Skip to main content

Basics of Hemodynamic Measurements

  • Chapter
  • First Online:
Cardiopulmonary Monitoring
  • 3221 Accesses

Abstract

A critical step when monitoring cardiopulmonary interactions is ensuring that measured values are accurate and precise. This chapter deals with vascular pressure measurements. These are more prone to measurement errors than respiratory pressure measurements because gas measurements are not influenced by the force of gravity. With current technologies, vascular pressures can be measured with great precision, but the “blind box” of electronic monitors also can result in artifactual values that seemingly look real. Primary goals of vascular pressure measurements are to determine the force distending vessel walls because this gives an indication of the effective volume in the system and, second, the pressure difference between compartments because this determines blood flow. When using standard fluid-filled catheters as part of the measuring system, three factors always must be considered: zeroing, leveling, and calibrating. Changes in the intrathoracic pressure surrounding the heart and blood vessels in the chest add another element that can lead to faulty interpretations of the pressures in this region. The goal of this chapter is to review these principles and to indicate some important common errors in measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J, et al. Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Res Pract. 2018;5(3):G11–g24.

    Article  Google Scholar 

  • Bellemare P, Goldberg P, Magder S. Variations in pulmonary artery occlusion pressure to estimate changes in pleural pressure. Intensive Care Med. 2007;33(11):2004–8.

    Article  Google Scholar 

  • Bickley LS, Hoekelman RA, editors. Bates guide to physical examination and history taking. Philadelphia: Lippincott; 1999. p. 299–303.

    Google Scholar 

  • Bytyçi I, Bajraktari G, Lindqvist P, Henein MY. Compromised left atrial function and increased size predict raised cavity pressure: a systematic review and meta-analysis. Clin Physiol Funct Imaging. 2019;39(5):297–307.

    Article  Google Scholar 

  • Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. J Am Med Assoc. 1996a;276(11):889–97.

    Article  Google Scholar 

  • Connors AF Jr, Speroff T, Dawson NV. The effectiveness of right heart catheterization in the initial care of critically ill patients. J Am Med Assoc. 1996b;18:1294–5.

    Google Scholar 

  • Cournand A, Motley HL, Werko L, Richards DW Jr. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol. 1948;152:162–74.

    Article  CAS  Google Scholar 

  • Courtois M, Fattal PG, Kovacs SJ, Tiefenbrunn AJ, Ludbrook PA. Anatomically and physiologically based reference level for measurement of intracardiac pressures. Circulation. 1995;92:1994–2000.

    Article  CAS  Google Scholar 

  • Dalen JE, Bone RC. Is it time to pull the pulmonary artery catheter? J Am Med Assoc. 1996;276(11):916–8.

    Article  CAS  Google Scholar 

  • Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30(11):2060–6.

    Article  Google Scholar 

  • Eskesen TG, Wetterslev M, Perner A. Reanalysis of central venous pressure as an indicator of fluid responsiveness. Intensive Care Med. 2015;42:324.

    Article  Google Scholar 

  • Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra sepsis Syndrome Study Group. J Am Med Assoc. 1994;271(23):1836–43.

    Article  Google Scholar 

  • Forrester JS, Diamond G, McHugh TJ, Swan HJ. Filling pressures in the right and left sides of the heart in acute myocardial infarction. A reappraisal of central-venous-pressure monitoring. N Engl J Med. 1971;285(4):190–3.

    Article  CAS  Google Scholar 

  • Goldstein JA, Barzilai B, Rosamond TL, Eisenberg PR, Jaffe AS. Determinants of hemodynamic compromise with severe right ventricular infarction. Circulation. 1990;82(2):359–68.

    Article  CAS  Google Scholar 

  • Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366(9484):472–7.

    Article  Google Scholar 

  • Iberti TJ, Fisher EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary artery catheter study group. J Am Med Assoc. 1990;264(22):2928–32.

    Article  CAS  Google Scholar 

  • Laks MM, Garner D, Swan HJ. Volumes and compliances measured simultaneously in the right and left ventricles of the dog. Circ Res. 1967;20(5):565–9.

    Article  CAS  Google Scholar 

  • Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. J Intensive Care Med. 2007;22(1):44–51.

    Article  Google Scholar 

  • Magder S, Verscheure S. Proper reading of pulmonary artery vascular pressure tracings. Am J Respir Crit Care Med. 2014;190(10):1196–8.

    Article  CAS  Google Scholar 

  • Magder S, Serri K, Verscheure S, Chauvin R, Goldberg P. Active expiration and the measurement of central venous pressure. J Intensive Care Med. 2016;33:430.

    Article  Google Scholar 

  • Mark JB. Central venous pressure monitoring: clinical insights beyond the numbers. J Cardiothorac Vasc Anesth. 1991;5(2):163–73.

    Article  CAS  Google Scholar 

  • McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329(7460):258–0.

    Article  Google Scholar 

  • Moxham IM. Physics of invasive blood pressure monitoring. S Afr J Anaesth Anal. 2003;9(1):33–8.

    Article  Google Scholar 

  • Pinsky M, Vincent JL, De Smet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis. 1991;143(1):25–31.

    Article  CAS  Google Scholar 

  • Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. J Am Med Assoc. 2003;290(20):2713–20.

    Article  CAS  Google Scholar 

  • Shapiro GG, Krovetz LJ. Damped and undamped frequency responses of underdamped catheter manometer systems. Am Heart J. 1970;80(2):226–36.

    Article  CAS  Google Scholar 

  • Swan HJC, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;282(9):447–51.

    Article  Google Scholar 

  • Verscheure S, Massion PB, Gottfried S, Goldberg P, Samy L, Damas P, et al. Measurement of pleural pressure swings with a fluid-filled esophageal catheter vs pulmonary artery occlusion pressure. J Crit Care. 2016;37:65–71.

    Article  Google Scholar 

  • Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354(21):2213–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Magder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magder, S. (2021). Basics of Hemodynamic Measurements. In: Magder, S., Malhotra, A., Hibbert, K.A., Hardin, C.C. (eds) Cardiopulmonary Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-73387-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73387-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73386-5

  • Online ISBN: 978-3-030-73387-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics