 

  • Gottesman E, McCool FD. Ultrasound evaluation of the paralyzed diaphragm. Am J Respir Crit Care Med. 1997;155:1570–4.

    Article  CAS  PubMed  Google Scholar 

  • Gross D, Grassino A, Ross WR, Macklem PT. Electromyogram pattern of diaphragmatic fatigue. J Appl Physiol. 1979;46:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Grosu HB, Im Lee Y, Lee J, et al. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012;142:1455–60.

    Article  PubMed  Google Scholar 

  • Grosu HB, Ost DE, Im Lee Y, et al. Diaphragm muscle thinning in subjects receiving mechanical ventilation and its effect on extubation. Respir Care. 2017;62:904–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamnegaard CH, Wragg S, Kyroussis D, et al. Mouth pressure in response to magnetic stimulation of the phrenic nerves. Thorax. 1995;50:620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamnegard CH, Wragg S, Mills G, et al. The effect of lung volume on transdiaphragmatic pressure. Eur Respir J. 1995;8:1532–6.

    Article  CAS  PubMed  Google Scholar 

  • HamnegÃ¥rd C, Wragg SD, Mills GH, et al. Clinical assessment of diaphragm strength by cervical magnetic stimulation of the phrenic nerves. Thorax. 1996;51:1239–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harik-Khan RI, Wise RA, Fozard JL. Determinants of maximal inspiratory pressure. The Baltimore longitudinal study of aging. Am J Respir Crit Care Med. 1998;158:1459–64.

    Article  CAS  PubMed  Google Scholar 

  • He BT, Lu G, Xiao SC, et al. Coexistence of OSA may compensate for sleep related reduction in neural respiratory drive in patients with COPD. Thorax. 2017;72:256–62.

    Article  PubMed  Google Scholar 

  • Heritier F, Rahm F, Pasche P, Fitting JW. Sniff nasal inspiratory pressure. A noninvasive assessment of inspiratory muscle strength. Am J Respir Crit Care Med. 1994;150:1678–83.

    Article  CAS  PubMed  Google Scholar 

  • Hermans G, Agten A, Testelmans D, et al. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010;14:R127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hershenson MB, Kikuchi Y, Loring SH. Relative strengths of the chest wall muscles. J Appl Physiol. 1988;65:852–62.

    Article  CAS  PubMed  Google Scholar 

  • Hillman DR, Finucane KE. Respiratory pressure partitioning during quiet inspiration in unilateral and bilateral diaphragmatic weakness. Am Rev Respir Dis. 1988;137:1401–5.

    Article  CAS  PubMed  Google Scholar 

  • Hillman DR, Markos J, Finucane KE. Effect of abdominal compression on maximum transdiaphragmatic pressure. J Appl Physiol. 1990;68:2296–304.

    Article  CAS  PubMed  Google Scholar 

  • Hodges PW, Gandevia SC. Activation of the human diaphragm during a repetitive postural task. J Physiol. 2000;522(Pt 1):165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg E, Waldeck B. On the possible role of potassium ions in the action of terbutaline on skeletal muscle contractions. Acta Pharmacol Toxicol (Copenh). 1980;46:141–9.

    Article  CAS  Google Scholar 

  • Hooijman PE, Beishuizen A, Witt CC, et al. Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med. 2015;191:1126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RS. Respiratory failure because of neuromuscular disease. Curr Opin Neurol. 2016;29:592–601.

    Article  PubMed  Google Scholar 

  • Huang SJ, Orde S. From speckle tracking echocardiography to torsion: research tool today, clinical practice tomorrow. Curr Opin Crit Care. 2013;19:250–7.

    Article  PubMed  Google Scholar 

  • Huang CH, Yang GG, Chen TW. Sniff nasal inspiratory pressure does not decrease in elderly subjects. J Phys Ther Sci. 2014;26:1509–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubmayr RD, Litchy WJ, Gay PC, Nelson SB. Transdiaphragmatic twitch pressure. Effects of lung volume and chest wall shape. Am Rev Respir Dis. 1989;139:647–52.

    Article  CAS  PubMed  Google Scholar 

  • Jaber S, Petrof BJ, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.

    Article  CAS  PubMed  Google Scholar 

  • Jensen D, O'Donnell DE, Li R, Luo YM. Effects of dead space loading on neuro-muscular and neuro-ventilatory coupling of the respiratory system during exercise in healthy adults: implications for dyspnea and exercise tolerance. Respir Physiol Neurobiol. 2011;179:219–26.

    Article  PubMed  Google Scholar 

  • Jiang J-R, Tsai T-H, Jerng J-S, et al. Ultrasonographic evaluation of liver/spleen movements and extubation outcome. Chest. 2004;126:179–85.

    Article  PubMed  Google Scholar 

  • Jolley CJ, Luo YM, Steier J, et al. Neural respiratory drive and breathlessness in COPD. Eur Respir J. 2015;45:355–64.

    Article  PubMed  Google Scholar 

  • Ju C, Liu W, Chen RC. Twitch mouth pressure and disease severity in subjects with COPD. Respir Care. 2014;59:1062–70.

    Article  PubMed  Google Scholar 

  • Juan G, Calverley P, Talamo C, et al. Effect of carbon dioxide on diaphragmatic function in human beings. N Engl J Med. 1984;310:874–9.

    Article  CAS  PubMed  Google Scholar 

  • Jubran A, Tobin MJ. Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med. 1997;155:906–15.

    Article  CAS  PubMed  Google Scholar 

  • Jung B, Nougaret S, Conseil M, et al. Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology. 2014;120:1182–91.

    Article  PubMed  Google Scholar 

  • Jung B, Moury PH, Mahul M, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2016;42:853–61.

    Article  PubMed  Google Scholar 

  • Kabitz HJ, Walterspacher S, Walker D, Windisch W. Inspiratory muscle strength in chronic obstructive pulmonary disease depending on disease severity. Clin Sci (Lond). 2007;113:243–9.

    Article  Google Scholar 

  • Kamide N, Ogino M, Yamashina N, Fukuda M. Sniff nasal inspiratory pressure in healthy Japanese subjects: mean values and lower limits of normal. Respiration. 2009;77:58–62.

    Article  PubMed  Google Scholar 

  • Kantarci F, Mihmanli I, Demirel MK, et al. Normal diaphragmatic motion and the effects of body composition: determination with M-mode sonography. J Ultrasound Med. 2004;23:255–60.

    Article  PubMed  Google Scholar 

  • Karagiannidis C, Lubnow M, Philipp A, et al. Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med. 2010;36:2038–44.

    Article  PubMed  Google Scholar 

  • Kim MJ, Druz WS, Danon J, et al. Effects of lung volume and electrode position on the esophageal diaphragmatic EMG. J Appl Physiol. 1978;45:392–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Suh HJ, Hong S-B, et al. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011;39:2627–30.

    Article  PubMed  Google Scholar 

  • Kiryu S, Loring SH, Mori Y, et al. Quantitative analysis of the velocity and synchronicity of diaphragmatic motion: dynamic MRI in different postures. Magn Reson Imaging. 2006;24:1325–32.

    Article  PubMed  Google Scholar 

  • Kolar P, Sulc J, Kyncl M, et al. Stabilizing function of the diaphragm: dynamic MRI and synchronized spirometric assessment. J Appl Physiol. 2010;109:1064–71.

    Article  CAS  PubMed  Google Scholar 

  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koulouris N, Mulvey DA, Laroche CM, et al. The effect of posture and abdominal binding on respiratory pressures. Eur Respir J. 1989;2:961–5.

    Article  CAS  PubMed  Google Scholar 

  • Kranz H, Williams AM, Cassell J, et al. Factors determining the frequency content of the electromyogram. J Appl Physiol. 1983;55:392–9.

    Article  CAS  PubMed  Google Scholar 

  • Kyroussis D, Mills GH, Polkey MI, et al. Abdominal muscle fatigue after maximal ventilation in humans. J Appl Physiol. 1996;81:1477–83.

    Article  CAS  PubMed  Google Scholar 

  • Laghi F. Hypoventilation and respiratory muscle dysfunction. In: Parrillo JE, Dellinger RP, editors. Critical care medicine: principles of diagnosis and management in the adult. 4th ed. St. Louis: Mosby, Inc; 2014. p. 674–91.

    Google Scholar 

  • Laghi F, Shaikh H. Expiratory diaphragmatic recruitment in acute respiratory distress syndrome. A happy coincidence or much more? Am J Respir Crit Care Med. 2017;195:1548–50.

    Article  PubMed  Google Scholar 

  • Laghi F, Tobin MJ. Relationship between transdiaphragmatic and mouth twitch pressures at functional residual capacity. Eur Respir J. 1997;10:530–6.

    Article  CAS  PubMed  Google Scholar 

  • Laghi F, Tobin MJ. Disorders of the respiratory muscles. Am J Respir Crit Care Med. 2003;168:10–48.

    Article  PubMed  Google Scholar 

  • Laghi F, D'Alfonso N, Tobin MJ. Pattern of recovery from diaphragmatic fatigue over 24 hours. J Appl Physiol. 1995;79:539–46.

    Article  CAS  PubMed  Google Scholar 

  • Laghi F, Harrison MJ, Tobin MJ. Comparison of magnetic and electrical phrenic nerve stimulation in assessment of diaphragmatic contractility. J Appl Physiol. 1996;80:1731–42.

    Article  CAS  PubMed  Google Scholar 

  • Laghi F, Topeli A, Tobin MJ. Does resistive loading decrease diaphragmatic contractility before task failure? J Appl Physiol. 1998a;85:1103–12.

    Article  CAS  PubMed  Google Scholar 

  • Laghi F, Jubran A, Topeli A, et al. Effect of lung volume reduction surgery on neuromechanical coupling of the diaphragm. Am J Respir Crit Care Med. 1998b;157:475–83.

    Article  CAS  PubMed  Google Scholar 

  • Laghi F, Cattapan SE, Jubran A, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–7.

    Article  PubMed  Google Scholar 

  • Laghi F, Jubran A, Topeli A, et al. Effect of lung volume reduction surgery on diaphragmatic neuromechanical coupling at 2 years. Chest. 2004;125:2188–95.

    Article  PubMed  Google Scholar 

  • Laghi F, Shaikh HS, Morales D, et al. Diaphragmatic neuromechanical coupling and mechanisms of hypercapnia during inspiratory loading. Respir Physiol Neurobiol. 2014a;198:32–41.

    Article  PubMed  Google Scholar 

  • Laghi F, D'Alfonso N, Tobin MJ. A paper on the pace of recovery from diaphragmatic fatigue and its unexpected dividends. Intensive Care Med. 2014b;40:1220–6.

    Article  PubMed  Google Scholar 

  • Laghi F, Maddipati V, Schnell T, et al. Determinants of cough effectiveness in patients with respiratory muscle weakness. Respir Physiol Neurobiol. 2017;240:17–25.

    Article  PubMed  Google Scholar 

  • Laghi F, Shaikh H, Radovanovic D. Pathophysiology of respiratory failure in neuromuscular diseases. In: Elliott MW, Nava S, Schnhofer B, editors. Non-invasive ventilation and weaning. Principles and practice. London: CRC Press. Taylor & Francis Group; 2019. p. 364–74.

    Google Scholar 

  • Langer D, Ciavaglia C, Faisal A, et al. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J Appl Physiol. 2018;125:381–92.

    Article  PubMed  Google Scholar 

  • Laporta D, Grassino A. Assessment of transdiaphragmatic pressure in humans. J Appl Physiol. 1985;58:1469–76.

    Article  CAS  PubMed  Google Scholar 

  • Laroche CM, Mier AK, Moxham J, Green M. The value of sniff esophageal pressures in the assessment of global inspiratory muscle strength. Am Rev Respir Dis. 1988;138:598–603.

    Article  CAS  PubMed  Google Scholar 

  • Larouche A, Massicotte E, Constantin G, et al. Tonic diaphragmatic activity in critically ill children with and without ventilatory support. Pediatr Pulmonol. 2015;50:1304–12.

    Article  PubMed  Google Scholar 

  • Larson JL, Covey MK, Vitalo CA, et al. Maximal inspiratory pressure. Learning effect and test-retest reliability in patients with chronic obstructive pulmonary disease. Chest. 1993;104:448–53.

    Article  CAS  PubMed  Google Scholar 

  • Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53:1801214.

    Article  PubMed  Google Scholar 

  • Leal BE, Gonçalves MA, Lisboa LG, et al. Validity and reliability of fluoroscopy for digital radiography: a new way to evaluate diaphragmatic mobility. BMC Pulm Med. 2017;17:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leith DE, Butler JP, Sneddon SL, Brain JD. Cough. In Macklem PT, Mead J (eds): Handbook of physiology. Washington: American Physiological Society 1986; 315–336.

    Google Scholar 

  • Lerolle N, Guérot E, Dimassi S, et al. Ultrasonographic diagnostic criterion for severe diaphragmatic dysfunction after cardiac surgery. Chest. 2009;135:401–7.

    Article  PubMed  Google Scholar 

  • Levine S, Gillen J, Weiser P, et al. Description and validation of an ECG removal procedure for EMGdi power spectrum analysis. J Appl Physiol. 1986;60:1073–81.

    Article  CAS  PubMed  Google Scholar 

  • Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Wei J, Huang H, et al. Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning. Biomed Phys Eng Express. 2015;1:045015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liddell EGT, Sherrington CS. Recruitment and some other factors of reflex inhibition. Proc R Soc Lond Ser B. 1925;97:488–517.

    Article  Google Scholar 

  • Lindstrom L, Magnusson R, Petersen I. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography. 1970;10:341–56.

    CAS  PubMed  Google Scholar 

  • Lippold OCJ. The relationship between force-velocity and integrated electrical activitry in human muscles. J Physiol Lond. 1952;117:492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Liu H, Yang Y, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;16:R143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lofaso F, Nicot F, Lejaille M, et al. Sniff nasal inspiratory pressure: what is the optimal number of sniffs? Eur Respir J. 2006;27:980–2.

    Article  CAS  PubMed  Google Scholar 

  • Longhini F, Liu L, Pan C, et al. Neurally-adjusted ventilatory assist for noninvasive ventilation via a helmet in subjects with COPD exacerbation: a physiologic study. Respir Care. 2019;64:582–9.

    Article  PubMed  Google Scholar 

  • Lopata M, Evanich MJ, Lourenco RV. Quantification of diaphragmatic EMG response to CO2 rebreathing in humans. J Appl Physiol. 1977;43:262–70.

    Article  CAS  PubMed  Google Scholar 

  • Loring SH, Hershenson MB. Effects of series compliance on twitches superimposed on voluntary contractions. J Appl Physiol. 1992;73:516–21.

    Article  CAS  PubMed  Google Scholar 

  • Lourenco RV, Miranda JM. Drive and performance of the ventilatory apparatus in chronic obstructive lung disease. N Engl J Med. 1968;279:53–9.

    Article  CAS  PubMed  Google Scholar 

  • Lourenco RV, Cherniack NS, Malm JR, Fishman AP. Nervous output from the respiratory center during obstructed breathing. J Appl Physiol. 1966;21:527–33.

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Garcia M, Sarlabous L, Moxham J, et al. Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects. Sci Rep. 2018;8:16921.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lozano-García M, Estrada L, Jané R. Performance evaluation of fixed sample entropy in Myographic signals for inspiratory muscle activity estimation. Entropy. 2019;21:183.

    Article  CAS  PubMed Central  Google Scholar 

  • Luo YM, Moxham J. Measurement of neural respiratory drive in patients with COPD. Respir Physiol Neurobiol. 2005;146:165–74.

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Polkey MI, Johnson LC, et al. Diaphragm EMG measured by cervical magnetic and electrical phrenic nerve stimulation. J Appl Physiol. 1998;85:2089–99.

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Polkey MI, Lyall RA, Moxham J. Effect of brachial plexus co-activation on phrenic nerve conduction time. Thorax. 1999a;54:765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YM, Johnson LC, Polkey MI, et al. Diaphragm electromyogram measured with unilateral magnetic stimulation. Eur Respir J. 1999b;13:385–90.

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Lyall RA, Lou HM, et al. Quantification of the esophageal diaphragm electromyogram with magnetic phrenic nerve stimulation. Am J Respir Crit Care Med. 1999c;160:1629–34.

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Hart N, Mustfa N, et al. Effect of diaphragm fatigue on neural respiratory drive. J Appl Physiol. 2001;90:1691–9.

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Hart N, Mustfa N, et al. Reproducibility of twitch and sniff transdiaphragmatic pressures. Respir Physiol Neurobiol. 2002;132:301–6.

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Moxham J, Polkey MI. Diaphragm electromyography using an oesophageal catheter: current concepts. Clin Sci (Lond). 2008;115:233–44.

    Article  Google Scholar 

  • Maarsingh EJ, Van Eykern LA, de Haan RJ, et al. Airflow limitation in asthmatic children assessed with a non-invasive EMG technique. Respir Physiol Neurobiol. 2002;133:89–97.

    Article  PubMed  Google Scholar 

  • Maarsingh EJ, Oud M, Van Eykern LA, et al. Electromyographic monitoring of respiratory muscle activity in dyspneic infants and toddlers. Respir Physiol Neurobiol. 2006;150:191–9.

    Article  PubMed  Google Scholar 

  • Macklem PT. Inferring the actions of the respiratory muscles. In: Roussos C, editor. The thorax. New York: Marcel Dekker; 1985. p. 531–8.

    Google Scholar 

  • MacLean IC, Mattioni TA. Phrenic nerve conduction studies: a new technique and its application in quadriplegic patients. Arch Phys Med Rehabil. 1981;62:70–3.

    CAS  PubMed  Google Scholar 

  • Mador MJ, Acevedo FA. Effect of respiratory muscle fatigue on subsequent exercise performance. J Appl Physiol. 1991;70:2059–65.

    Article  CAS  PubMed  Google Scholar 

  • Mador MJ, Kufel TJ. Effect of inspiratory muscle fatigue on inspiratory muscle relaxation rates in healthy subjects. Chest. 1992;102:1767–73.

    Article  CAS  PubMed  Google Scholar 

  • Mador MJ, Magalang UJ, Kufel TJ. Twitch potentiation following voluntary diaphragmatic contraction. Am J Respir Crit Care Med. 1994;149:739–43.

    Article  CAS  PubMed  Google Scholar 

  • Mador JM, Rodis A, Diaz J. Diaphragmatic fatigue following voluntary hyperpnea. Am J Respir Crit Care Med. 1996;154:63–7.

    Article  CAS  PubMed  Google Scholar 

  • Maillard JO, Burdet L, van Melle G, Fitting JW. Reproducibility of twitch mouth pressure, sniff nasal inspiratory pressure, and maximal inspiratory pressure. Eur Respir J. 1998;11:901–5.

    Article  CAS  PubMed  Google Scholar 

  • Man WD, Kyroussis D, Fleming TA, et al. Cough gastric pressure and maximum expiratory mouth pressure in humans. Am J Respir Crit Care Med. 2003;168:714–7.

    Article  PubMed  Google Scholar 

  • Manning DR, Stull JT. Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am J Phys. 1982;242:C234–41.

    Article  CAS  Google Scholar 

  • Marchioni A, Castaniere I, Tonelli R, et al. Ultrasound-assessed diaphragmatic impairment is a predictor of outcomes in patients with acute exacerbation of chronic obstructive pulmonary disease undergoing noninvasive ventilation. Crit Care. 2018;22:109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marini JJ, Capps JS, Culver BH. The inspiratory work of breathing during assisted mechanical ventilation. Chest. 1985;87:612–8.

    Article  CAS  PubMed  Google Scholar 

  • Marini JJ, Smith TC, Lamb V. Estimation of inspiratory muscle strength in mechanically ventilated patients: the measurement of maximal inspiratory pressure. J Crit Care. 1986;1:32–8.

    Article  Google Scholar 

  • Martinez FJ, Couser JI, Celli BR. Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction. Am Rev Respir Dis. 1990;142:276–82.

    Article  CAS  PubMed  Google Scholar 

  • McCool FD, Tzelepis GE. Dysfunction of the diaphragm. N Engl J Med. 2012;366:932–42.

    Article  CAS  PubMed  Google Scholar 

  • McCool FD, McCann DR, Leith DE, Hoppin FG Jr. Pressure-flow effects on endurance of inspiratory muscles. J Appl Physiol. 1986;60:299–303.

    Article  CAS  PubMed  Google Scholar 

  • McGregor M, Becklake MR. The relationship of oxygen cost of breathing to respiratory mechanical work and respiratory force. J Clin Invest. 1961;40:971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie DK, Gandevia SC. Electrical assessment of respiratory muscles. In: Roussos C, editor. The thorax. New York: Marcel Dekker; 1995. p. 1029–48.

    Google Scholar 

  • McKenzie DK, Gandevia SC, Gorman RB, Southon FC. Dynamic changes in the zone of apposition and diaphragm length during maximal respiratory efforts. Thorax. 1994;49:634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meessen NE, van der Grinten CP, Luijendijk SC, Folgering HT. Continuous negative airway pressure increases tonic activity in diaphragm and intercostal muscles in humans. J Appl Physiol. 1994;77:1256–62.

    Article  CAS  PubMed  Google Scholar 

  • Merton PA. Voluntary strength and fatigue. J Physiol. 1954;123:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mier A, Brophy C, Moxham J, Green M. Twitch pressures in the assessment of diaphragm weakness. Thorax. 1989;44:990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milic-Emili J. Work of breathing. In: Crystal RG, West JB, editors. The lung: scientific foundations. New York: Raven Press; 1991. p. 1065–75.

    Google Scholar 

  • Miller JM, Moxham J, Green M. The maximal sniff in the assessment of diaphragm function in man. Clin Sci (Lond). 1985;69:91–6.

    Article  CAS  Google Scholar 

  • Mills G, Kyroussis D, Hamnegaard CH, et al. Evaluation of hemidiaphragmatic contractility by unilateral magnetic phrenic nerve stimulation. Eur Respir J. 1994;8:339s.

    Google Scholar 

  • Mills GH, Kyroussis D, Hamnegard CH, et al. Bilateral magnetic stimulation of the phrenic nerves from an anterolateral approach. Am J Respir Crit Care Med. 1996;154:1099–105.

    Article  CAS  PubMed  Google Scholar 

  • Mills GH, Kyroussis D, Hamnegard CH, et al. Cervical magnetic stimulation of the phrenic nerves in bilateral diaphragm paralysis. Am J Respir Crit Care Med. 1997;155:1565–9.

    Article  CAS  PubMed  Google Scholar 

  • Misuri G, Lanini B, Gigliotti F, et al. Mechanism of CO2 retention in patients with neuromuscular disease. Chest. 2000;117:447–53.

    Article  CAS  PubMed  Google Scholar 

  • Monges H, Salducci J, Naudy B. Dissociation between the electrical activity of the diaphragmatic dome and crura muscular fibers during esophageal distension, vomiting and eructation. An electromyographic study in the dog. J Physiol Paris. 1978;74:541–54.

    CAS  PubMed  Google Scholar 

  • Morales D, Khan U, Shaikh H, et al. Mechanical advantage of the diaphragm during inspiratory threshold loading. Am J Respir Crit Care Med. 2012;185:A5304.

    CAS  Google Scholar 

  • Moreno R, Pertuze J, Giugliano C, et al. Respiratory muscles in pulmonary emphysema. Rev Med Chil. 1981;109:393–400.

    CAS  PubMed  Google Scholar 

  • Moury P-H, Cuisinier A, Durand M, et al. Diaphragm thickening in cardiac surgery: a perioperative prospective ultrasound study. Ann Intensive Care. 2019;9:50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moxham J, Edwards RH, Aubier M, et al. Changes in EMG power spectrum (high-to-low ratio) with force fatigue in humans. J Appl Physiol. 1982;53:1094–9.

    Article  CAS  PubMed  Google Scholar 

  • Multz AS, Aldrich TK, Prezant DJ, et al. Maximal inspiratory pressure is not a reliable test of inspiratory muscle strength in mechanically ventilated patients. Am Rev Respir Dis. 1990;142:529–32.

    Article  CAS  PubMed  Google Scholar 

  • Nason LK, Walker CM, McNeeley MF, et al. Imaging of the diaphragm: anatomy and function. Radiographics. 2012;32:E51–70.

    Article  PubMed  Google Scholar 

  • Nava S, Ambrosino N, Crotti P, et al. Recruitment of some respiratory muscles during three maximal inspiratory manoeuvres. Thorax. 1993;48:702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navalesi P, Longhini F. Neurally adjusted ventilatory assist. Curr Opin Crit Care. 2015;21:58–64.

    Article  PubMed  Google Scholar 

  • Newsom-Davis JG, M., Loh L, Casson M. Diaphragm function and alveolar hypoventilation. Q J Med. 1976;177:87–100.

    Google Scholar 

  • Ninane V, Rypens F, Yernault JC, De Troyer A. Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis. 1992;146:16–21.

    Article  CAS  PubMed  Google Scholar 

  • Nowicki A, Dobruch-Sobczak K. Introduction to ultrasound elastography. J Ultrason. 2016;16:113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunn JF. Applied respiratory physiology. Boston: Butterworths; 1977.

    Google Scholar 

  • O'Brien MJ, Van Eykern LA. Respiratory muscle EMG monitoring. Probl Respir Care. 1989;2:176–90.

    Google Scholar 

  • Onal E, Lopata M, Evanich MJ. Effects of electrode position on esophageal diaphragmatic EMG in humans. J Appl Physiol. 1979;47:1234–8.

    Article  CAS  PubMed  Google Scholar 

  • Onal E, Lopata M, Ginzburg AS, O'Connor TD. Diaphragmatic EMG and transdiaphragmatic pressure measurements with a single catheter. Am Rev Respir Dis. 1981;124:563–5.

    CAS  PubMed  Google Scholar 

  • Oppersma E, Hatam N, Doorduin J, et al. Functional assessment of the diaphragm by speckle tracking ultrasound during inspiratory loading. J Appl Physiol. 2017;123:1063–70.

    Article  PubMed  Google Scholar 

  • Orde SR, Boon AJ, Firth DG, et al. Diaphragm assessment by two dimensional speckle tracking imaging in normal subjects. BMC Anesthesiol. 2015;16:43.

    Article  Google Scholar 

  • Paiva M, Verbanck S, Estenne M, et al. Mechanical implications of in vivo human diaphragm shape. J Appl Physiol. 1992;72:1407–12.

    Article  CAS  PubMed  Google Scholar 

  • Palkar A, Mayo P, Singh K, et al. Serial diaphragm ultrasonography to predict successful discontinuation of mechanical ventilation. Lung. 2018a;196:363–8.

    Article  CAS  PubMed  Google Scholar 

  • Palkar A, Narasimhan M, Greenberg H, et al. Diaphragm excursion-time index: a new parameter using ultrasonography to predict extubation outcome. Chest. 2018b;153:1213–20.

    Article  PubMed  Google Scholar 

  • Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med. 1998;158:1471–8.

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Jubran A, Laghi F, Tobin MJ. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol. 2007;103:140–7.

    Article  PubMed  Google Scholar 

  • Passath C, Takala J, Tuchscherer D, et al. Physiologic response to changing positive end-expiratory pressure during neurally adjusted ventilatory assist in sedated, critically ill adults. Chest. 2010;138:578–87.

    Article  PubMed  Google Scholar 

  • Patout M, Meira L, D’Cruz R, et al. Neural respiratory drive predicts long-term outcome following admission for exacerbation of COPD: a post hoc analysis. Thorax. 2019;74:910–3.

    Article  PubMed  Google Scholar 

  • Patroniti N, Bellani G, Saccavino E, et al. Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients. Intensive Care Med. 2012;38:230–9.

    Article  PubMed  Google Scholar 

  • Pellegrini M, Hedenstierna G, Roneus A, et al. The diaphragm acts as a brake during expiration to prevent lung collapse. Am J Respir Crit Care Med. 2017;195:1608–16.

    Article  CAS  PubMed  Google Scholar 

  • Petit JM, Milic-Emili J, Delhez L. New technic for the study of functions of the diaphragmatic muscle by means of electromyography in man. Boll Soc Ital Biol Sper. 1959;35:2013–4.

    CAS  PubMed  Google Scholar 

  • Petit JM, Milic-Emili J, Delhez I. Role of the diaphragm in breathing in conscious normal man: an electromyographic study. J Appl Physiol. 1960;15:1101–6.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean M, Bellemare F. Phonomyogram of the diaphragm during unilateral and bilateral phrenic nerve stimulation and changes with fatigue. Muscle Nerve. 1994;17:1201–9.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean M, Ripart TJ, Couture J, Bellemare F. Effects of lung volume and fatigue on evoked diaphragmatic phonomyogram in normal subjects. Thorax. 1996;51:705–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petitjean M, Ripart J, Couture J, Bellemare F. Diaphragmatic fatigue investigated by phonomyography. Am J Respir Crit Care Med. 1997;155:1162–6.

    Article  CAS  PubMed  Google Scholar 

  • Pirompanich P, Romsaiyut S. Use of diaphragm thickening fraction combined with rapid shallow breathing index for predicting success of weaning from mechanical ventilator in medical patients. J Intensive Care. 2018;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polkey MI, Green M, Moxham J. Measurement of respiratory muscle strength. Thorax. 1995;50:1131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polkey MI, Kyroussis D, Hamnegard CH, et al. Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154:1310–7.

    Article  CAS  PubMed  Google Scholar 

  • Pollard MJ, Megirian D, Sherrey JH. Unity of costal and crural diaphragmatic activity in respiration. ExpNeurol. 1985;90:187–93.

    CAS  Google Scholar 

  • Qin YY, Li RF, Wu GF, et al. Effect of tiotropium on neural respiratory drive during exercise in severe COPD. Pulm Pharmacol Ther. 2015;30:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Rahn H, Otis AB, Chadwick LE, Fenn WO. The pressure-volume diagram of the thorax and lung. Am J Phys. 1946;146:161–78.

    Article  CAS  Google Scholar 

  • Rajanna MJ. Anatomical and surgical considerations of the phrenic and acessory phrenic nerves. J Int Call Surg. 1947;10:42–52.

    CAS  Google Scholar 

  • Ramsook AH, Molgat-Seon Y, Schaeffer MR, et al. Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men. J Appl Physiol. 2017;122:1267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieder P, Louis M, Jolliet P, Chevrolet JC. The repeated measurement of vital capacity is a poor predictor of the need for mechanical ventilation in myasthenia gravis. Intensive Care Med. 1995;21:663–8.

    Article  CAS  PubMed  Google Scholar 

  • Rimmer KP, Golar SD, Lee MA, Whitelaw WA. Myotonia of the respiratory muscles in myotonic dystrophy. Am Rev Respir Dis. 1993;148:1018–22.

    Article  CAS  PubMed  Google Scholar 

  • Ringqvist T. The ventilatory capacity in healthy subjects. An analysis of causal factors with special reference to the respiratory forces. Scand J Clin Lab Invest Suppl. 1966;88:5–179.

    CAS  PubMed  Google Scholar 

  • Road JD, West NH, Van Vliet BN. Ventilatory effects of stimulation of phrenic afferents. J Appl Physiol. 1987;63:1063–9.

    Article  CAS  PubMed  Google Scholar 

  • Robertson CH, Foster GH, Johnson RL. The relationship of respiratory failure to the oxygen consumption of, lactate production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance. J Clin Invest. 1977;59:31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochester DF. Tests of respiratory muscle function. Clin Chest Med. 1988;9:249–61.

    Article  CAS  PubMed  Google Scholar 

  • Rochester DF, Bettini G. Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia. J Clin Invest. 1976;57:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues A, Da Silva ML, Berton DC, et al. Maximal inspiratory pressure: does the choice of reference values actually matter? Chest. 2017;152:32–9.

    Article  PubMed  Google Scholar 

  • Rohrer F. Physiologie der Atenbewegung. In: Bethe A, von Bergmann G, Embden G, Ellinger A, editors. Handuch der normalen und pathologischen Physiologie. Berlin: Springer; 1925. p. 70–127.

    Chapter  Google Scholar 

  • Roussos CCE. Handbook of physiology. Bethesda: American Physiological Society; 1986.

    Google Scholar 

  • Roze H, Repusseau B, Perrier V, et al. Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist. Br J Anaesth. 2013;111:955–60.

    Article  CAS  PubMed  Google Scholar 

  • San'Ambrogio G, Frazier DT, Wilson MF, Agostoni E. Motor innervation and pattern of activity of cat diaphragm. J Appl Physiol. 1963;18:43–6.

    Article  Google Scholar 

  • Sarlabous L, Torres A, Fiz JA, Jane R. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values. PLoS One. 2014;9:e88902.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sarlabous L, Torres A, Fiz JA, et al. Efficiency of mechanical activation of inspiratory muscles in COPD using sample entropy. Eur Respir J. 2015;46:1808–11.

    Article  PubMed  Google Scholar 

  • Sarlabous L, Torres A, Fiz JA, et al. Inspiratory muscle activation increases with COPD severity as confirmed by non-invasive mechanomyographic analysis. PLoS One. 2017;12:e0177730.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sarnoff SJ, Sarnoff LC, Wittenberger JL. Electrophrenic respiration. VII. The motor point of the phrenic nerve in relation to external stimulation. Surg Gynecol Obstet. 1951;93:190–6.

    CAS  PubMed  Google Scholar 

  • Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47:319–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sassoon CS, Mahutte CK, Te TT, et al. Work of breathing and airway occlusion pressure during assist-mode mechanical ventilation. Chest. 1988;93:571–6.

    Article  CAS  PubMed  Google Scholar 

  • Scardella AT, Parisi RA, Phair DK, et al. The role of endogenous opioids in the ventilatory response to acute flow-resistive loads. Am Rev Respir Dis. 1986;133:26–31.

    Article  CAS  PubMed  Google Scholar 

  • Scarlata S, Mancini D, Laudisio A, et al. Reproducibility and clinical correlates of supine diaphragmatic motion measured by M-mode ultrasonography in healthy volunteers. Respiration. 2018;96:259–66.

    Article  PubMed  Google Scholar 

  • Scarlata S, Mancini D, Laudisio A, Raffaele AI. Reproducibility of diaphragmatic thickness measured by M-mode ultrasonography in healthy volunteers. Respir Physiol Neurobiol. 2019;260:58–62.

    Article  PubMed  Google Scholar 

  • Schepens T, Verbrugghe W, Dams K, et al. The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Crit Care. 2015;19:422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schweitzer TW, Fitzgerald JW, Bowden JA, Lynne-Davies P. Spectral analysis of human inspiratory diaphragmatic electromyograms. J Appl Physiol. 1979;46:152–65.

    Article  CAS  PubMed  Google Scholar 

  • Scott S, Fuld JP, Carter R, et al. Diaphragm ultrasonography as an alternative to whole-body plethysmography in pulmonary function testing. J Ultrasound Med. 2006;25:225–32.

    Article  PubMed  Google Scholar 

  • Shaikh H, Laghi F. Role of diaphragm ultrasound when NIV fails in COPD exacerbations. Respir Care. 2019; [in press].

    Google Scholar 

  • Sharp JT, Hyatt RE. Mechanical and electrical properties of respiratory muscles. In handbook of Physiolgy. Bethesda: American Physiological Society; 1986. p. 389–414.

    Google Scholar 

  • Sharp JT, Hammond MD, Aranda AU, Rocha RD. Comparison of diaphragm EMG centroid frequencies: esophageal versus chest surface leads. Am Rev Respir Dis. 1993;147:764–7.

    Article  CAS  PubMed  Google Scholar 

  • Sharshar T, Hopkinson NS, Ross ET, et al. Motor control of the costal and crural diaphragm--insights from transcranial magnetic stimulation in man. Respir Physiol Neurobiol. 2005;146:5–19.

    Article  PubMed  Google Scholar 

  • Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34:253–67.

    Article  PubMed  Google Scholar 

  • Sieck GC, Fournier M. Changes in diaphragm motor unit EMG during fatigue. J Appl Physiol. 1990;68:1917–26.

    Article  CAS  PubMed  Google Scholar 

  • Similowski T, Fleury B, Launois S, et al. Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans. J Appl Physiol. 1989;67:1311–8.

    Article  CAS  PubMed  Google Scholar 

  • Similowski T, Yan S, Gauthier AP, et al. Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med. 1991;325:917–23.

    Article  CAS  PubMed  Google Scholar 

  • Similowski T, Gauthier AP, Yan S, et al. Assessment of diaphragm function using mouth pressure twitches in chronic obstructive pulmonary disease patients. Am Rev Respir Dis. 1993;147:850–6.

    Article  CAS  PubMed  Google Scholar 

  • Similowski T, Duguet A, Straus C, et al. Assessment of the voluntary activation of the diaphragm using cervical and cortical magnetic stimulation. Eur Respir J. 1996;9:1224–31.

    Article  CAS  PubMed  Google Scholar 

  • Simmons DH. Assessing the work of breathing. Chest. 1989;95:482–3.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby C, Beck J. Neurally adjusted ventilatory assist. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: Mc Graw Hill; 2013. p. 351–75.

    Google Scholar 

  • Sinderby C, Lindstrom L, Grassino AE. Automatic assessment of electromyogram quality. J Appl Physiol. 1995;79:1803–15.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby C, Weinberg J, Sullivan L, et al. Electromyographical evidence for exercise-induced diaphragm fatigue in patients with chronic cervical cord injury or prior poliomyelitis infection. Spinal Cord. 1996a;34:594–601.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby C, Friberg S, Comtois N, Grassino A. Chest wall muscle cross talk in canine costal diaphragm electromyogram. J Appl Physiol. 1996b;81:2312–27.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby CA, Beck JC, Lindstrom LH, Grassino AE. Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol. 1997;82:1370–7.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby C, Beck J, Spahija J, et al. Voluntary activation of the human diaphragm in health and disease. J Appl Physiol. 1998;85:2146–58.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.

    Article  CAS  PubMed  Google Scholar 

  • Sinderby C, Beck J, Spahija J, et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–7.

    Article  PubMed  Google Scholar 

  • Sliwinski P, Yan S, Gauthier AP, Macklem PT. Influence of global inspiratory muscle fatigue on breathing during exercise. J Appl Physiol. 1996;80:1270–8.

    Article  CAS  PubMed  Google Scholar 

  • Smith PE, Calverley PM, Edwards RH, et al. Practical problems in the respiratory care of patients with muscular dystrophy. N Engl J Med. 1987;316:1197–205.

    Article  CAS  PubMed  Google Scholar 

  • Spahija J, de Marchie M, Albert M, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–26.

    Article  PubMed  Google Scholar 

  • Steier J, Kaul S, Seymour J, et al. The value of multiple tests of respiratory muscle strength. Thorax. 2007;62:975–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suarez AA, Pessolano FA, Monteiro SG, et al. Peak flow and peak cough flow in the evaluation of expiratory muscle weakness and bulbar impairment in patients with neuromuscular disease. Am J Phys Med Rehabil. 2002;81:506–11.

    Article  PubMed  Google Scholar 

  • Suh ES, Mandal S, Harding R, et al. Neural respiratory drive predicts clinical deterioration and safe discharge in exacerbations of COPD. Thorax. 2015;70:1123–30.

    Article  PubMed  Google Scholar 

  • Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17:R120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Supinski GS, Morris PE, Dhar S, Callahan LA. Diaphragm dysfunction in critical illness. Chest. 2018;153:1040–51.

    Article  PubMed  Google Scholar 

  • Takazakura R, Takahashi M, Nitta N, Murata K. Diaphragmatic motion in the sitting and supine positions: healthy subject study using a vertically open magnetic resonance system. J Magn Reson Imaging. 2004;19:605–9.

    Article  PubMed  Google Scholar 

  • Tanaka R. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging. Radiol Phys Technol. 2016;9:139–53.

    Article  PubMed  Google Scholar 

  • Terzi N, Pelieu I, Guittet L, et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med. 2010;38:1830–7.

    Article  PubMed  Google Scholar 

  • Tobin MJ. Respiratory monitoring. New York: Churchill Livingstone; 1991.

    Google Scholar 

  • Tobin MJ. Put down your smartphone and pick up a book. BMJ. 2014;349:g4521.

    Article  PubMed  Google Scholar 

  • Tobin MJ. Why physiology is critical to the practice of medicine: a 40-year personal perspective. Clin Chest Med. 2019;40:243–57.

    Article  PubMed  Google Scholar 

  • Tobin MJ, Laghi F. Monitoring respiratory muscle function. In: Tobin MJ, editor. Principles and practice of intensive care monitoring. New York: McGraw-Hill Co; 1998. p. 497–544.

    Google Scholar 

  • Tobin MJ, Van de Graff WB. Monitoring of lung mechanics and work of breathing. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 1st ed. New York: McGraw-Hill; 1994. p. 967–1003.

    Google Scholar 

  • Tobin MJ, Walsh JM, Laghi F. Monitoring of respiratory neuromuscular function. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: McGraw-Hill Co; 1994. p. 945–66.

    Google Scholar 

  • Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol. 2012;2:2871–921.

    Article  PubMed  Google Scholar 

  • Topeli A, Laghi F, Tobin MJ. Can diaphragmatic contractility be assessed by twitch airway pressures in patients with chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 1999;160:1369–74.

    Article  CAS  PubMed  Google Scholar 

  • Topeli A, Laghi F, Tobin MJ. The voluntary drive to breathe is not decreased in hypercapnic patients with severe COPD. Eur Respir J. 2001;18:53–60.

    Article  CAS  PubMed  Google Scholar 

  • Tzani P, Chiesa S, Aiello M, et al. The value of cough peak flow in the assessment of cough efficacy in neuromuscular patients. A cross sectional study. Eur J Phys Rehabil Med. 2014;50:427–32.

    CAS  PubMed  Google Scholar 

  • Ueki J, de Bruin PF, Pride NB. In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax. 1995;50:1157–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uldry C, Fitting JW. Maximal values of sniff nasal inspiratory pressure in healthy subjects. Thorax. 1995;50:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uldry C, Janssens JP, de Muralt B, Fitting JW. Sniff nasal inspiratory pressure in patients with chronic obstructive pulmonary disease. Eur Respir J. 1997;10:1292–6.

    Article  CAS  PubMed  Google Scholar 

  • Umbrello M, Formenti P, Longhi D, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19:161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ãœnal Ö, Arslan H, Uzun K, et al. Evaluation of diaphragmatic movement with MR fluoroscopy in chronic obstructive pulmonary disease. Clin Imaging. 2000;24:347–50.

    Article  PubMed  Google Scholar 

  • Van de Graaff WB, Gordey K, Dornseif SE, et al. Pressure support: changes in ventilatory pattern and components of the work of breathing. Chest. 1991;100:1082–9.

    Article  PubMed  Google Scholar 

  • Van LE, Haxhiu MA, Cherniack NS, Goldman MD. Differential costal and crural diaphragm compensation for posture changes. J Appl Physiol (1985). 1985;58:1895–900.

    Article  Google Scholar 

  • Vandenboom R, Gittings W, Smith IC, et al. Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. J Muscle Res Cell Motil. 2013;34:317–32.

    Article  CAS  PubMed  Google Scholar 

  • Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43:184–91.

    Article  PubMed  Google Scholar 

  • Vassilakopoulos T. Ventilator induced diaphragmatic dysfunction. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: McGraw Hill; 2013. p. 1025–40.

    Google Scholar 

  • Verburg E, Murphy RM, Richard I, Lamb GD. Involvement of calpains in Ca2+−induced disruption of excitation-contraction coupling in mammalian skeletal muscle fibers. Am J Physiol Cell Physiol. 2009;296:C1115–22.

    Article  CAS  PubMed  Google Scholar 

  • Verges S, Schulz C, Perret C, Spengler CM. Impaired abdominal muscle contractility after high-intensity exhaustive exercise assessed by magnetic stimulation. Muscle Nerve. 2006;34:423–30.

    Article  PubMed  Google Scholar 

  • Verges S, Bachasson D, Wuyam B. Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir Res. 2010;11:109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verin E, Marie JP, Tardif C, Denis P. Spontaneous recovery of diaphragmatic strength in unilateral diaphragmatic paralysis. Respir Med. 2006;100:1944–51.

    Article  PubMed  Google Scholar 

  • Viires N, Sillye G, Aubier M, et al. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest. 1983;72:935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivier E, Dessap AM, Dimassi S, et al. Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med. 2012;38:796–803.

    Article  PubMed  Google Scholar 

  • Vivier E, Roussey A, Doroszewski F, et al. Atrophy of diaphragm and pectoral muscles in critically ill patients. Anesthesiology. 2019;131:569–79.

    Article  PubMed  Google Scholar 

  • Wait JL, Nahormek PA, Yost WT, Rochester DP. Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol. 1989;67:1560–8.

    Article  CAS  PubMed  Google Scholar 

  • Wan HY, Stickford JL, Kitano K, et al. Acute hypercapnia does not alter voluntary drive to the diaphragm in healthy humans. Respir Physiol Neurobiol. 2018;258:60–8.

    Article  PubMed  Google Scholar 

  • Ward ME, Corbeil C, Gibbons W, et al. Optimization of respiratory muscle relaxation during mechanical ventilation. Anesthesiology. 1988;69:29–35.

    Article  CAS  PubMed  Google Scholar 

  • Watson AC, Hughes PD, Louise HM, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29:1325–31.

    Article  CAS  PubMed  Google Scholar 

  • White JE, Drinnan MJ, Smithson AJ, et al. Respiratory muscle activity and oxygenation during sleep in patients with muscle weakness. Eur Respir J. 1995;8:807–14.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox PG, Eisen A, Wiggs BJ, Pardy RL. Diaphragmatic relaxation rate after voluntary contractions and uni- and bilateral phrenic stimulation. J Appl Physiol. 1988;65:675–82.

    Article  CAS  PubMed  Google Scholar 

  • Wragg S, Aquilina R, Moran J, et al. Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects. Eur Respir J. 1994a;7:1788–92.

    Article  CAS  PubMed  Google Scholar 

  • Wragg S, Hamnegard C, Road J, et al. Potentiation of diaphragmatic twitch after voluntary contraction in normal subjects. Thorax. 1994b;49:1234–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuthrich TU, Marty J, Benaglia P, et al. Acute effects of a respiratory sprint-interval session on muscle contractility. Med Sci Sports Exerc. 2015;47:1979–87.

    Article  PubMed  Google Scholar 

  • Yan S, Similowski T, Gauthier AP, et al. Effect of fatigue on diaphragmatic function at different lung volumes. J Appl Physiol. 1992a;72:1064–7.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Gauthier AP, Similowski T, et al. Evaluation of human diaphragm contractility using mouth pressure twitches. Am Rev Respir Dis. 1992b;145:1064–9.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Gauthier AP, Similowski T, et al. Force-frequency relationships of in vivo human and in vitro rat diaphragm using paired stimuli. Eur Respir J. 1993a;6:211–8.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Lichros I, Zakynthinos S, Macklem PT. Effect of diaphragmatic fatigue on control of respiratory muscles and ventilation during CO2 rebreathing. J Appl Physiol. 1993b;75:1364–70.

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Sliwinski P, Gauthier AP, et al. Effect of global inspiratory muscle fatigue on ventilatory and respiratory muscle responses to CO2. J Appl Physiol. 1993c;75:1371–7.

    Article  CAS  PubMed  Google Scholar 

  • Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324:1445–50.

    Article  CAS  PubMed  Google Scholar 

  • Zambon M, Beccaria P, Matsuno J, et al. Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med. 2016;44:1347–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Tobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laghi, F., Tobin, M.J. (2021). Monitoring Respiratory Muscle Function. In: Magder, S., Malhotra, A., Hibbert, K.A., Hardin, C.C. (eds) Cardiopulmonary Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-73387-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73387-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73386-5

  • Online ISBN: 978-3-030-73387-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics